Affine finite automata

A quantum-like classical finite automata

Abuzer Yakaryılmaz abuzer.yakaryilmaz@gmail.com

October 16, 2016
Theory Days at Lilaste, Latvia

Joint work with
Alejandro Díaz-Caro, Universidad Nacional de Quilmes (Argentina) and
Marcos Villagra, Universidad Nacional de Asuncion (Paraguay)

A probabilistic finite automaton (PFA) is a generalization of deterministic finite automaton (DFA) that can make random choices:

Framework for probabilistic systems.

- A probabilistic state is defined on $\left(\mathbb{R}^{+} \cup\{0\}\right)^{n}$ for some $n>0$.
- The I_{1} norm of a probabilistic state is 1 and the probability of observing a state is its contribution in the I_{1} norm, which is simply the value in the corresponding entry.
- The summation of probabilities is always 1.
- They evolve linearly (i.e. stochastic matrices) and I_{1}-norm is preserved on nonnegative vectors.

A probabilistic state v :

$$
v=\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{n}
\end{array}\right), \quad 0 \leq p_{i} \leq 1, \quad|v|=\sum_{i=1}^{n} p_{i}=1
$$

Each column of a stochastic matrix (A) is a probabilistic state.
$v^{\prime}=A v \rightarrow\left(\begin{array}{c}p_{1}^{\prime} \\ \vdots \\ p_{n}^{\prime}\end{array}\right)=\left(\begin{array}{cccc}p_{1,1} & p_{1,2} & \cdots & p_{1, n} \\ p_{2,1} & p_{2,2} & \cdots & p_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{1,1} & p_{1,2} & \cdots & p_{1, n}\end{array}\right)\left(\begin{array}{c}p_{1} \\ \vdots \\ p_{n}\end{array}\right), \quad\left|v^{\prime}\right|=1$.
The (j, i)-th entry of $A, p_{j, i}$, represents the probability of going from the i-th state to j-th state.

Framework for a more general probabilistic systems.

- A general probabilistic state is defined on $(\mathbb{R})^{n}$ for some $n>0$.
- The I_{1} norm of a probabilistic state is 1 and the probability of observing a state is its contribution in the I_{1} norm, which is the absolute value of the corresponding entry.
- The summation of probabilities is always 1.
- They evolve linearly (i.e. YYY matrices) and I_{1}-norm is preserved.

YYY?

New framework based on I_{2}-norm:

- The summation of probabilities is always 1 .
- The l_{2} norm of a new kind state is 1 and the probability of observing a state is its contribution in the l_{2} norm, i.e. the square of the corresponding entry.
- A state is defined on \mathbb{R}^{n} for some $n>0$.

New framework based on I_{2}-norm:

- The summation of probabilities is always 1 .
- The l_{2} norm of a new kind state is 1 and the probability of observing a state is its contribution in the l_{2} norm, i.e. the square of the corresponding entry.
- A state is defined on \mathbb{R}^{n} for some $n>0$.
- They evolve linearly (i.e. ZZZ matrices) and I_{2}-norm is preserved.

ZZZ?

An n-dimensional system can have the following state:

$$
v=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right) \in \mathbb{R}^{n}, \quad|v|=\sum_{i=1}^{n}\left|\alpha_{n}\right|^{2}=1
$$

where the probability of observing the i-th state is $\left|\alpha_{i}\right|^{2}$.

The column of a orthogonal matrix (O) is also a norm- 1 vector.
$v^{\prime}=O v \rightarrow\left(\begin{array}{c}\alpha_{1}^{\prime} \\ \vdots \\ \alpha_{n}^{\prime}\end{array}\right)=\left(\begin{array}{cccc}\alpha_{1,1} & \alpha_{1,2} & \cdots & \alpha_{1, n} \\ \alpha_{2,1} & \alpha_{2,2} & \cdots & \alpha_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{1,1} & \alpha_{1,2} & \cdots & \alpha_{1, n}\end{array}\right)\left(\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right),\left|v^{\prime}\right|=1$.
The (j, i)-th entry of $O, \alpha_{j, i}$, represents the transition value of going from the i-th state to j-th state.

New updated framework based on l_{2}-norm:

- A state is defined on \mathbb{C}^{n} for some $n>0$.
- The l_{2} norm of a new kind state is 1 and the probability of observing a state is its contribution in the I_{2} norm, which is square of the value in the corresponding entry.
- The summation of probabilities is always 1.
- They evolve linearly (i.e. unitary matrices) and I_{2}-norm is preserved.

How can we defined a quantum-like (using negative values) system classically?

- The state should be a vector in \mathbb{R}^{n}.
- But there is no linear operator preserving l_{1}-norm.
- On the other hand, another property of stochastic vectors is that the summation of all entries is 1 .
- Is there any such linear operator?

How can we defined a quantum-like (using negative values) system classically?

- The state should be a vector in \mathbb{R}^{n}.
- But there is no linear operator preserving l_{1}-norm.
- On the other hand, another property of stochastic vectors is that the summation of all entries is 1 .
- Is there any such linear operator?

Yes, affine operators, preserving the summation!

An affine state v :

$$
v=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right), \quad a_{i} \in \mathbb{R}, \quad \sum_{i=1}^{n} a_{i}=1
$$

Each column of an affine matrix (A) is an affine state.
$v^{\prime}=A v \rightarrow\left(\begin{array}{c}a_{1}^{\prime} \\ \vdots \\ a_{n}^{\prime}\end{array}\right)=\left(\begin{array}{cccc}a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,1} & a_{1,2} & \cdots & a_{1, n}\end{array}\right)\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right), \sum_{i=1}^{n} a_{i}=1$.
The (j, i)-th entry of $A, a_{j, i}$, represents the transition value of going from the i-th state to j-th state.

How can we determine the observing probability of i-th state?

$$
v=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{i} \\
\vdots \\
a_{n}
\end{array}\right), \quad \sum_{i=1}^{n} a_{i}=1
$$

Remark that $|v| \geq 1$!

How can we determine the observing probability of i-th state?

$$
v=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{i} \\
\vdots \\
a_{n}
\end{array}\right), \quad \sum_{i=1}^{n} a_{i}=1
$$

Remark that $|v| \geq 1$!
We use a non-linear operator called weighting that returns the weight of each state in $|v|$.

$$
\operatorname{Pr}\left[a_{i}\right]=\frac{\left|a_{i}\right|}{|v|} .
$$

Framework for affine systems.

- An affine state is defined on \mathbb{R}^{n} for some $n>0$.
- The cumulative sum is 1 and the probability of observing a state is its contribution in the I_{1} norm, i.e. the normalized absolute value of the corresponding entry.
- The summation of probabilities is always 1 .
- They evolve linearly (i.e. affine matrices) and cumulative sum is preserved but l_{1}-norm does not to be preserved.

Consider a PFA example: 4-state PFA P defined over $\{a, b\}$:

After reading $a^{m} b^{n}$, the probabilities:

$$
\begin{gathered}
s_{0}: p_{0}=\left(\frac{1}{2}\right)^{m+1} \quad s_{1}: p_{1}=\left(\frac{1}{2}\right)^{n+1} \\
s_{2}: p_{2}=\left(1-p_{0}-p_{1}\right) / 2 \quad s_{3}: p_{3}=\left(1-p_{0}-p_{1}\right) / 2
\end{gathered}
$$

The accepting and rejecting probabilities are

$$
f_{P}\left(a^{m} b^{n}\right)=\left(\frac{1}{2}\right)^{m+1}+\frac{1-p_{0}-p 1}{2}
$$

and

$$
1-f_{P}\left(a^{m} b^{n}\right)=\left(\frac{1}{2}\right)^{n+1}+\frac{1-p_{0}-p 1}{2}
$$

The accepting and rejecting probabilities are

$$
f_{P}\left(a^{m} b^{n}\right)=\left(\frac{1}{2}\right)^{m+1}+\frac{1-p_{0}-p 1}{2}
$$

and

$$
1-f_{P}\left(a^{m} b^{n}\right)=\left(\frac{1}{2}\right)^{n+1}+\frac{1-p_{0}-p 1}{2}
$$

How can we define a language recognized by P ?

Remark that the automaton P defines a probability distributions over all strings.

The accepting and rejecting probabilities are

$$
\begin{aligned}
& f_{P}\left(a^{m} b^{n}\right)=\left(\frac{1}{2}\right)^{m+1}+\frac{1-p_{0}-p 1}{2}, \text { and } \\
& 1-f_{P}\left(a^{m} b^{n}\right)=\left(\frac{1}{2}\right)^{n+1}+\frac{1-p_{0}-p 1}{2}
\end{aligned}
$$

We can pick a threshold called cutpoint $\lambda \in[0,1)$ and then classify all strings under three sets. Let's pick $\lambda=\frac{1}{2}$:

- $L\left(P,<\frac{1}{2}\right)=\left\{w \left\lvert\, f_{P}(w)<\frac{1}{2}\right.\right\}$, formed by the string accepted with probability less than $\frac{1}{2}$
- $L\left(P,=\frac{1}{2}\right)=\left\{w \left\lvert\, f_{P}(w)=\frac{1}{2}\right.\right\}$, formed by the string accepted with probability equal to $\frac{1}{2}$
- $L\left(P,>\frac{1}{2}\right)=\left\{w \left\lvert\, f_{P}(w)>\frac{1}{2}\right.\right\}$, formed by the string accepted with probability greater than $\frac{1}{2}$
Any of them or any two of them form a language recognized by P.

Any language recognized by a PFA P with cutpoint λ is called stochastic:

$$
L(P,>\lambda)=\left\{w \mid f_{P}(w)>\lambda\right\} .
$$

The class of stochastic languages is denoted SL.
Any language defined in the following way is called exclusive stochastic languages:

$$
L(P, \neq \lambda)=\left\{w \mid f_{P}(w) \neq \lambda\right\}
$$

The class of exclusive stochastic languages is denoted SL^{\neq}, a proper superset of regular languages (REG).

The complement class of SL^{\neq}is $\mathrm{SL}^{=}$:

- $\mathrm{EQ}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}=|w|_{b}\right\}$ is in $\mathrm{SL}=$ and
- NEQ $=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \neq|w|_{b}\right\}$ is in SL^{\neq}.

QFAs with cutpoints define exactly the same class as PFAs: SL.
Exclusive quantum languages are identical to stochastic one $\mathrm{SL} \neq$. However QFAs and PFAs can differ in the following case:

- The class of languages $L(P, \neq 0)=\left\{w \mid f_{P}(w)>0\right\}$, where P is a PFA.
- The class of languages $L(M, \neq 0)=\left\{w \mid f_{P}(w)>0\right\}$, where M is a QFA.

The class of languages $L(P, \neq 0)=L(P,>\lambda)=\left\{w \mid f_{P}(w)>0\right\}$, where P is a PFA.

A PFA, say P, example for the following language:
$\operatorname{MOD}_{3,5,7}=\left\{a^{i} \mid i \bmod 3 \equiv 0\right.$ or $i \bmod 5 \equiv 0$ or $\left.i \bmod 7 \equiv 0\right\}$
With equal probability split into 3 paths at the beginning and then make each modular check separately. If one check is successful, then accept the input.

- P accepts all members with probability at least $\frac{1}{3}$.
- P accepts each non-member with zero probability.

The class of languages $L(P, \neq 0)=L(P,>\lambda)=\left\{w \mid f_{P}(w)>0\right\}$, where P is a PFA.

A PFA, say P, example for the following language:
$\operatorname{MOD}_{3,5,7}=\left\{a^{i} \mid i \bmod 3 \equiv 0\right.$ or $i \bmod 5 \equiv 0$ or $\left.i \bmod 7 \equiv 0\right\}$
With equal probability split into 3 paths at the beginning and then make each modular check separately. If one check is successful, then accept the input.

- P accepts all members with probability at least $\frac{1}{3}$.
- P accepts each non-member with zero probability.

Any PFA P fixed to define a single language $L(P,>0)$ is a nondeterministic finite automaton (NFA).

Any PFA P fixed to define a single language $L(P,>0)$ is a nondeterministic finite automaton (NFA).

Any QFA M fixed to define a single language $L(M,>0)$ is a nondeterministic QFA (NQFA).

Any PFA P fixed to define a single language $L(P,>0)$ is a nondeterministic finite automaton (NFA).

Any QFA M fixed to define a single language $L(M,>0)$ is a nondeterministic QFA (NQFA).

- NFAs define only REG.
- NQFAs define $S^{\prime} \neq$.

Bounded-error computation:

- There is a constant gap between the accepting probabilities of members and non-members.
- The PFA algorithm for MOD $_{3,5,7}$, where the gap is $\frac{1}{3}$.
- So, this algorithm is also one-sided bounded-error. One answer is always correct!
Bounded-error PFAs and QFAs define exactly REG.

An n-state affine finite automaton (AfA) M is a 5 -tuple

$$
M=\left(E, \Sigma,\left\{A_{\sigma} \mid \sigma \in \Sigma \cup\{\#\}\right\}, v_{0}, E_{a}\right),
$$

where

- $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is the set of states,
- Σ is the input alphabet not containing the right end-marker \#,
- A_{σ} is the affine operator applied when reading symbol $\sigma \in \Sigma \cup\{\#\}$,
- v_{0} is the initial affine state, and
- $E_{a} \subset E$ is the set of accepting state.

For a given input $w \in \Sigma^{*}$, the computation is traced as

$$
v_{f}=A_{\#} A_{w_{|w|}} \cdots A_{w_{1}} v_{0}
$$

For a given input $w \in \Sigma^{*}$, the computation is traced as

$$
v_{f}=A_{\#} A_{w_{|w|}} \cdots A_{w_{1}} v_{0}
$$

Then, the accepting probability of w by M is

$$
f_{M}(w)=\frac{\sum_{e_{i} \in E_{a}}\left|v_{f}[i]\right|}{\left|v_{f}\right|} .
$$

Bounded-error: Consider the nonregular language $\mathrm{EQ}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}=|w|_{b}\right\}:$

- The initial affine state $\binom{1}{0}$.
- Apply $A_{a}=\left(\begin{array}{rr}2 & 0 \\ -1 & 1\end{array}\right)$ for each a.
- Apply $A_{b}=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ \frac{1}{2} & 1\end{array}\right)$ for each b.

If $|w|_{a}=m$ and $|w|_{b}=n$, then the final state is

$$
\binom{2^{m-n}}{1-2^{m-n}}
$$

- Each member $(m=n)$ is accepted with probability 1 .
- Each non-member $(m \neq n)$ is accepted with probability at most $\frac{2}{3}$.

Bounded-error AfAs are more powerful than bounded-error PFAs and QFAs.

Nondeterministic affine languages: NAfAs and NQFAs can simulate each other and so they are equivalent and more powerful than PFAs.

- When focusing on a single non-zero accepting path, the degree of norm is not important $\left(l_{1}, l_{2}, \ldots, l_{i}, \ldots, l_{\infty}\right)$.
- The restriction of PFAs is using only non-negative values.

Now we have:

$$
\mathrm{NQAL}=\mathrm{SL}^{\neq}=\mathrm{NAfL}=\mathrm{NQAL}^{\neq}
$$

Moreover, we can follow that

- The class of languages recognized by one-sided bounded-error (rational) AfAs are identical to

$$
\mathrm{SL}_{\mathbb{Q}}^{\overline{\mathbb{Q}}} \cup \mathrm{SL}_{\mathbb{Q}}^{\neq}
$$

where the classes are defined with PFAs using only rational numbers.

- In other words, nondeterminism is useless for AfAs when restricted to rational numbers.

What can we say about exclusive affine language, i.e. AfL^{\neq}(and its complement class $\mathrm{AfL}^{=}$)?

The power of weighting operator:

The language ABS-EQ is defined on $\{a, b\}$ such that $w \in \operatorname{ABS}-\mathrm{EQ}$ if and only if

$$
\begin{equation*}
|m-n|+|m-4 n|=|m-2 n|+|m-3 n|, \tag{1}
\end{equation*}
$$

where $|w|_{a}=m$ and $|w|_{b}=n$.

- Without absolute values, the equality is trivial.
- Interestingly, ABS-EQ \notin SL= .
- On the other hand, we can easily show that ABS-EQ $\in A f L=$.

The language ABS-EQ is defined on $\{a, b\}$ such that $w \in \operatorname{ABS}-\mathrm{EQ}$ if and only if

$$
\begin{equation*}
|m-n|+|m-4 n|=|m-2 n|+|m-3 n|, \tag{2}
\end{equation*}
$$

where $|w|_{a}=m$ and $|w|_{b}=n$.

- We can encode the followings in the values of some states, $m, n, 2 n, 3 n, 4 n$.
- Then, we can easily set the followings to the values of some states at the end of the computation:

$$
\left(\begin{array}{c}
m-n \\
m-4 n \\
m-2 n \\
m-3 n \\
\frac{1-T}{2} \\
\frac{1-T}{2}
\end{array}\right) \text {, where } T \text { is the summation of first entries. }
$$

- By setting e_{1}, e_{2}, e_{5} as the accepting states, we can get the desired result.

Remark that the computational power comes from weighting operator in the previous example!

$$
\mathrm{SL}^{=}=\mathrm{QAL}^{=} \subsetneq \mathrm{AfL}^{=} \text {and } \mathrm{SL}^{\neq}=\mathrm{QAL}^{\neq} \subsetneq \mathrm{AfL}^{\neq}
$$

In classical case:

$$
\mathrm{SL}^{\neq 0}=\mathrm{REG} \subsetneq \mathrm{SL}^{\neq}
$$

In quantum case:

$$
\mathrm{QAL}^{\neq 0}=\mathrm{NQAL}=\mathrm{QAL}^{\neq}
$$

In affine case:

$$
\mathrm{AfL}^{\neq 0}=\mathrm{NAfL} \subsetneq \mathrm{AfL}^{\neq}
$$

AfAs with cutpoints:

- They are more powerful than PFAs and QFAs since they can recognize some nonstochastic languages:

$$
\operatorname{LAPINS} \check{S}^{\prime}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a} ^{4}>|w|_{b}^{2}>|w|_{c}\right\}
$$

or equivalently

$$
\text { LAPINŠ }{ }^{\prime}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a} ^{2}>|w|_{b} \text { and }|w|_{b}^{2}>|w|_{c}\right\} .
$$

