
1

Indentation and Priorities

Härmel Nestra

Institute of Computer Science
University of Tartu

e-mail: harmel.nestra@ut.ee

2

Purposes

• Introduce a recently proposed extension of CFG/PEG for specifying pro-

gramming language syntax that relies on indentation (like in Haskell,

Python).

• Demonstrate the ability of the approach to be used for other purposes, most

notably infix operator priorities.

• Prove a theorem about limitations of this approach.

• Outline some connections between this approach and attribute grammars.

1 Extending CFG/PEG for Specifying Indentation 3

Extending CFG/PEG for Specifying Indentation

1 Extending CFG/PEG for Specifying Indentation 4

Methods of syntax description

• Context-free grammars (CFG).

• Parsing expression grammars (PEG).

1 Extending CFG/PEG for Specifying Indentation 5

Example: CFG vs PEG

• Consider the grammar

E ::= N | (E) | E + E | E ∗ E
N ::= 0 | 1 | 2 | . . .

How does 2 ∗ 3 ∗ 5 parse?

(a) CFG only:

∗

∗

2 3

5

(b) Both CFG and PEG:

∗

∗2

3 5

1 Extending CFG/PEG for Specifying Indentation 6

Indentation and alignment

• Pure CFG and PEG are unable to specify indentation and alignment.

• CFG/PEG is extended by constructs p̺ and ¦p¦ (Adams 2013; Adams &

Ağacan 2014):

– p̺, where ̺ ⊆ N × N, means block p with indentation in relation ̺ to

the current indentation;

– ¦p¦ means block p with the first token aligned.

1 Extending CFG/PEG for Specifying Indentation 7

Example: do expressions in Haskell

• The extent of a do expression can be specified either via indentation or

braces and semicolons:

do

c <- getChar

s <- getLine

putStrLn (c : s)

vs

do {

c <- getChar; s <- getLine;

putStrLn (c : s)

}

• Specification in this extension:

doexp ::=do> (istmts | stmts)
istmts ::= (¦stmt ¦+)>

stmts ::={>(stmt(;stmt)∗[;]})⊛

2 Infix Operators and Priorities 8

Infix Operators and Priorities

2 Infix Operators and Priorities 9

Priorities

• Priorities of infix operators settle the right parsing of expressions in the

case of omitted parentheses.

• Usually, higher priority means stronger attraction of the neigbourhood. For

example, 2 + 3 ∗ (5 − 7) parses as 2 + (3 ∗ (5 − 7)) since ∗ has higher

priority.

2 Infix Operators and Priorities 10

Specification of expressions

• Specifying expressions involving infix operators of different priorities by

a CFG/PEG?

– Cumbersome. . .

– Possible only in the case of a finite number of allowed priorities.

• The grammar extension developed for indentation naturally applies:

– Priority plays the role of actual indentation;

– Atoms have the highest priority;

– Parentheses relax the expected priority in the subexpression surrounded;

– Alignment carries the operator priority over to the whole expression.

2 Infix Operators and Priorities 11

Illustration: Priorities as indentation

• Expression 2 + 3 ∗ (5− 7), with priorities depicted as indentation:

2

+

3

∗

(

5

−

7

)

zero

indentation

2 Infix Operators and Priorities 12

Example: Grammars for arithmetic expressions

• The grammar of arithmetic expressions can be given as follows:

E ::=N | E≥¦⊕¦E> | (E⊛)

N ::= 0 | 1 | . . .
⊕ ::=+ | ∗ | . . .

• An equivalent grammar:

E ::=N | E>¦⊕E>¦∗ | (E⊛)
N ::= 0 | 1 | . . .
⊕ ::=+ | ∗ | . . .

3 More about Relations 13

More about Relations

3 More about Relations 14

Parsing process

• At each stage of parsing, partial information known about the current in-

dentation is kept in the form of the set of all natural numbers allowed.

• The real indentation of tokens found during parsing refines the knowledge

about indentation.

• A real indentation outside the set of allowed indentations leads to parse

error.

• Restrict allowable sets of indentations to (possibly infinite) intervals of

consecutive natural numbers.

3 More about Relations 15

Indention and dedention as allowable set transformers

• Relation ̺ ⊆ N× N as function: for any n ∈ N,

̺(n) = {m ∈ N : (m,n) ∈ ̺} .

• Indention: for any S ⊆ N,

indent̺(S) =
⋃

n∈S

̺(n).

• Dedention: for any S, T ⊆ N,

dedent̺(S, T) = {n ∈ S : ̺(n) ∩ T 6= ∅} .

• The relations ≥, >, = and ⊛ (i.e., N × N) keep the allowable sets repre-

sentable as intervals of consecutive numbers (Adams & Ağacan 2014).

3 More about Relations 16

Theorem

• For any relation ̺ ⊆ N × N, indention and dedention of intevals always

result in intervals of natural numbers iff the following conditions are met:

– For every natural number n, ̺(n) is an interval of natural numbers;

– For every two consecutive natural numbers n1 and n2, min ̺(n1) 6

max ̺(n2) + 1;

– The function f (n) = max ̺(n) is either non-decreasing or weakly uni-

modal; the function g(n) = min ̺(n) satisfies the same condition w.r.t.

the inverse order.

3 More about Relations 17

Illustration: The shape of admissible relations

• An example of an admissible relation ̺:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n

max ̺(n)

min ̺(n)

3 More about Relations 18

Computing of indention and dedention

• Provided min ̺(n), max ̺(n) and their extremum points are computed in

constant time:

– The effect of indention can be computed in constant time;

– The effect of dedention can be computed in logarithmic time.

4 Connections with Attribute Grammars 19

Connections with Attribute Grammars

4 Connections with Attribute Grammars 20

Example: Simple English grammar

• Here is a simple classic example CFG for a fragment of natural language:

<sentence> ::=<subject> <predicate>

<subject> ::=<noun>

<predicate> ::=<verb> <object>

<object> ::=<noun>

<noun> ::=Alice | Bob | children | parents | . . .
<verb> ::= like | help | . . . | likes | helps | . . .

• As it is, it enables incorrect sentences like “Alice like Bob”.

4 Connections with Attribute Grammars 21

Example: Simple English grammar (ctd.)

• Assign two numbers 1 and 2 (or other values) to all nouns and verbs in

their singular and plural form, respectively. The grammar can be corrected

using the indentation extension:

<sentence> ::= ¦<subject>¦ ¦<predicate>¦

<subject> ::=<noun>

<predicate> ::=<verb> <object>⊛

<object> ::=<noun>

<noun> ::= John | Mary | children | parents | . . .
<verb> ::= like | help | . . . | likes | helps | . . .

• Usually, this correction is done via attributes.

4 Connections with Attribute Grammars 22

Example: Priority as an attribute

• Priority can be handled as a synthesized attribute:

E ::=N [E.pr = N.pr]
E ::=E1⊕E2 [E.pr = ⊕.pr if E1.pr > ⊕.pr and E2.pr > ⊕.pr]
E ::=(E1) [E.pr = maxpr]
N ::= 0 | 1 | . . . [N.pr = maxpr]
⊕ ::=+ [⊕.pr = 6]
⊕ ::= ∗ [⊕.pr = 7]
. .

4 Connections with Attribute Grammars 23

Unbalanced priorities

• OO dot (in Scala, for instance) binds strongerly to the right than function

application binds to the left, while the dot binds weakerly to the left than

function application binds to the right:

1.to(n).contains(10) ≡ (((1.to)(n)).contains)(10)

• Lambda dot binds extremely strongly to the left and extremely weakly to

the right.

• Fixities (associativities).

4 Connections with Attribute Grammars 24

Unbalanced priorities as a quadruple of attributes

• The meaning of unbalanced priorities can be defined in terms of synthe-

sized attributes X.lpr, X.rpr and inherited attributes X.lcxt, X.rcxt.

S ::=E [E.lcxt = minpr, E.rcxt = minpr]
E ::=N [E.lpr = N.lpr, E.rpr = N.rpr]
E ::=E1⊕E2 [E1.lcxt = E.lcxt, E1.rcxt = ⊕.lpr]

[E2.lcxt = ⊕.rpr, E2.rcxt = E.rcxt]
[

E.lpr =⊕.lpr if E1.lpr > E.lcxt and E1.rpr > ⊕.lpr

E.rpr=⊕.rpr if E2.lpr > ⊕.rpr and E2.rpr > E.rcxt

]

E ::=(E1) [E1.lcxt = minpr, E1.rcxt = minpr]
[E.lpr = maxpr, E.rpr = maxpr]

N ::= 0 | . . . [N.lpr = maxpr, N.rpr = maxpr]
⊕ ::=+ [⊕.lpr = 59,⊕.rpr = 60]
⊕ ::= ∗ [⊕.lpr = 69,⊕.rpr = 70]
. .

4 Connections with Attribute Grammars 25

Unbalanced priorities via the indentation framework

• Let x and y be quadruples with projections lpr, rpr, lcxt, rcxt. Define

y
l
≻ x⇋ lpr y > lcxtx ∧ rpr y > lprx ∧ lcxt y = lcxtx ∧ rcxt y = lprx

y
r
≻ x⇋ lpr y > rpr x ∧ rpr y > rcxt x ∧ lcxt y = rprx ∧ rcxt y = rcxt x

y⊥⊛x ⇋ lcxt y = rcxt y = minprior

• Grammar for expressions, assuming that literals and parenthized expres-

sions have maximum priorities:

E ::=N | E
l
≻¦⊕¦E

r
≻ | (E⊥⊛)

N ::= 0 | 1 | . . .
⊕ ::=+ | ∗ | . . .

4 Connections with Attribute Grammars 26

Indentation extension and attribute grammars

• Inherited attributes that inherit from parents only can be trivially repre-

sented in the indentation extension.

• An rule f of a synthesized attribute that depends on the values of the same

attribute of n children can be represented in the indentation extension iff

there exist binary relations ̺1, . . . , ̺n such that, for every a1, . . . , an, b,

b = f (a1, . . . , an) ⇐⇒ (a1, b) ∈ ̺1 ∧ . . . ∧ (an, b) ∈ ̺n.

• Attributes inherited from siblings or synthesized from other attributes? . . .

• Indentation usually cannot be expressed as an inherited or synthesized at-

tribute.

5 Conclusion 27

Conclusion

5 Conclusion 28

Contributions

• We have analyzed the limitations of the indentation extension of CFG/PEG

in terms of the efficiently expressible/computable indentation sets.

• We have drawn connections between this extension and attribute gram-

mars. It shows that neither the indentation extension nor attribute gram-

mars is more powerful. Still, both these approaches can describe, e.g.,

expressions with operators with unbalanced priorities.

