Group Theoretic Construction of Quasi-Uniform Codes

Eldho K Thomas (Joint work with Frédérique Oggier)

Institute of Computer Science
University of Tartu
Estonia
Joint Estonian-Latvian Theory Days
Lilaste, October 15

What this talk is about

Introduction

- A code C of length n is a subset of $\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n} ; \mathcal{X}_{i}$ - alphabet for the $i^{\text {th }}$ codeword symbol.

[^0]
Introduction

- A code C of length n is a subset of $\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n} ; \mathcal{X}_{i}$ - alphabet for the $i^{\text {th }}$ codeword symbol.
- Treat each codeword $\left(X_{1}, \ldots, X_{n}\right) \in C$ as a random vector with probability (for $\mathcal{N}=\{1, \ldots, n\})$

$$
P\left(X_{\mathcal{N}}=x_{\mathcal{N}}\right)= \begin{cases}1 /|C| & \text { if } x_{\mathcal{N}} \in C \\ 0 & \text { otherwise }\end{cases}
$$

[^1]
Introduction

- A code C of length n is a subset of $\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n} ; \mathcal{X}_{i}$ - alphabet for the $i^{\text {th }}$ codeword symbol.
- Treat each codeword $\left(X_{1}, \ldots, X_{n}\right) \in C$ as a random vector with probability $($ for $\mathcal{N}=\{1, \ldots, n\})$

$$
P\left(X_{\mathcal{N}}=x_{\mathcal{N}}\right)= \begin{cases}1 /|C| & \text { if } x_{\mathcal{N}} \in C \\ 0 & \text { otherwise }\end{cases}
$$

- A code C is quasi-uniform ${ }^{1}$ if the induced codeword symbol random variables are uniformly distributed over their support.

[^2]
Example

The [2,1] repetition code | 0 | 0 |
| :--- | :--- |
| 1 | 1 | is quasi-uniform. The induced random variables X_{1}, X_{2} take values 0,1 such that

$P\left(X_{1}=0\right)=P\left(X_{2}=0\right)=P\left(X_{12}=00\right)=1 / 2$.
But $P\left(X_{12}=01\right)=P\left(X_{12}=10\right)=0$ since $01,10 \notin \lambda\left(X_{12}\right)$.

Example

The [2,1] repetition code | 0 | 0 |
| :--- | :--- |
| 1 | 1 | is quasi-uniform. The induced random variables X_{1}, X_{2} take values 0,1 such that

$$
P\left(X_{1}=0\right)=P\left(X_{2}=0\right)=P\left(X_{12}=00\right)=1 / 2
$$

$$
\text { But } P\left(X_{12}=01\right)=P\left(X_{12}=10\right)=0 \text { since } 01,10 \notin \lambda\left(X_{12}\right) \text {. }
$$

Example

Consider the code | 0 | 0 | 1 |
| :--- | :--- | :--- |
| | 1 | 0 |
| | | |
| $P\left(X_{1}=0\right)$ | | | . Here $\left|\lambda\left(X_{1}\right)\right|=2$ but the probabilities

$P\left(X_{1}=1\right)=1 / 3$. Hence the code is not quasi-uniform.

Groups- Preliminaries

Definition

A group G is a set endowed with a binary operation satisfying:
(1) G is closed under the binary operation
(2) The binary operation is associative
(3) There exists an identity element 1 such that $1 g=g 1=g$ for every $g \in G$
(9) Every element is invertible

Groups- Preliminaries

Definition

A group G is a set endowed with a binary operation satisfying:
(1) G is closed under the binary operation
(2) The binary operation is associative
(3) There exists an identity element 1 such that $1 g=g 1=g$ for every $g \in G$
(3) Every element is invertible

Definition

Given a subgroup G_{i} of G, a left coset (respectively right) of G_{i} in G is defined as

$$
g G_{i}=\left\{g h, h \in G_{i}\right\} \text { respectively } G_{i} g=\left\{h g, h \in G_{i}\right\} .
$$

Quasi-Uniform Codes from Groups

Theorem (Chan, Yeung, 2002)

2 For any finite group G and subgroups $G_{1}, \ldots, G_{n}, \exists n$ quasi-uniform discrete random variables X_{1}, \ldots, X_{n} such that $\forall \mathcal{A}$ of $\mathcal{N}=\{1, \ldots, n\}$, $P\left(X_{\mathcal{A}}=x_{\mathcal{A}}\right)=1 /\left[G: G_{\mathcal{A}}\right]=\left|G_{\mathcal{A}}\right| /|G| ;$ where $G_{\mathcal{A}}=\cap_{i \in \mathcal{A}} G_{i}$.
X - a random variable uniformly distributed over G. $X_{i}=X G_{i}$, the $\left[G: G_{i}\right]$ cosets of G_{i}.

[^3]
Quasi-Uniform Codes from Groups

Theorem (Chan, Yeung, 2002)

2 For any finite group G and subgroups $G_{1}, \ldots, G_{n}, \exists n$ quasi-uniform discrete random variables X_{1}, \ldots, X_{n} such that $\forall \mathcal{A}$ of $\mathcal{N}=\{1, \ldots, n\}$, $P\left(X_{\mathcal{A}}=x_{\mathcal{A}}\right)=1 /\left[G: G_{\mathcal{A}}\right]=\left|G_{\mathcal{A}}\right| /|G| ;$ where $G_{\mathcal{A}}=\cap_{i \in \mathcal{A}} G_{i}$.
X - a random variable uniformly distributed over G.
$X_{i}=X G_{i}$, the $\left[G: G_{i}\right]$ cosets of G_{i}.
Corresponding quasi-uniform code can be obtained as follows:

	G_{1}	\ldots	G_{n}
$1=g_{1}$	$g_{1} G_{1}=G_{1}$		$g_{1} G_{n}=G_{n}$
g_{2}	$g_{2} G_{1}$		$g_{2} G_{n}$
\vdots	\vdots		\vdots
$g_{\|G\|}$	$g_{\|G\|} G_{1}$	\ldots	$g_{\|G\|} G_{n}$

[^4]
Example

$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}
000	0	0	0	0	0	0	0	0
100	1	1	1	1	1	0	1	1
010	0	01	01	01	01	0	0	0
110	1	11	11	11	11	0	1	1
001	01	0	01	1	11	1	0	1
101	11	1	11	0	01	1	1	0
011	01	01	0	11	1	1	0	1
111	11	11	1	01	0	1	1	0

Table: A $(8,|C|, 4)$ code constructed from $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2},|C|=8$. Pairs are elements in $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

- It is possible to construct a $(n,|C|, d)=\left(2^{k+1}+k-2,2^{k+1}, 2^{k}\right)$ quasi-uniform code from $\mathbb{Z}_{2} \oplus \ldots \oplus \mathbb{Z}_{2}$ of order 2^{k+1}.

Some Properties

Let G be a finite group with subgroups G_{1}, \ldots, G_{n}.
Lemma (Size)
The size of the quasi-uniform code $|C|=|G| /\left|G_{\mathcal{N}}\right| ; G_{\mathcal{N}}=\cap_{i=1}^{n} G_{i}$.

Some Properties

Let G be a finite group with subgroups G_{1}, \ldots, G_{n}.

Lemma (Size)

The size of the quasi-uniform code $|C|=|G| /\left|G_{\mathcal{N}}\right| ; G_{\mathcal{N}}=\cap_{i=1}^{n} G_{i}$.

Proposition (Group Structure)

Quasi-uniform code C has a group structure if all subgroups G_{i} are normal.

Some Properties

Let G be a finite group with subgroups G_{1}, \ldots, G_{n}.

Lemma (Size)

The size of the quasi-uniform code $|C|=|G| /\left|G_{\mathcal{N}}\right| ; G_{\mathcal{N}}=\cap_{i=1}^{n} G_{i}$.

Proposition (Group Structure)

Quasi-uniform code C has a group structure if all subgroups G_{i} are normal.

Lemma (Minimum Distance)

The minimum distance of the quasi-uniform code (having group structure) C is

$$
n-\max _{\mathcal{A} \in \mathcal{N}, G_{\mathcal{A}} \neq\{0\}}|\mathcal{A}| .
$$

Quasi-uniform codes:Overview

Using this method, one can construct:

- Codes over non-field alphabets.
- Codes with coefficients over different alphabets.
- Non-linear codes.

Storage code construction

- Encode a data object into a codeword, spread the coefficients across nodes.
- The code provides fault tolerance in case of node failures.
- Needs to enable repairability.

Suppose a data object $\left(u_{1}, u_{2}, u_{3}\right)$ needs to be stored. Consider the following storage allocation:

```
node 1: ( }\mp@subsup{u}{1}{},\mp@subsup{u}{3}{})\quad\mathrm{ node 5: }(\mp@subsup{u}{1}{}+\mp@subsup{u}{3}{},\mp@subsup{u}{2}{}+\mp@subsup{u}{3}{}
node 2: ( }\mp@subsup{u}{1}{},\mp@subsup{u}{2}{})\mathrm{ node 6: ( }\mp@subsup{u}{3}{},0
node 3: }(\mp@subsup{u}{1}{},\mp@subsup{u}{2}{}+\mp@subsup{u}{3}{})\mathrm{ node 7: }(\mp@subsup{u}{1}{},0
node 4: ( }\mp@subsup{u}{1}{}+\mp@subsup{u}{3}{},\mp@subsup{u}{2}{})\mathrm{ node 8: }(\mp@subsup{u}{1}{}+\mp@subsup{u}{3}{},0
```

Three failures at most can be tolerated (corresponding to a minimum distance of 4 indeed).

In case of one node failure, this node is repaired easily: indeed, this codeword is created from \mathbb{Z}_{2}-linear combinations. For example:

- node 1 is repaired by downloading u_{1} (from node 2 or node 7) and u_{3} (from node 6),
- node 2 is repaired by downloading u_{2} from node 4 and u_{1} (from node 1 or 7).

Codes with locality and availability

- A code of length n and dimension k is said to be (n, k, r) locally repairable, if each codeword symbol can be recovered from r other symbols. The integer $r ; 1 \leq r \leq k$, is called locality.
- If there exist t disjoint recovery sets for each codeword symbol, the code is said to have availability t.
- The above construction gives codes with locality and availability, where $t=r=2$.
- It satisfies some bounds for codes with locality and availability.

For more detail, please refer:
http://ieeexplore.ieee.org/document/6620274/
http://ieeexplore.ieee.org/abstract/document/6983940/

Thank You!!

[^0]: ${ }^{1}$ T.H. Chan, A. Grant, T. Britz, "Properties of Quasi-Uniform Codes", 2010.

[^1]: ${ }^{1}$ T.H. Chan, A. Grant, T. Britz, "Properties of Quasi-Uniform Codes", 2010.

[^2]: ${ }^{1}$ T.H. Chan, A. Grant, T. Britz, "Properties of Quasi-Uniform Codes", 2010.

[^3]: ${ }^{2}$ T. H. Chan and R. W. Yeung, "On a Relation Between Information Inequalities and Groūp Theory", 2002.

[^4]: ${ }^{2}$ T. H. Chan and R. W. Yeung, "On a Relation Between Information Inequalities and Groüp Theory", 2002.

