PROBLEM

A Few Conventions

$$
\begin{aligned}
& F, \Longrightarrow \quad \text { indicate the definition, } \\
& \overline{1, n} \rightleftharpoons\{1,2, \ldots, n\}, \\
& x_{1} x_{2} \ldots x_{n} \rightleftharpoons\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \rightleftharpoons\left(x_{1}, x_{2}, \ldots, x_{n}\right), \\
& A_{1} \times A_{2} \times \ldots \times A_{n} \rightleftharpoons\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid \forall i \in \overline{1, n}\left(x_{i} \in A_{i}\right)\right\}, \\
& f: X \rightarrow Y-\text { a surjection, } \\
& |u|, \quad A^{n}, \quad A^{+}, \quad \lambda, \quad A^{*}
\end{aligned}
$$

1. The Thue-Morse word

Let A be a finite non-empty set and A^{*} be the free monoid generated by A. The set A is also called an alphabet, its elements - letters and those of A^{*} - finite words. The role of identity element is performed by empty word and denoted by λ. We set $A^{+}=A^{*} \backslash\{\lambda\}$. A word $w \in A^{+}$can be written uniquely as a sequence of letters as $w=w_{1} w_{2} \ldots w_{l}$, with $w_{i} \in A, 1 \leq i \leq l$. The integer l is called the length of w and denoted $|w|$. The length of λ is 0 .

The word w^{\prime} is called a factor of w, if $w=u w^{\prime} v$ for some u and v. If $u=\lambda$ or $v=\lambda$, then w^{\prime} is called, respectively, a prefix or a suffix of w.

A total function $\mu: A^{*} \rightarrow B^{*}$ is called a morphism, if $\mu(\lambda)=\lambda$ and

$$
\mu(u v)=\mu(u) \mu(v)
$$

Let

$$
\tau:\{0,1\}^{*} \rightarrow\{0,1\}^{*}
$$

be a morphism defined as follows:

$$
\tau(0) \rightleftharpoons 01, \tau(1) \rightleftharpoons 10
$$

then

$$
\tau^{2}(0) \rightleftharpoons \tau(\tau(0))=\tau(01)=\tau(0) \tau(1)=0110
$$

and

$$
\tau^{n+1}(0) \rightleftharpoons \tau\left(\tau^{n}(0)\right)
$$

An (indexed) infinite word (ω-word) x on the alphabet A is any total map $x: \mathbb{N} \rightarrow A$. We set for any $i \geq 0, x_{i} F x(i)$ and write

$$
x \leftrightharpoons\left(x_{i}\right) \leftrightharpoons x_{0} x_{1} \ldots x_{n} \ldots
$$

The set of all the infinite words over A is denoted by A^{ω}. All definitions, made before, is applied to this case also. Here prefixes and factors of infinite words are finite, but suffixes are infinite.

Let us consider the set $A^{\infty} \rightleftharpoons A^{*} \cup A^{\omega}$ and $u, v \in A^{\infty}$. Then $d(u, v) \rightleftharpoons 0$ if $u=v$, otherwise

$$
d(u, v)=2^{-n}
$$

where n is the length of the maximal common prefix of u and v. It is called a prefix metric.

1.1. Definition.

$$
t \rightleftharpoons \lim _{n \rightarrow \infty} \tau^{n}(0)
$$

is called the Thue-Morse word.

2. Bounded Bi-ideals

A sequence of words of A^{*}

$$
v_{0}, v_{1}, \ldots, v_{n}, \ldots
$$

is called a bi-ideal sequence if $\forall i \geq 0\left(v_{i+1} \in v_{i} A^{*} v_{i}\right)$. The term "bi-ideal sequence" is due to the fact that $\forall i \geq 0\left(v_{i} A^{*} v_{i}\right)$ is a bi-ideal of A^{*}.

Let $v_{0}, v_{1}, \ldots, v_{n} \ldots$ be an infinite bi-ideal sequence, where $v_{0}=u_{0}$ and $\forall i \geq 0\left(v_{i+1}=v_{i} u_{i+1} v_{i}\right)$. Since for all $i \geq 0$ the word v_{i} is a prefix of the next word v_{i+1} the sequence (v_{i}) converges, with respect to the prefix metric, to the infinite word $x \in A^{\omega}$

$$
x=v_{0}\left(u_{1} v_{0}\right)\left(u_{2} v_{1}\right) \ldots\left(u_{n} v_{n-1}\right) \ldots
$$

This word x is called a bi-ideal. We say the sequence $\left(u_{i}\right)$ generates the bi-ideal x.
2.1. Definition. Let $\left(u_{i}\right)$ generates a bi-ideal x. The bi-ideal x is called bounded if $\exists l \forall i\left|u_{i}\right| \leq l$.

3. Mealy Machines

A 3-sorted algebra $V=\langle Q, A, B ; \circ, *\rangle$ is called a Mealy machine if Q, A, B are finite non-empty sets and $\circ: Q \times A \rightarrow Q, *: Q \times A \rightarrow B$ are total functions. The sets Q, A and B are called respectively a state set, an input alphabet and an output alphabet. The mappings \circ and $*$ can be extended to $Q \times A^{*}$ by defining

$$
\begin{aligned}
& q \circ \lambda F q, \quad q \circ(u a)=(q \circ u) \circ a, \\
& q * \lambda F \lambda, \quad q *(u a) \rightleftharpoons(q * u)((q \circ u) * a),
\end{aligned}
$$

for all $q \in Q, u \in A^{*}$ and $a \in A$. If x is an ω-word and $q \in Q$ we define

$$
q * x \rightleftharpoons \lim _{n \rightarrow \infty} q * x_{0} x_{1} \ldots x_{n}
$$

A 3-sorted algebra $V_{0}=\left\langle Q, A, B ; q_{0}, \circ, *\right\rangle$ is called an initial Mealy machine if $\langle Q, A, B ; \circ, *\rangle$ is a Mealy machine and an initial state $q_{0} \in Q$. The reader who is familiar with transducers notices the initial Mealy machine is 1-uniform finite state transducer. We say a machine V_{0} transforms x to y if $y=q_{0} * x$.

4. The Challenge

Do there exist a bounded bi-ideal x and an initial Mealy machine

$$
V_{0}=\left\langle Q, A, B ; q_{0}, \circ, *\right\rangle
$$

such that V_{0} transforms x to the Thue-Morse word t ?

