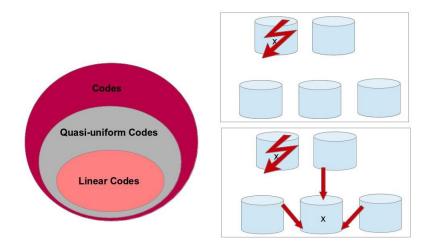
Group Theoretic Construction of Quasi-Uniform Codes

Eldho K Thomas (Joint work with Frédérique Oggier)

Institute of Computer Science University of Tartu Estonia

Joint Estonian-Latvian Theory Days Lilaste, October 15

What this talk is about



15/10/16 2 / 14

3 → 4 3

• A code *C* of length *n* is a subset of $\mathcal{X}_1 \times \cdots \times \mathcal{X}_n$; \mathcal{X}_i - alphabet for the *i*th codeword symbol.

¹T.H. Chan, A. Grant, T. Britz, "Properties of Quasi-Uniform Codes", 2010. < 🗆 > < 🗇 > < 🖹 > 🛛 🛓 🔊 🔍

- A code *C* of length *n* is a subset of $\mathcal{X}_1 \times \cdots \times \mathcal{X}_n$; \mathcal{X}_i alphabet for the *i*th codeword symbol.
- Treat each codeword (X₁,...,X_n) ∈ C as a random vector with probability (for N = {1,...,n})

$$P(X_{\mathcal{N}} = x_{\mathcal{N}}) = \begin{cases} 1/|C| & \text{if } x_{\mathcal{N}} \in C, \\ 0 & \text{otherwise.} \end{cases}$$

¹ T.H. Chan, A. Grant, T. Britz, "Properties of Quasi-Uniform Codes", 2010. 🕢 🗆 🕨 🖉 🖉 🖉 🖓 🔍

- A code *C* of length *n* is a subset of $\mathcal{X}_1 \times \cdots \times \mathcal{X}_n$; \mathcal{X}_i alphabet for the *i*th codeword symbol.
- Treat each codeword $(X_1, \ldots, X_n) \in C$ as a random vector with probability (for $\mathcal{N} = \{1, \ldots, n\}$)

$$P(X_{\mathcal{N}} = x_{\mathcal{N}}) = \begin{cases} 1/|C| & \text{if } x_{\mathcal{N}} \in C, \\ 0 & \text{otherwise.} \end{cases}$$

• A code *C* is quasi-uniform¹ if the induced codeword symbol random variables are uniformly distributed over their support.

¹ T.H. Chan, A. Grant, T. Britz, "Properties of Quasi-Uniform Codes", 2010. 🕢 🗆 + 🖉 + 🖉 + 🖉 + 🛬 + 🛬 - 😒

Example

The [2,1] repetition code $\begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix}$ is quasi-uniform. The induced random variables X_1, X_2 take values 0, 1 such that $P(X_1 = 0) = P(X_2 = 0) = P(X_{12} = 00) = 1/2.$ But $P(X_{12} = 01) = P(X_{12} = 10) = 0$ since $01, 10 \notin \lambda(X_{12})$.

Example

The [2,1] repetition code $\begin{bmatrix} 0 & | & 0 \\ 1 & | & 1 \end{bmatrix}$ is quasi-uniform. The induced random variables X_1, X_2 take values 0, 1 such that $P(X_1 = 0) = P(X_2 = 0) = P(X_{12} = 00) = 1/2.$ But $P(X_{12} = 01) = P(X_{12} = 10) = 0$ since $01, 10 \notin \lambda(X_{12}).$

Example

Consider the code
$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Here $|\lambda(X_1)| = 2$ but the probabilities
 $P(X_1 = 0) = 2/3, P(X_1 = 1) = 1/3$. Hence the code is not quasi-uniform.

< 口 > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A group G is a set endowed with a binary operation satisfying:

- **1** *G* is closed under the binary operation
- In the binary operation is associative
- There exists an identity element 1 such that 1g = g1 = g for every $g \in G$
- Output States States

Definition

A group G is a set endowed with a binary operation satisfying:

- **(**) *G* is closed under the binary operation
- In the binary operation is associative
- There exists an identity element 1 such that 1g = g1 = g for every $g \in G$
- Output State St

Definition

Given a subgroup G_i of G, a left coset (respectively right) of G_i in G is defined as

$$gG_i = \{gh, h \in G_i\}$$
 respectively $G_ig = \{hg, h \in G_i\}$.

Theorem (Chan, Yeung, 2002)

² For any finite group G and subgroups G_1, \ldots, G_n , \exists n quasi-uniform discrete random variables X_1, \ldots, X_n such that $\forall \mathcal{A}$ of $\mathcal{N} = \{1, \ldots, n\}$, $P(X_{\mathcal{A}} = x_{\mathcal{A}}) = 1/[G : G_{\mathcal{A}}] = |G_{\mathcal{A}}|/|G|$; where $G_{\mathcal{A}} = \cap_{i \in \mathcal{A}} G_i$.

X - a random variable uniformly distributed over G. $X_i = XG_i$, the $[G : G_i]$ cosets of G_i .

² T. H. Chan and R. W. Yeung, "On a Relation Between Information Inequalities and Group Theory", 2002. Equation Sector 2018

Theorem (Chan, Yeung, 2002)

² For any finite group G and subgroups G_1, \ldots, G_n , \exists n quasi-uniform discrete random variables X_1, \ldots, X_n such that $\forall \mathcal{A}$ of $\mathcal{N} = \{1, \ldots, n\}$, $P(X_{\mathcal{A}} = x_{\mathcal{A}}) = 1/[G : G_{\mathcal{A}}] = |G_{\mathcal{A}}|/|G|$; where $G_{\mathcal{A}} = \cap_{i \in \mathcal{A}} G_i$.

X - a random variable uniformly distributed over G. $X_i = XG_i$, the $[G : G_i]$ cosets of G_i .

Corresponding quasi-uniform code can be obtained as follows:

	G_1	 Gn		
$1 = g_1$	$g_1G_1=G_1$	$g_1G_n=G_n$		
g ₂	g_2G_1	g_2G_n		
÷	•	÷		
$g_{ G }$	$g_{ G }G_1$	 $g_{ G }G_n$		

² T. H. Chan and R. W. Yeung, "On a Relation Between Information Inequalities and Group Theory", 2002.

Eldho Thomas (UT)

Example

$\mathbb{Z}_2\oplus\mathbb{Z}_2\oplus\mathbb{Z}_2$	<i>G</i> ₁	G ₂	G ₃	<i>G</i> ₄	G_5	G ₆	G7	G ₈
000	0	0	0	0	0	0	0	0
100	1	1	1	1	1	0	1	1
010	0	01	01	01	01	0	0	0
110	1	11	11	11	11	0	1	1
001	01	0	01	1	11	1	0	1
101	11	1	11	0	01	1	1	0
011	01	01	0	11	1	1	0	1
111	11	11	1	01	0	1	1	0

Table: A (8,|C|,4) code constructed from $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, |C| = 8. Pairs are elements in $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

• It is possible to construct a $(n, |C|, d) = (2^{k+1} + k - 2, 2^{k+1}, 2^k)$ quasi-uniform code from $\mathbb{Z}_2 \oplus \ldots \oplus \mathbb{Z}_2$ of order 2^{k+1} .

(日) (同) (三) (三)

Let G be a finite group with subgroups G_1, \ldots, G_n .

Lemma (Size)

The size of the quasi-uniform code $|C| = |G|/|G_N|$; $G_N = \cap_{i=1}^n G_i$.

(신문)) 신문

Image: Image:

Let G be a finite group with subgroups G_1, \ldots, G_n .

Lemma (Size)

The size of the quasi-uniform code $|C| = |G|/|G_N|$; $G_N = \cap_{i=1}^n G_i$.

Proposition (Group Structure)

Quasi-uniform code C has a group structure if all subgroups G_i are normal.

Let G be a finite group with subgroups G_1, \ldots, G_n .

Lemma (Size)

The size of the quasi-uniform code $|C| = |G|/|G_N|$; $G_N = \cap_{i=1}^n G_i$.

Proposition (Group Structure)

Quasi-uniform code C has a group structure if all subgroups G_i are normal.

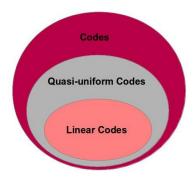
Lemma (Minimum Distance)

The minimum distance of the quasi-uniform code (having group structure) C is

$$n-\max_{\mathcal{A}\in\mathcal{N},\mathcal{G}_{\mathcal{A}}\neq\{0\}}|\mathcal{A}|.$$

イロト イヨト イヨト イヨ

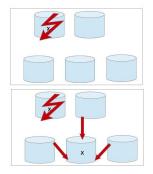
Quasi-uniform codes:Overview



Using this method, one can construct:

- Codes over non-field alphabets.
- Codes with coefficients over different alphabets.
- Non-linear codes.

Storage code construction



- Encode a data object into a codeword, spread the coefficients across nodes.
- The code provides fault tolerance in case of node failures.
- Needs to enable repairability.

Suppose a data object (u_1, u_2, u_3) needs to be stored. Consider the following storage allocation:

node 1: (u_1, u_3) node 5: $(u_1 + u_3, u_2 + u_3)$ node 2: (u_1, u_2) node 6: $(u_3, 0)$ node 3: $(u_1, u_2 + u_3)$ node 7: $(u_1, 0)$ node 4: $(u_1 + u_3, u_2)$ node 8: $(u_1 + u_3, 0)$

Three failures at most can be tolerated (corresponding to a minimum distance of 4 indeed).

In case of one node failure, this node is repaired easily: indeed, this codeword is created from $\mathbb{Z}_2\text{-linear}$ combinations. For example:

- node 1 is repaired by downloading u_1 (from node 2 or node 7) and u_3 (from node 6),
- node 2 is repaired by downloading u_2 from node 4 and u_1 (from node 1 or 7).

- A code of length n and dimension k is said to be (n, k, r) locally repairable, if each codeword symbol can be recovered from r other symbols. The integer r; 1 ≤ r ≤ k, is called locality.
- If there exist *t* disjoint recovery sets for each codeword symbol, the code is said to have availability *t*.
- The above construction gives codes with locality and availability, where *t* = *r* = 2.
- It satisfies some bounds for codes with locality and availability.

For more detail, please refer:

http://ieeexplore.ieee.org/document/6620274/ http://ieeexplore.ieee.org/abstract/document/6983940/

Thank You!!

・ロト ・聞ト ・ヨト ・ヨト