Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

> Made by: Ehsan Ebrahimi

University of Tartu

Estonian-Latvian Theory Days, Lilaste, Latvia 13-16 October 2016 Joint work with **Dominique Unruh**

< □ > < 同 >

University of Tartu

Made by: Ehsan Ebrahimi

¹[Ambainis, Rosmanis and Unruh, Quantum attacks on classical proof systems (the hardness of quantum rewinding), FOCS 2014]

Made by: Ehsan Ebrahimi

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

1 Quantum hard problems are needed.

Made by: Ehsan Ebrahimi

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

- 1 Quantum hard problems are needed.
- 2 Design cryptographic schemes based on them.

LINN RESTANT

Made by: Ehsan Ebrahimi

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

- 1 Quantum hard problems are needed.
- 2 Design cryptographic schemes based on them.
- 3 Prove quantum security: classical security may not work.

¹[Ambainis, Rosmanis and Unruh, Quantum attacks on classical proof systems (the hardness of quantum rewinding), FOCS 2014]

Made by: Ehsan Ebrahimi

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

- 1 Quantum hard problems are needed.
- 2 Design cryptographic schemes based on them.
- **3** Prove quantum security: classical security may not work.
 - E.g. Security proofs in the Random Oracle Model.

¹[Ambainis, Rosmanis and Unruh, Quantum attacks on classical proof systems (the hardness of quantum rewinding), FOCS 2014] $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Made by: Ehsan Ebrahimi

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

- 1 Quantum hard problems are needed.
- 2 Design cryptographic schemes based on them.
- **3** Prove quantum security: classical security may not work.
 - E.g. Security proofs in the Random Oracle Model.
 - Relative to a specific oracle, the Fiat-Shamir transform is insecure in the quantum setting.¹

¹[Ambainis, Rosmanis and Unruh, Quantum attacks on classical proof systems (the hardness of quantum rewinding), FOCS 2014]

Made by: Ehsan Ebrahimi

Random Oracle Model in quantum setting

$$Enc_{pk}^{hy}(m;\delta) = \left(Enc_{pk}^{asy}\left(\delta; H(\delta \| Enc_{G(\delta)}^{sy}(m)\right)\right), \ Enc_{G(\delta)}^{sy}(m)\right)$$

Made by: Ehsan Ebrahimi

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

$$Enc_{pk}^{hy}(m;\delta) = \left(Enc_{pk}^{asy} \left(\delta; H(\delta \| Enc_{G(\delta)}^{sy}(m) \right) \right), \ Enc_{G(\delta)}^{sy}(m) \right)$$

Security goal: IND-CCA secure in the Random Oracle Model

Made by: Ehsan Ebrahimi

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

$$Enc_{pk}^{hy}(m;\delta) = \left(Enc_{pk}^{asy}(\delta; H(\delta || Enc_{G(\delta)}^{sy}(m)))\right), Enc_{G(\delta)}^{sy}(m)\right)$$

Security goal: IND-CCA secure in the Random Oracle Model

Properties of encryption schemes:

- The symmetric encryption scheme is One-time secure.
- The asymmetric encryption scheme is One-way secure.
- The asymmetric encryption scheme if Well-spread.

University of Tartu

Made by: Ehsan Ebrahimi

$$Enc_{pk}^{hy}(m;\delta) = \left(Enc_{pk}^{asy}\left(\delta; H(\delta \| Enc_{G(\delta)}^{sy}(m)\right)\right), Enc_{G(\delta)}^{sy}(m)\right)$$

Security goal: IND-CCA secure in the Random Oracle Model

Properties of encryption schemes:

- The symmetric encryption scheme is One-time secure.
- The asymmetric encryption scheme is One-way secure.
- The asymmetric encryption scheme if Well-spread.

Question: What about security in the **Quantum** Random Oracle Model (QROM)?

Security of the slightly modified Fujisaki-Okamoto and OAEP transforms in the **Quantum** Random Oracle Model.

Made by: Ehsan Ebrahimi

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

IND-CCA in the QROM

Outputs b' and wins if b = b'

Made by: Ehsan Ebrahimi

University of Tartu

$$\mathsf{Enc}_{\mathsf{pk}}^{\mathsf{hy}}(\mathsf{m};\delta) = \left(\mathsf{Enc}_{\mathsf{pk}}^{\mathsf{asy}}\left(\delta; \mathsf{H}(\delta \| \mathsf{Enc}_{\mathsf{G}(\delta)}^{\mathsf{sy}}(\mathsf{m}))\right), \ \mathsf{Enc}_{\mathsf{G}(\delta)}^{\mathsf{sy}}(\mathsf{m})\right)$$

Security techniques used in the classical proof: 1 List of $(\delta, H(\delta))$ and $(\delta, G(\delta))$ are needed!

University of Tartu

Made by: Ehsan Ebrahimi

$$\mathsf{Enc}_{\mathsf{pk}}^{\mathsf{hy}}(\mathsf{m};\delta) = \left(\mathsf{Enc}_{\mathsf{pk}}^{\mathsf{asy}}\left(\delta; \mathsf{H}(\delta \| \mathsf{Enc}_{\mathsf{G}(\delta)}^{\mathsf{sy}}(\mathsf{m}))\right), \ \mathsf{Enc}_{\mathsf{G}(\delta)}^{\mathsf{sy}}(\mathsf{m})\right)$$

Security techniques used in the classical proof:

- **1** List of $(\delta, H(\delta))$ and $(\delta, G(\delta))$ are needed!
- 2 Reprogramme the random oracle: E.g. It uses a random element instead of a given output $G(\delta)$ and $H(\delta')$!

University of Tartu

Made by: Ehsan Ebrahimi

$$\mathsf{Enc}_{\mathsf{pk}}^{\mathsf{hy}}(\mathsf{m};\delta) = \left(\mathsf{Enc}_{\mathsf{pk}}^{\mathsf{asy}}\left(\delta; \mathsf{H}(\delta \| \mathsf{Enc}_{\mathsf{G}(\delta)}^{\mathsf{sy}}(\mathsf{m}))\right), \ \mathsf{Enc}_{\mathsf{G}(\delta)}^{\mathsf{sy}}(\mathsf{m})\right)$$

Security techniques used in the classical proof:

- **1** List of $(\delta, H(\delta))$ and $(\delta, G(\delta))$ are needed!
- 2 Reprogramme the random oracle: E.g. It uses a random element instead of a given output $G(\delta)$ and $H(\delta')$!
- 3 Finding $x \neq x'$ st. $Enc_{pk}^{asy}(\delta; H(x)) = Enc_{pk}^{asy}(\delta; H(x'))$ is hard!

University of Tartu

Made by: Ehsan Ebrahimi

$$\mathsf{Enc}_{\mathsf{pk}}^{\mathsf{hy}}(\mathsf{m};\delta) = \left(\mathsf{Enc}_{\mathsf{pk}}^{\mathsf{asy}}\left(\delta; \mathsf{H}(\delta \| \mathsf{Enc}_{\mathsf{G}(\delta)}^{\mathsf{sy}}(\mathsf{m}))\right), \ \mathsf{Enc}_{\mathsf{G}(\delta)}^{\mathsf{sy}}(\mathsf{m})\right)$$

Security techniques used in the classical proof:

- **1** List of $(\delta, H(\delta))$ and $(\delta, G(\delta))$ are needed!
- 2 Reprogramme the random oracle: E.g. It uses a random element instead of a given output $G(\delta)$ and $H(\delta')$!
- 3 Finding $x \neq x'$ st. $Enc_{pk}^{asy}(\delta; H(x)) = Enc_{pk}^{asy}(\delta; H(x'))$ is hard!

University of Tartu

Made by: Ehsan Ebrahimi

1 List of (x, H(x)) and (x, G(x)) are needed!

• Add $H'(\delta)$ to the ciphertext $\left(Enc_{pk}^{asy}(\delta; H(\delta || Enc_{G(\delta)}^{sy}(m)) \right), Enc_{G(\delta)}^{sy}(m), H'(\delta) \right).$

³[Unruh, Revocable quantum timed-release encryption, Eurocrypt 2014] ⁴[Targhi, Tabia, Unruh. Quantum Collision-Resistance of Non-uniformly Distributed Functions. PQCrypto 2016]

Made by: Ehsan Ebrahimi

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

 Using "One-way to hiding" Lemmas³ as a tool to reprogramme the random oracle

³[Unruh, Revocable quantum timed-release encryption, Eurocrypt 2014] ⁴[Targhi, Tabia, Unruh. Quantum Collision-Resistance of Non-uniformly Distributed Functions. PQCrypto 2016]

- 3 Finding $x \neq x'$ st. $Enc_{pk}^{asy}(\delta; H(x)) = Enc_{pk}^{asy}(\delta; H(x'))$ is hard!
 - The collision resistance of random functions with outputs sampled from a non-uniform distribution ⁴

³[Unruh, Revocable quantum timed-release encryption, Eurocrypt 2014] ⁴[Targhi, Tabia, Unruh. Quantum Collision-Resistance of Non-uniformly Distributed Functions. PQCrypto 2016]

Made by: Ehsan Ebrahimi

1 List of (x, H(x)) and (x, G(x)) are needed! Add $H'(\delta)$ to the ciphertext $\left(\mathit{Enc}_{\mathit{pk}}^{\mathit{asy}}\left(\delta; \mathit{H}(\delta \| \mathit{Enc}_{\mathit{G}(\delta)}^{\mathit{sy}}(m))\right), \ \mathit{Enc}_{\mathit{G}(\delta)}^{\mathit{sy}}(m), \mathit{H}'(\delta)\right).$ **2** It uses a random element instead of a given output $H(\delta)$ or $G(\delta)$! ■ Using "One-way to hiding" Lemmas³ as a tool to reprogramme the random oracle

3 Finding
$$x \neq x'$$
 st. $Enc_{pk}^{asy}(\delta; H(x)) = Enc_{pk}^{asy}(\delta; H(x'))$ is hard!

The collision resistance of random functions with outputs sampled from a non-uniform distribution ⁴

Comment: The same proof techniques work for OAEP transform

 ³[Unruh, Revocable quantum timed-release encryption, Eurocrypt 2014]
⁴[Targhi, Tabia, Unruh. Quantum Collision-Resistance of Non-uniformly Distributed Functions, PQCrvpto 2016]

Made by: Ehsan Ebrahimi

Question?

Thank you for listening!

Made by: Ehsan Ebrahimi

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

University of Tartu