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Main results

We present a reinterpretation of the Kameda-Weiner method of
finding a minimal nondeterministic finite automaton (NFA) of a
language, in terms of atoms of the language.

We introduce a method to generate NFAs from a set of languages,
and show that the Kameda-Weiner method is a special case of it.

Our method provides a unified view of the construction of several
known NFAs (e.g. canonical RFSA, the átomaton, and others).



Quotients and atoms

Let L be a regular language over an alphabet Σ.

The left quotient of a language L by a word w is the language
w−1L = {x ∈ Σ∗ | wx ∈ L}.

Let K0, . . . ,Kn−1 be the quotients of L.

An atom of L is any non-empty language of the form

K̃0 ∩ K̃1 ∩ · · · ∩ K̃n−1,

where K̃i is either Ki or Ki .

Any quotient Ki of L (including L itself) is a union of atoms.

Atoms define a partition of Σ∗.

Atoms are the classes of the left congruence of L: for x , y ∈ Σ∗, x is
equivalent to y if for every u ∈ Σ∗, ux ∈ L if and only if uy ∈ L.
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The átomaton

Let K0 = L be the initial quotient of L.
Let A = {A0, . . . ,Am−1} be the set of atoms of L.

An atom is initial if it has K0 (rather than K0) as a term.

Let IA ⊆ A be the set of initial atoms.

An atom is final if it contains ε.

There is exactly one final atom Am−1.

The átomaton of L is the NFA A = (A, Σ, α, IA, {Am−1}), where
Aj ∈ α(Ai , a) if Aj ⊆ a−1Ai .



Some properties of the átomaton

The language accepted by A is L.

The (right) language of state Ai of A is the atom Ai .

The reverse automaton AR of A is a minimal DFA for LR (the reverse
language of L).

The determinized automaton AD of A is a minimal DFA of L.

If D is a minimal DFA of L, then A is isomorphic to DRDR .



Kameda-Weiner matrix

Kameda and Weiner (1970) used minimal DFAs for a language L and its
reverse LR , to form a matrix, and based on the grids in this matrix, a
minimal NFA was found.

Trimmed minimal DFA DT of L with a state set Q.

By Brzozowski’s theorem, DRDT is trim minimal DFA of LR with a
state set S ⊆ 2Q \ ∅.
Form a matrix with rows corresponding to states qi of D, and
columns, to states Sj ∈ S of DRDT .

The (i , j) entry is 1 if qi ∈ Sj , and 0 otherwise.



Quotient-atom matrix

We use DRDRT , the trim átomaton of L, instead of DRDT , since the
state sets of these automata are the same.

The states of the minimal DFA correspond to quotients, and the
states of the átomaton correspond to atoms of L.

Interpret rows of the matrix as quotients, and columns as atoms of L
(exc. the empty quotient and the atom K0 ∩ · · · ∩Kn−1, if they exist).

We call this matrix the quotient-atom matrix of L.

Then the (i , j) entry is 1 if and only if Aj ⊆ Ki .



Grids and cover of the quotient-atom matrix

A grid g of the matrix is the direct product g = P × R of a set P of
quotients with a set R of atoms, such that every atom in R is a
subset of every quotient in P.

If g = P × R and g ′ = P ′ × R ′ are two grids, then g ⊆ g ′ if and only
if P ⊆ P ′ and R ⊆ R ′.

A grid is maximal if it is not contained in any other grid.

A cover is a set G = {g0, . . . , gk−1} of grids, such that every pair
(Ki ,Aj) with Aj ⊆ Ki belongs to some grid gi in G .



NFA minimization by the Kameda-Weiner method

Let fG be the function that assigns to every non-empty quotient Ki ,
the set of grids g = P × R from a cover G , such that Ki ∈ P.

The constructed NFA is NG = (G , Σ, ηG , IG ,FG ),
where G is a cover consisting of (maximal) grids,
IG = fG (K0) is the set of grids involving the initial quotient K0,
g ∈ FG if and only if g ∈ fG (Ki ) implies that Ki is a final quotient, and
ηG (g , a) =

⋂
Ki∈P fG (a

−1Ki ) for a grid g = P × R and a ∈ Σ.

It may be the case that NG does not accept the language L.

A cover G is called legal if L(NG ) = L.

To find a minimal NFA of a language L, the method tests the covers of
the matrix in the order of increasing size to see if they are legal.

The first legal NFA is a minimal one.
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Reinterpretation of the Kameda-Weiner method

Let R be a set of atoms and let U(R) =
⋃

Aj∈R Aj .

Theorem

Let G = {g0, . . . , gk−1} be a cover consisting of maximal grids
gi = Pi × Ri , and let NG = (G , Σ, ηG , IG ,FG ) be the corresponding NFA,
obtained by the Kameda-Weiner method. It holds that

gi ∈ IG if and only if U(Ri ) ⊆ L,

gi ∈ FG if and only if ε ∈ U(Ri ),

gj ∈ ηG (gi , a) if and only if U(Rj) ⊆ a−1U(Ri ) holds, for any
gi , gj ∈ G and a ∈ Σ.

We note that essentially the same approach to the Kameda-Weiner
method which uses projections of grids, consisting of subsets of the state
set of the DFA DRDT (corresponding to sets of atoms), was presented by
Champarnaud and Coulon (IJFCS, 2005).
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Generating automata by a set of languages

Let L be a regular language, and let K = {K0, . . . ,Kn−1} be the set of
quotients of L.

Definition

A set {L0, . . . , Lk−1} of languages is a cover of the quotients of L, or
simply, a cover for L, if every quotient Kj of L is a union of some Li ’s.

Note that L itself is a union of some Li ’s, because L = ε−1L.

We define the NFA based on a cover {L0, . . . , Lk−1} as follows:

Definition

The NFA generated by a cover {L0, . . . , Lk−1} for L is defined by
G = (Q, Σ, δ, I ,F ), where Q = {q0, . . . , qk−1}, I = {qi | Li ⊆ L},
F = {qi | ε ∈ Li }, and qj ∈ δ(qi , a) if and only if Lj ⊆ a−1Li holds
for all qi , qj ∈ Q and a ∈ Σ.
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Some properties of a generated automaton

Let G = (Q, Σ, δ, I ,F ) be generated by a cover {L0, . . . , Lk−1} for L.
We denote the (right) language of state qi of G by Lqi (G).

Proposition

The following properties hold:

Lqi (G) ⊆ Li for every qi ∈ Q.

L(G) ⊆ L.

Proposition

If a−1Li is a union of Lj ’s for every Li and a ∈ Σ, then G accepts L.

However, this condition is not necessary for generated NFA to accept L.
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Examples

Example

Consider the set K = {K0, . . . ,Kn−1} of quotients of L as a cover for L.
The NFA GK , generated by the set K , is the saturated version of the
minimal DFA of L.
Since for every quotient Ki and a ∈ Σ there exists some quotient Kj such
that a−1Ki = Kj , GK accepts L.

Example

Consider the set K ′ ⊆ K of prime quotients of L, that is, those non-empty
quotients of L which are not unions of other quotients, as a cover for L.
The NFA GK ′ generated by K ′ is known as the canonical residual finite
state automaton (canonical RFSA) of L.
Since every quotient is a union of prime quotients, so is a−1K ′i , for a prime
quotient K ′i and a ∈ Σ. Thus, GK ′ accepts L.
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Example: generating the átomaton

Example

Consider the set A = {A0, . . . ,Am−1} of atoms of L. The set A is a cover
for L, because every quotient of L is a union of atoms.
The NFA GA, generated by the set A, is the átomaton of L.
It is known that for every atom Ai and a ∈ Σ, a−1Ai is a union of atoms.
Thus, GA accepts L.



Kameda-Weiner method as a special case of generating an
NFA

The following theorem shows that the NFA minimization method
presented by Kameda and Weiner is a special case of generating an NFA:

Theorem

Let G = {g0, . . . , gk−1} be a set of maximal grids, with gi = Pi × Ri ,
forming a cover of the quotient-atom matrix of L. The NFA NG , obtained
by the Kameda-Weiner method using G, is isomorphic to the NFA GU ,
generated by the set U = {U(R0), . . . ,U(Rk−1)}.



Generality of our method

Theorem

If there is a trim NFA accepting L, with the set {L0, . . . , Lk−1} of languages
of its states, then the NFA generated by the cover {L0, . . . , Lk−1} for L is
such an NFA.

If one is interested in finding an NFA for a given language, such that the
states of that NFA correspond to certain languages, our method can be
used to generate such an NFA if it exists.

If the generated NFA is not such an NFA, then it does not exist.



Conclusions

Our theory shows that atoms of regular languages have an important
role in the Kameda-Weiner method.

We hope that our contributions provide a useful insight into the
problem of NFA minimization.

We also think that the introduced method of generating NFAs is of
interest on its own as shown by the examples.

This method provides a unified view of the construction of several
known NFAs.


