
Affine finite automata
A quantum-like classical finite automata

Abuzer Yakaryılmaz
abuzer.yakaryilmaz@gmail.com

October 16, 2016
Theory Days at Lilaste, Latvia

Joint work with
Alejandro D́ıaz-Caro, Universidad Nacional de Quilmes (Argentina)

and
Marcos Villagra, Universidad Nacional de Asuncion (Paraguay)

1 / 32

A probabilistic finite automaton (PFA) is a generalization of
deterministic finite automaton (DFA) that can make random
choices:

s0start s1

a,12
a,12

a,13

a,23

2 / 32

Framework for probabilistic systems.

I A probabilistic state is defined on (R+ ∪{0})n for some n > 0.

I The l1 norm of a probabilistic state is 1 and the probability of
observing a state is its contribution in the l1 norm, which is
simply the value in the corresponding entry.

I The summation of probabilities is always 1.

I They evolve linearly (i.e. stochastic matrices) and l1-norm is
preserved on nonnegative vectors.

3 / 32

A probabilistic state v :

v =

 p1
...
pn

 , 0 ≤ pi ≤ 1, |v | =
n∑

i=1

pi = 1.

Each column of a stochastic matrix (A) is a probabilistic state.

v ′ = Av →

 p′1
...
p′n

 =

p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n

...
...

. . .
...

p1,1 p1,2 · · · p1,n

 p1

...
pn

 , |v ′| = 1.

The (j , i)-th entry of A, pj ,i , represents the probability of going
from the i-th state to j-th state.

4 / 32

Framework for a more general probabilistic systems.

I A general probabilistic state is defined on (R)n for some n > 0.

I The l1 norm of a probabilistic state is 1 and the probability of
observing a state is its contribution in the l1 norm, which is
the absolute value of the corresponding entry.

I The summation of probabilities is always 1.

I They evolve linearly (i.e. YYY matrices) and l1-norm is
preserved.

YYY?

5 / 32

New framework based on l2-norm:

I The summation of probabilities is always 1.

I The l2 norm of a new kind state is 1 and the probability of
observing a state is its contribution in the l2 norm, i.e. the
square of the corresponding entry.

I A state is defined on Rn for some n > 0.

I They evolve linearly (i.e. ZZZ matrices) and l2-norm is
preserved.

ZZZ?

6 / 32

New framework based on l2-norm:

I The summation of probabilities is always 1.

I The l2 norm of a new kind state is 1 and the probability of
observing a state is its contribution in the l2 norm, i.e. the
square of the corresponding entry.

I A state is defined on Rn for some n > 0.

I They evolve linearly (i.e. ZZZ matrices) and l2-norm is
preserved.

ZZZ?

6 / 32

An n-dimensional system can have the following state:

v =

α1

α2
...
αn

 ∈ Rn, |v | =
n∑

i=1

|αn|2 = 1,

where the probability of observing the i-th state is |αi |2.

The column of a orthogonal matrix (O) is also a norm-1 vector.

v ′ = Ov →

 α′1
...
α′n

 =

α1,1 α1,2 · · · α1,n

α2,1 α2,2 · · · α2,n
...

...
. . .

...
α1,1 α1,2 · · · α1,n

 α1

...
αn

 , |v ′| = 1.

The (j , i)-th entry of O, αj ,i , represents the transition value of
going from the i-th state to j-th state.

7 / 32

New updated framework based on l2-norm:

I A state is defined on Cn for some n > 0.

I The l2 norm of a new kind state is 1 and the probability of
observing a state is its contribution in the l2 norm, which is
square of the value in the corresponding entry.

I The summation of probabilities is always 1.

I They evolve linearly (i.e. unitary matrices) and l2-norm is
preserved.

8 / 32

How can we defined a quantum-like (using negative values) system
classically?

I The state should be a vector in Rn.

I But there is no linear operator preserving l1-norm.

I On the other hand, another property of stochastic vectors is
that the summation of all entries is 1.

I Is there any such linear operator?

Yes, affine operators, preserving the summation!

9 / 32

How can we defined a quantum-like (using negative values) system
classically?

I The state should be a vector in Rn.

I But there is no linear operator preserving l1-norm.

I On the other hand, another property of stochastic vectors is
that the summation of all entries is 1.

I Is there any such linear operator?

Yes, affine operators, preserving the summation!

9 / 32

An affine state v :

v =

 a1
...
an

 , ai ∈ R,
n∑

i=1

ai = 1.

Each column of an affine matrix (A) is an affine state.

v ′ = Av →

 a′1
...
a′n

 =

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

a1,1 a1,2 · · · a1,n

 a1

...
an

 ,

n∑
i=1

ai = 1.

The (j , i)-th entry of A, aj ,i , represents the transition value of
going from the i-th state to j-th state.

10 / 32

How can we determine the observing probability of i-th state?

v =

a1
...
ai
...
an

 ,

n∑
i=1

ai = 1.

Remark that |v | ≥ 1!

We use a non-linear operator called weighting that returns the
weight of each state in |v |.

Pr [ai] =
|ai |
|v |

.

11 / 32

How can we determine the observing probability of i-th state?

v =

a1
...
ai
...
an

 ,

n∑
i=1

ai = 1.

Remark that |v | ≥ 1!

We use a non-linear operator called weighting that returns the
weight of each state in |v |.

Pr [ai] =
|ai |
|v |

.

11 / 32

Framework for affine systems.

I An affine state is defined on Rn for some n > 0.

I The cumulative sum is 1 and the probability of observing a
state is its contribution in the l1 norm, i.e. the normalized
absolute value of the corresponding entry.

I The summation of probabilities is always 1.

I They evolve linearly (i.e. affine matrices) and cumulative sum
is preserved but l1-norm does not to be preserved.

12 / 32

Consider a PFA example: 4-state PFA P defined over {a, b}:

s0

s1

s2

s3

START

1
2

1
2

a,14

a,14

a,12

b,1

b,14

b,14

b,12

a,1

a,1

b,1

a,1

b,1

13 / 32

s0

s1

s2

s3

START

1
2

1
2

a,14

a,14

a,12

b,1

b,14

b,14

b,12

a,1

a,1

b,1

a,1

b,1

After reading ambn, the probabilities:

s0 : p0 =

(
1

2

)m+1

s1 : p1 =

(
1

2

)n+1

s2 : p2 = (1− p0 − p1) /2 s3 : p3 = (1− p0 − p1) /2

14 / 32

The accepting and rejecting probabilities are

fP(ambn) =

(
1

2

)m+1

+
1− p0 − p1

2

and

1− fP(ambn) =

(
1

2

)n+1

+
1− p0 − p1

2
.

How can we define a language recognized by P?

Remark that the automaton P defines a probability distributions
over all strings.

15 / 32

The accepting and rejecting probabilities are

fP(ambn) =

(
1

2

)m+1

+
1− p0 − p1

2

and

1− fP(ambn) =

(
1

2

)n+1

+
1− p0 − p1

2
.

How can we define a language recognized by P?

Remark that the automaton P defines a probability distributions
over all strings.

15 / 32

The accepting and rejecting probabilities are

fP(ambn) =

(
1

2

)m+1

+
1− p0 − p1

2
, and

1− fP(ambn) =

(
1

2

)n+1

+
1− p0 − p1

2
.

We can pick a threshold called cutpoint λ ∈ [0, 1) and then classify
all strings under three sets. Let’s pick λ = 1

2 :

I L(P, < 1
2) = {w | fP(w) < 1

2}, formed by the string accepted
with probability less than 1

2

I L(P,= 1
2) = {w | fP(w) = 1

2}, formed by the string accepted
with probability equal to 1

2

I L(P, > 1
2) = {w | fP(w) > 1

2}, formed by the string accepted
with probability greater than 1

2

Any of them or any two of them form a language recognized by P.

16 / 32

Any language recognized by a PFA P with cutpoint λ is called
stochastic:

L(P, > λ) = {w | fP(w) > λ}.

The class of stochastic languages is denoted SL.

Any language defined in the following way is called exclusive
stochastic languages:

L(P, 6= λ) = {w | fP(w) 6= λ}.

The class of exclusive stochastic languages is denoted SL6=, a
proper superset of regular languages (REG).

The complement class of SL 6= is SL=:

I EQ = {w ∈ {a, b}∗ | |w |a = |w |b} is in SL= and

I NEQ = {w ∈ {a, b}∗ | |w |a 6= |w |b} is in SL6=.

17 / 32

QFAs with cutpoints define exactly the same class as PFAs: SL.

Exclusive quantum languages are identical to stochastic one SL6=.
However QFAs and PFAs can differ in the following case:

I The class of languages L(P, 6= 0) = {w |fP(w) > 0}, where P
is a PFA.

I The class of languages L(M, 6= 0) = {w |fP(w) > 0}, where M
is a QFA.

18 / 32

The class of languages L(P, 6= 0) = L(P, > λ) = {w |fP(w) > 0},
where P is a PFA.

A PFA, say P, example for the following language:

MOD3,5,7 = {ai | i mod 3 ≡ 0 or i mod 5 ≡ 0 or i mod 7 ≡ 0}

With equal probability split into 3 paths at the beginning and then
make each modular check separately. If one check is successful,
then accept the input.

I P accepts all members with probability at least 1
3 .

I P accepts each non-member with zero probability.

Any PFA P fixed to define a single language L(P, > 0) is a
nondeterministic finite automaton (NFA).

19 / 32

The class of languages L(P, 6= 0) = L(P, > λ) = {w |fP(w) > 0},
where P is a PFA.

A PFA, say P, example for the following language:

MOD3,5,7 = {ai | i mod 3 ≡ 0 or i mod 5 ≡ 0 or i mod 7 ≡ 0}

With equal probability split into 3 paths at the beginning and then
make each modular check separately. If one check is successful,
then accept the input.

I P accepts all members with probability at least 1
3 .

I P accepts each non-member with zero probability.

Any PFA P fixed to define a single language L(P, > 0) is a
nondeterministic finite automaton (NFA).

19 / 32

Any PFA P fixed to define a single language L(P, > 0) is a
nondeterministic finite automaton (NFA).

Any QFA M fixed to define a single language L(M, > 0) is a
nondeterministic QFA (NQFA).

I NFAs define only REG.

I NQFAs define SL 6=.

20 / 32

Any PFA P fixed to define a single language L(P, > 0) is a
nondeterministic finite automaton (NFA).

Any QFA M fixed to define a single language L(M, > 0) is a
nondeterministic QFA (NQFA).

I NFAs define only REG.

I NQFAs define SL 6=.

20 / 32

Bounded-error computation:

I There is a constant gap between the accepting probabilities of
members and non-members.

I The PFA algorithm for MOD3,5,7, where the gap is 1
3 .

I So, this algorithm is also one-sided bounded-error. One
answer is always correct!

Bounded-error PFAs and QFAs define exactly REG.

21 / 32

An n-state affine finite automaton (AfA) M is a 5-tuple

M = (E ,Σ, {Aσ | σ ∈ Σ ∪ {#}}, v0,Ea),

where

I E = {e1, . . . , en} is the set of states,

I Σ is the input alphabet not containing the right end-marker
#,

I Aσ is the affine operator applied when reading symbol
σ ∈ Σ ∪ {#},

I v0 is the initial affine state, and

I Ea ⊂ E is the set of accepting state.

For a given input w ∈ Σ∗, the computation is traced as

vf = A#Aw|w| · · ·Aw1v0.

22 / 32

For a given input w ∈ Σ∗, the computation is traced as

vf = A#Aw|w| · · ·Aw1v0.

Then, the accepting probability of w by M is

fM(w) =

∑
ei∈Ea

|vf [i]|
|vf |

.

23 / 32

Bounded-error: Consider the nonregular language
EQ = {w ∈ {a, b}∗||w |a = |w |b}:

I The initial affine state

(
1
0

)
.

I Apply Aa =

(
2 0
−1 1

)
for each a.

I Apply Ab =

(
1
2 0
1
2 1

)
for each b.

If |w |a = m and |w |b = n, then the final state is(
2m−n

1− 2m−n

)
.

I Each member (m = n) is accepted with probability 1.

I Each non-member (m 6= n) is accepted with probability at
most 2

3 .

24 / 32

Bounded-error AfAs are more powerful than bounded-error PFAs
and QFAs.

25 / 32

Nondeterministic affine languages: NAfAs and NQFAs can
simulate each other and so they are equivalent and more powerful
than PFAs.

I When focusing on a single non-zero accepting path, the
degree of norm is not important (l1, l2, . . . , li , . . . , l∞).

I The restriction of PFAs is using only non-negative values.

26 / 32

Now we have:

NQAL = SL 6= = NAfL = NQAL 6=

Moreover, we can follow that

I The class of languages recognized by one-sided bounded-error
(rational) AfAs are identical to

SL=
Q ∪ SL6=Q,

where the classes are defined with PFAs using only rational
numbers.

I In other words, nondeterminism is useless for AfAs when
restricted to rational numbers.

27 / 32

What can we say about exclusive affine language, i.e. AfL 6= (and
its complement class AfL=)?

28 / 32

The power of weighting operator:

The language ABS-EQ is defined on {a, b} such that w ∈ ABS-EQ if
and only if

|m − n|+ |m − 4n| = |m − 2n|+ |m − 3n|, (1)

where |w |a = m and |w |b = n.

I Without absolute values, the equality is trivial.

I Interestingly, ABS-EQ /∈ SL=.

I On the other hand, we can easily show that ABS-EQ ∈ AfL=.

29 / 32

The language ABS-EQ is defined on {a, b} such that w ∈ ABS-EQ if
and only if

|m − n|+ |m − 4n| = |m − 2n|+ |m − 3n|, (2)

where |w |a = m and |w |b = n.

I We can encode the followings in the values of some states,
m, n, 2n, 3n, 4n.

I Then, we can easily set the followings to the values of some
states at the end of the computation:

m − n
m − 4n
m − 2n
m − 3n
1−T
2

1−T
2

 , where T is the summation of first entries.

I By setting e1, e2, e5 as the accepting states, we can get the
desired result.

30 / 32

Remark that the computational power comes from weighting
operator in the previous example!

SL= = QAL= (AfL= and SL 6= = QAL6= (AfL6=

In classical case:
SL6=0 = REG (SL6=.

In quantum case:

QAL6=0 = NQAL = QAL 6=.

In affine case:
AfL6=0 = NAfL (AfL6=.

31 / 32

AfAs with cutpoints:

I They are more powerful than PFAs and QFAs since they can
recognize some nonstochastic languages:

LAPINŠ′ = {w ∈ {a, b, c}∗ | |w |4a > |w |2b > |w |c}

or equivalently

LAPINŠ′ = {w ∈ {a, b, c}∗ | |w |2a > |w |b and |w |2b > |w |c}.

32 / 32

