On the Hierarchies for Deterministic, Nondeterministic and Probabilistic Ordered Read-k-times Branching Programs.

Kamil Khadiev

join work with Farid Ablayev, Rishat Ibrahimov, Abuzer Yakaryilmaz

University of Latvia
Faculty of Computing

Lilaste - 2016

Content.

- Definitions.

Content.

- Definitions.
- Communication complexity technique for deterministic, nondeterministic and probabilistic models.

Content.

- Definitions.
- Communication complexity technique for deterministic, nondeterministic and probabilistic models.
- Hierarchies of Complexity.

Content.

- Definitions.
- Communication complexity technique for deterministic, nondeterministic and probabilistic models.
- Hierarchies of Complexity.
- Functional representation of deterministic, nondeterministic models.

Content.

- Definitions.
- Communication complexity technique for deterministic, nondeterministic and probabilistic models.
- Hierarchies of Complexity.
- Functional representation of deterministic, nondeterministic models.
- Hierarchies of Complexity.
- Using same technique for automata.

Introduction.

- It is known that $\angle S P A C E /$ poly $=B P$.

Introduction.

- It is known that $\angle S P A C E /$ poly $=B P$.
- And $N C^{1}=B P_{\text {const }}$.

Introduction.

- It is known that $\angle S P A C E /$ poly $=B P$.
- And $N C^{1}=B P_{\text {const }}$.
- k-OBDD can be interpreted as extension of automata.
- It is known that $L S P A C E /$ poly $=B P$.
- And $N C^{1}=B P_{\text {const }}$.
- k-OBDD can be interpreted as extension of automata.
- k-OBDD can be interpreted as model of streaming algorithms .

Branching Program

Branching Program (BP) is directed acycling graph with following properties:

- One initial node and two final (sink) nodes.
- Each inner node associated with variable and edges labeled by values of variable.

Branching Program

Branching Program P computes Boolean Function $f\left(x_{1}, \ldots, x_{n}\right)$.

Branching Program

Branching Program P computes Boolean Function $f\left(x_{1}, \ldots, x_{n}\right)$.

Size $S(P)$ of Branching Program P is number of inner nodes.

Ordered Binary Decision Diagram (OBDD) P is Branching Program with following properties:

- leveled
- oblivious
- read-once
$\theta(P)$ is reading order of variables for P.

k-OBDD is Branching programs which consist on k layers P_{i}, each of them is OBDD. Each layer has same order of variables.
k-OBDD is Branching programs which consist on k layers P_{i}, each of them is OBDD. Each layer has same order of variables.

Nondeterministic k-OBDD (k-NOBDD) is nondeterministic version. It returns 1 if there is at least one path from initial node to 1 -sink node.

k-OBDD

k-OBDD is Branching programs which consist on k layers P_{i}, each of them is OBDD. Each layer has same order of variables.

Nondeterministic k-OBDD (k-NOBDD) is nondeterministic version. It returns 1 if there is at least one path from initial node to 1 -sink node.

Bounded error Probabilistic k-OBDD (k-NOBDD) is probabilistic version. It returns 1 if probability of reaching 1 -sink is there is at least one path from initial node to 1 -sink node $P_{1}>0.5+\delta$ for some constant δ. Smae for 0 .

Width of k-OBDD

Width i-th level: w_{i} is number of nodes in i-th level

Width of k-OBDD

Width i-th level: w_{i} is number of nodes in i-th level

Width of k-OBDD $P: w(P)=\max _{i} w_{i}$

Width of k-OBDD

Width i-th level: w_{i} is number of nodes in i-th level

Width of k-OBDD $P: w(P)=\max _{i} w_{i}$
$O B D D_{w}$ is class of Boolean function which are computed by OBDD of width w.

Width of k-OBDD

Width i-th level: w_{i} is number of nodes in i-th level

Width of k-OBDD $P: w(P)=\max _{i} w_{i}$

OBDD $_{w}$ is class of Boolean function which are computed by OBDD of width w.
$\mathbf{k}-$ OBDD $_{\mathbf{w}}$ is class of Boolean function which are computed by k-1OBDD of width w.

Width of k-OBDD

Width i-th level: w_{i} is number of nodes in i-th level

Width of k-OBDD $P: w(P)=\max _{i} w_{i}$

OBDD $_{w}$ is class of Boolean function which are computed by OBDD of width w.
$\mathbf{k}-$ OBDD $_{\mathbf{w}}$ is class of Boolean function which are computed by k-1OBDD of width w.

For set \mathcal{W} we have:

$$
\mathbf{k}-\text { OBDD }_{\mathcal{W}}=\bigcup_{\mathbf{w} \in \mathcal{W}} \mathbf{k}-\text { OBDD }_{\mathbf{w}}
$$

Our Goal.

- We want to build hierarchy of $\mathbf{k}-$ OBDD $_{\mathcal{W}}$

Our Goal.

- We want to build hierarchy of $\mathbf{k}-$ OBDD $_{\mathcal{W}}$
- Lower bound:

Our Goal.

- We want to build hierarchy of $\mathbf{k}-$ OBDD $_{\mathcal{W}}$
- Lower bound:
(1) Characteristic of model
- We want to build hierarchy of $\mathbf{k}-$ OBDD $_{\mathcal{W}}$
- Lower bound:
(1) Characteristic of model
(2) Characteristic of Boolean function.
- We want to build hierarchy of $\mathbf{k}-$ OBDD $_{\mathcal{W}}$
- Lower bound:
(1) Characteristic of model
(2) Characteristic of Boolean function.
(3) Relation between them.
- We want to build hierarchy of $\mathbf{k}-\mathbf{O B D D}_{\mathcal{W}}$
- Lower bound:
(1) Characteristic of model
(2) Characteristic of Boolean function.
(3) Relation between them.
- Upper bound.

"Communication Model of k-OBDD". Lower bound technique.

We simulate k-OBDD P by $(2 k-1)$-round automata communication protocol R for some partition π of input $\nu=(\sigma, \gamma)$.
 technique.

$$
M_{R}(\sigma, \gamma)=\left(\begin{array}{c|c}
0 & M_{P}(\sigma) \\
\hline M_{R}(\gamma) & 0
\end{array}\right)
$$

$M_{R}(\sigma)=\left(\begin{array}{c|c|c|c|c|c}0 & M_{R}^{(1)}(\sigma) & 0 & \ldots & 0 & 0 \\ \hline 0 & 0 & M_{R}^{(2)}(\sigma) & \ldots & 0 & 0 \\ \hline 0 & 0 & 0 & \ldots & M_{R}^{(k-2)}(\sigma) & 0 \\ \hline 0 & 0 & 0 & \ldots & 0 & M_{R}^{(k-1)}(\sigma)\end{array}\right)$
$M_{R}(\gamma)=\left(\begin{array}{c|c|c|c}M_{R}^{(1)}(\gamma) & 0 & \ldots & 0 \\ \hline 0 & M_{R}^{(2)}(\gamma) & \ldots & 0 \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline 0 & 0 & \ldots & M_{R}^{(k-1)}(\gamma) \\ \hline 0 & 0 & \cdots & 0\end{array}\right)$

"Communication Model of k-OBDD". Lower bound technique.

Description of the first round:

$$
p_{R}^{0}(\sigma)=(0, \ldots, 0,1,0, \ldots, 0)
$$

Description of the last round:

$$
q_{R}(\gamma)=\left(0, \ldots, 0, q^{(2 k-1)}(\gamma)\right)
$$

Linear representation of computation process:

$$
R(\nu)=p_{R}^{0}(\sigma) \cdot\left(M_{R}(\sigma, \gamma)^{2 k-2}\right) q_{R}^{T}(\gamma)
$$

"Communication Model of k-OBDD". Lower bound technique.

Description of the first round:

$$
p_{R}^{0}(\sigma)=(0, \ldots, 0,1,0, \ldots, 0)
$$

Description of the last round:

$$
q_{R}(\gamma)=\left(0, \ldots, 0, q^{(2 k-1)}(\gamma)\right)
$$

Linear representation of computation process:

$$
R(\nu)=p_{R}^{0}(\sigma) \cdot\left(M_{R}(\sigma, \gamma)^{2 k-2}\right) q_{R}^{T}(\gamma)
$$

Definition

Capacity of protocol $\psi(R)$ is number of possible different pairs $\left(p_{R}^{0}(\sigma), M_{R}(\sigma)\right)$.
"Communication Model of k-OBDD". Lower bound technique.

Definition

- $N^{\pi}(f)$ is number of subfunctions with respect to partition $\pi=\left(X_{A}, X_{B}\right)$.

"Communication Model of k-OBDD". Lower bound technique.

Definition

- $N^{\pi}(f)$ is number of subfunctions with respect to partition $\pi=\left(X_{A}, X_{B}\right)$.
- $N^{\theta}(f)=\max _{\pi \in \Pi(\theta)} N^{\pi}(f)$, where $\theta=\left(j_{1}, \ldots, j_{n}\right)$, $\Pi(\theta)=\left\{\pi: \pi=\left(\left\{x_{j_{1}}, \ldots, x_{j_{u}}\right\},\left\{x_{j_{u+1}}, \ldots, x_{j_{n}}\right\}\right)\right.$, for $1 \leq u \leq$ $n-1\}$.

"Communication Model of k-OBDD". Lower bound technique.

Definition

- $N^{\pi}(f)$ is number of subfunctions with respect to partition $\pi=\left(X_{A}, X_{B}\right)$.
- $N^{\theta}(f)=\max _{\pi \in \Pi(\theta)} N^{\pi}(f)$, where $\theta=\left(j_{1}, \ldots, j_{n}\right)$, $\Pi(\theta)=\left\{\pi: \pi=\left(\left\{x_{j_{1}}, \ldots, x_{j_{u}}\right\},\left\{x_{j_{u+1}}, \ldots, x_{j_{n}}\right\}\right)\right.$, for $1 \leq u \leq$ $n-1\}$.
- $N(f)=\min _{\theta \in \Theta(n)} N^{\theta}(f)$, where $\Theta(n)$ is set of permutations of numbers $(1, \ldots, n)$.

"Communication Model of k-OBDD". Lower bound technique.

Definition

- $N^{\pi}(f)$ is number of subfunctions with respect to partition $\pi=\left(X_{A}, X_{B}\right)$.
- $N^{\theta}(f)=\max _{\pi \in \Pi(\theta)} N^{\pi}(f)$, where $\theta=\left(j_{1}, \ldots, j_{n}\right)$, $\Pi(\theta)=\left\{\pi: \pi=\left(\left\{x_{j_{1}}, \ldots, x_{j_{u}}\right\},\left\{x_{j_{u+1}}, \ldots, x_{j_{n}}\right\}\right)\right.$, for $1 \leq u \leq$ $n-1\}$.
- $N(f)=\min _{\theta \in \Theta(n)} N^{\theta}(f)$, where $\Theta(n)$ is set of permutations of numbers $(1, \ldots, n)$.

Property 1.1.1

If a Boolean function f is computed by a (π, t, l)-automata protocol R, then we have:

$$
N^{\pi}(f) \leq \psi(R)
$$

"Communication Model of k-OBDD". Result.

Theorem 1.1.2

Let Boolean function $f(X)$ is computed by k-OBDD of width w. Then $N(f) \leq w^{(k-1) w+1}$.

"Communication Model of k-OBDD". Result.

Theorem 1.1.2

Let Boolean function $f(X)$ is computed by k-OBDD of width w. Then $N(f) \leq w^{(k-1) w+1}$.

Theorem 1.1.3

For $k=k(n), w=w(n)$ and $r=r(n)$ such that $k w\left(\log _{2} w\right)=o(n), k>4, w>20, r>\frac{48 v \log _{2} v}{w \log _{2} w}, w, v \in \mathcal{W}$ for set $\mathcal{W} \in\{$ const, superpolylog, sublinear\}, the following inclusion is true: $\lfloor k / r\rfloor-$ OBDD $_{\mathcal{W}} \subsetneq k-$ OBDD $_{\mathcal{W}}$.

"Communication Model of k-OBDD". Consequence

Consequence 1.1.4

- $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {const }} \subsetneq \mathbf{k}-$ OBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;

"Communication Model of k-OBDD". Consequence

Consequence 1.1.4

- $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {const }} \subsetneq \mathbf{k}-$ OBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
- $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ OBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ OBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k$;

"Communication Model of k-OBDD". Consequence

Consequence 1.1.4

- $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {const }} \subsetneq \mathbf{k}-$ OBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
- $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ OBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ OBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k ;$
- $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{\alpha}\left(\log _{2} \mathbf{n}\right)^{2}\right)\right\rfloor-$ OBDD $_{\text {sublinear }_{\alpha} \subsetneq \mathbf{k}-\text { OBDD }_{\text {sublinear }}^{\alpha}}$, for $0<\alpha<0.5-\varepsilon, \varepsilon>0, k>n^{\alpha}\left(\log _{2} n\right)^{2}$, $k=o\left(n^{1-\alpha} / \log _{2} n\right)$;

"Communication Model of k-OBDD". Nondeterministic case.

Theorem 1.2.1

Let Boolean function $f(X)$ is computed by k-NOBDD of width w. Then $N(f) \leq 2^{w((k-1) w+1)}$. case.

Theorem 1.2.1

Let Boolean function $f(X)$ is computed by k-NOBDD of width w. Then $N(f) \leq 2^{w((k-1) w+1)}$.

Theorem 1.2.2

For $k=k(n), w=w(n)$ and $r=r(n)$ such that $k w^{2}=o(n)$, $k>4, w>20, r>\frac{48 v^{2}}{w \log _{2} w}, v, w \in \mathcal{W}$ for set $\mathcal{W} \in\{$ const, superpolylog, sublinear\}, the following inclusion is right: $\lfloor k / r\rfloor-$ NOBDD $_{\mathcal{W}} \subsetneq k-$ NOBDD $_{\mathcal{W}}$

Consequence

Consequence 1.2.3

- $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {const }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;

Consequence

Consequence 1.2.3

- $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {const }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
- $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ NOBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k$;

Consequence

Consequence 1.2.3

- $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {const }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
- $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ NOBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k$;
- $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{2 \alpha}\left(\log _{2} \mathbf{n}\right)^{2}\right)\right\rfloor-$ NOBDD $_{\text {sublinear }}^{\alpha}$ ¢
$\mathbf{k}-\mathbf{N O B D D}_{\text {sublinear }_{\alpha}}$, for $0<\alpha<\frac{1}{3}-\varepsilon, \varepsilon>0$, $k>n^{2 \alpha}\left(\log _{2} n\right)^{2}, k=o\left(n^{1-\alpha} / \log _{2} n\right)$;

"Communication Model of k-OBDD". Probabilistic case.

Theorem 1.3.1

Let function $f(X)$ be computed by bounded error k-POBDD P of width w, then

$$
N(f) \leq\left(C_{1} k\left(C_{2}+\log _{2} w+\log _{2} k\right)\right)^{(k+1) w^{2}}
$$

for some constants C_{1} and C_{2}.

"Communication Model of k-OBDD". Probabilistic case.

Theorem 1.3.1

Let function $f(X)$ be computed by bounded error k-POBDD P of width w, then

$$
N(f) \leq\left(C_{1} k\left(C_{2}+\log _{2} w+\log _{2} k\right)\right)^{(k+1) w^{2}}
$$

for some constants C_{1} and C_{2}.

Theorem 1.3.2

For $k=k(n), w=w(n)$ and $r=r(n)$ such that
$k w^{2} \log (k(\log w+\log k))=o(n)$,
$k>4, w>20, w^{2} \log (k(\log k+\log w))=o(r), w \in \mathcal{W}$ for set
$\mathcal{W} \in\{$ const, superpolylog, sublinear $\}$, the following inclusion is right: $\lfloor k / r\rfloor-\mathrm{POBDD}_{\mathcal{W}} \subsetneq k-\mathrm{POBDD}_{\mathcal{W}}$

Consequence

Consequence 1.3.3

- bf $\left(k /\left(\log _{2} n \log _{2} \log _{2} n\right)\right)-P O B D D_{\text {const }} \subsetneq$ $\mathbf{k}-$ POBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;

Consequence

Consequence 1.3.3

-bf $\left(k /\left(\log _{2} n \log _{2} \log _{2} n\right)\right)-P O B D D_{\text {const }} \subsetneq$ k-POBDD ${ }_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;

- $\left(\mathbf{k} / \mathbf{n}^{\varepsilon}\right)-$ POBDD $_{\text {polylog }}^{f}$ k $\mathbf{k}-$ POBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k ;$

Consequence

Consequence 1.3.3

- bf $\left(k /\left(\log _{2} n \log _{2} \log _{2} n\right)\right)-P O B D D_{\text {const }} \subsetneq$ k-POBDD const , for $k=o\left(n / \log _{2} n\right)$;
- ($\left.\mathbf{k} / \mathbf{n}^{\varepsilon}\right)-$ POBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ POBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k ;$
- $\left(\mathbf{k} /\left(\mathbf{n}^{2 \alpha}\left(\log _{2} \mathbf{n}\right)^{3}\right)\right)-$ POBDD $_{\text {sublinear }}^{\alpha} \subsetneq$ $\mathbf{k}-\mathbf{P O B D D}_{\text {sublinear }_{\alpha}}$, for $0<\alpha<\frac{1}{3}-\varepsilon, \varepsilon>0$, $k>n^{2 \alpha}\left(\log _{2} n\right)^{3}, k=o\left(n^{1-\alpha} / \log _{2} n\right)$;

Functional representation of k-OBDD.

Theorem 2.1
For integer k, w, d, such that $k \log w<n$, following statement is true: $k-$ NOBDD $_{w} \subseteq$ NOBDD $_{w^{2 k-1}}$.

Functional representation of k-OBDD.

Theorem 2.1

For integer k, w, d, such that $k \log w<n$, following statement is true:

$$
k-\text { NOBDD }_{w} \subseteq \mathbf{N O B D D}_{w^{2 k-1}}
$$

Claim

For integer k, w, such that $k \log w<n$, the following statement is true:

$$
f(X)=\bigvee_{j=1}^{w^{k-1}} \bigwedge_{i=1}^{k} g_{j, i}(X)
$$

where $N\left(g_{j, i}\right) \leq w$

Functional representation of k-OBDD.

Theorem 2.2

For $k=k(n)$ and $w=w(n)$ such that $k \log w=o(n), w \in \mathcal{W}$ for set $\mathcal{W} \in\left\{\right.$ poly, superpoly ${ }_{\alpha}$, subexp $\left.{ }_{\alpha}\right\}$, the following inclusion is true:

$$
\lfloor k / r\rfloor-\mathbf{N O B D D}_{\mathcal{W}} \subsetneq-\mathbf{N O B D D}_{\mathcal{W}}
$$

for $\log w^{\prime}=O(r), r<k$ for any $w^{\prime} \in \mathcal{W}$.

Functional representation of k-OBDD.

Theorem 2.2

For $k=k(n)$ and $w=w(n)$ such that $k \log w=o(n), w \in \mathcal{W}$ for set $\mathcal{W} \in\left\{\right.$ poly , superpoly ${ }_{\alpha}$, subexp $\left.{ }_{\alpha}\right\}$, the following inclusion is true:

$$
\lfloor k / r\rfloor-\mathbf{N O B D D}_{\mathcal{W}} \subsetneq-\mathbf{N O B D D}_{\mathcal{W}}
$$

for $\log w^{\prime}=O(r), r<k$ for any $w^{\prime} \in \mathcal{W}$.

Theorem 2.3

For $k=k(n)$ and $w=w(n)$ such that $k \log w=o(n), w \in \mathcal{W}$ for set $\mathcal{W} \in\left\{\right.$ poly , superpoly ${ }_{2}$, subexp $\sup _{\alpha}$, the following inclusion is true:

$$
\lfloor k / r\rfloor-\mathbf{O B D D}_{\mathcal{W}} \subsetneq-\mathbf{O B D D}_{\mathcal{W}}
$$

for $\log w^{\prime}=O(r), r<k$ for any $w^{\prime} \in \mathcal{W}$.

Results. Deterministic Model

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996
$\mathrm{P}-(k-1) \mathrm{OBDD} \subsetneq \mathrm{P}-k O B D D$, for $k=o\left(n^{1 / 2} \log ^{3 / 2} n\right)$
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {const }} \subsetneq \mathbf{k}-$ OBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;

Results. Deterministic Model

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996
$\mathrm{P}-(k-1) \mathrm{OBDD} \subsetneq \mathrm{P}-k O B D D$, for $k=o\left(n^{1 / 2} \log ^{3 / 2} n\right)$
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {const }} \subsetneq \mathbf{k}-$ OBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ OBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ OBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k ;$

Results. Deterministic Model

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996
$\mathrm{P}-(k-1) \mathrm{OBDD} \subsetneq \mathrm{P}-k O B D D$, for $k=o\left(n^{1 / 2} \log ^{3 / 2} n\right)$
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {const }} \subsetneq \mathbf{k}-$ OBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ OBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ OBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k ;$
(3) $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{\alpha}\left(\log _{2} \mathbf{n}\right)^{2}\right)\right\rfloor-$ OBDD $_{\text {sublinear }_{\alpha}} \subsetneq \mathbf{k}-$ OBDD $_{\text {sublinear }_{\alpha}}$, for $0<\alpha<0.5-\varepsilon, \varepsilon>0, k>n^{\alpha}\left(\log _{2} n\right)^{2}$, $k=o\left(n^{1-\alpha} / \log _{2} n\right)$;

Results. Deterministic Model

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996
$\mathrm{P}-(k-1) \mathrm{OBDD} \subsetneq \mathrm{P}-k O B D D$, for $k=o\left(n^{1 / 2} \log ^{3 / 2} n\right)$
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {const }} \subsetneq \mathbf{k}-$ OBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ OBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ OBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k$;
(3) $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{\alpha}\left(\log _{2} \mathbf{n}\right)^{2}\right)\right\rfloor-$ OBDD $_{\text {sublinear }_{\alpha}} \subsetneq \mathbf{k}-$ OBDD $_{\text {sublinear }_{\alpha}}$, for $0<\alpha<0.5-\varepsilon, \varepsilon>0, k>n^{\alpha}\left(\log _{2} n\right)^{2}$, $k=o\left(n^{1-\alpha} / \log _{2} n\right)$;
(1) $\left\lfloor\mathbf{k} / \log ^{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {poly }} \subsetneq \mathbf{k}-$ OBDD $_{\text {poly }}$, for $k=o\left(n / \log _{2} n\right)$;

Results. Deterministic Model

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996
$\mathrm{P}-(k-1) \mathrm{OBDD} \subsetneq \mathrm{P}-k O B D D$, for $k=o\left(n^{1 / 2} \log ^{3 / 2} n\right)$
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {const }} \subsetneq \mathbf{k}-$ OBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ OBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ OBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k$;
(3) $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{\alpha}\left(\log _{2} \mathbf{n}\right)^{2}\right)\right\rfloor-$ OBDD $_{\text {sublinear }_{\alpha}} \subsetneq \mathbf{k}-$ OBDD $_{\text {sublinear }_{\alpha}}$, for $0<\alpha<0.5-\varepsilon, \varepsilon>0, k>n^{\alpha}\left(\log _{2} n\right)^{2}$, $k=o\left(n^{1-\alpha} / \log _{2} n\right)$;
(1) $\left\lfloor\mathbf{k} / \log ^{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {poly }} \subsetneq \mathbf{k}-$ OBDD $_{\text {poly }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \log ^{\alpha+2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {superpoly }_{\alpha} \subsetneq \mathbf{k}-\text { OBDD }_{\text {superpoly }}^{\alpha}}$, for $k=o\left(n / \log _{2}^{\alpha+1} n\right), \alpha=$ const, $\alpha>0$;

Results. Deterministic Model

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996
$\mathrm{P}-(k-1) \mathrm{OBDD} \subsetneq \mathrm{P}-k O B D D$, for $k=o\left(n^{1 / 2} \log ^{3 / 2} n\right)$
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {const }} \subsetneq \mathbf{k}-$ OBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ OBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ OBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k$;
(3) $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{\alpha}\left(\log _{2} \mathbf{n}\right)^{2}\right)\right\rfloor-$ OBDD $_{\text {sublinear }_{\alpha}} \subsetneq \mathbf{k}-$ OBDD $_{\text {sublinear }_{\alpha}}$, for $0<\alpha<0.5-\varepsilon, \varepsilon>0, k>n^{\alpha}\left(\log _{2} n\right)^{2}$, $k=o\left(n^{1-\alpha} / \log _{2} n\right)$;
(1) $\left\lfloor\mathbf{k} / \log ^{2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {poly }} \subsetneq \mathbf{k}-$ OBDD $_{\text {poly }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \log ^{\alpha+2} \mathbf{n}\right\rfloor-$ OBDD $_{\text {superpoly }_{\alpha} \subsetneq \mathbf{k}-\text { OBDD }_{\text {superpoly }}^{\alpha}}$, for $k=o\left(n / \log _{2}^{\alpha+1} n\right), \alpha=$ const, $\alpha>0$;
(3) $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{\alpha} \log _{2}^{2} \mathbf{n}\right)\right\rfloor-$ OBDD $_{\text {subexp }_{\alpha}} \subsetneq \mathbf{k}-$ OBDD $_{\text {subexp }_{\alpha}}$, for $k=o\left(n^{1-\alpha} / \log _{2} n\right), 0<\alpha \leq 1-\varepsilon, \varepsilon=$ const,$\varepsilon>0$.

Okol'nishnikova E., 1997

NP-kBP \subsetneq NP- $(k \ln k / 2+C) B P$, for $k=o(\sqrt{\ln n} / \ln \ln n)$.
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {const }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;

Okol'nishnikova E., 1997

NP-kBP \subsetneq NP- $(k \ln k / 2+C) B P$, for $k=o(\sqrt{\ln n} / \ln \ln n)$.
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {const }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ NOBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k ;$

Results. Nondeterministic Model

Okol'nishnikova E., 1997

NP-kBP $\subsetneq N P-(k \ln k / 2+C) B P$, for $k=o(\sqrt{\ln n} / \ln \ln n)$.
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {const }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ NOBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k$;
(3) $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{2 \alpha}\left(\log _{2} \mathbf{n}\right)^{2}\right)\right\rfloor-$ NOBDD $_{\text {sublinear }_{\alpha} \subsetneq} \subsetneq$ $\mathbf{k}-\mathbf{N O B D D}_{\text {sublinear }_{\alpha}}$, for $0<\alpha<\frac{1}{3}-\varepsilon, \varepsilon>0$, $k>n^{2 \alpha}\left(\log _{2} n\right)^{2}, k=o\left(n^{1-\alpha} / \log _{2} n\right)$;

Results. Nondeterministic Model

Okol'nishnikova E., 1997

NP-kBP $\subsetneq N P-(k \ln k / 2+C) B P$, for $k=o(\sqrt{\ln n} / \ln \ln n)$.
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {const }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ NOBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k$;
(3) $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{2 \alpha}\left(\log _{2} \mathbf{n}\right)^{2}\right)\right\rfloor-$ NOBDD $_{\text {sublinear }_{\alpha} \subsetneq} \subsetneq$ $\mathbf{k}-\mathbf{N O B D D}_{\text {sublinear }_{\alpha}}$, for $0<\alpha<\frac{1}{3}-\varepsilon, \varepsilon>0$, $k>n^{2 \alpha}\left(\log _{2} n\right)^{2}, k=o\left(n^{1-\alpha} / \log _{2} n\right)$;
(1) $\left\lfloor\mathbf{k} / \log ^{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {poly }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {poly }}$, ãäå $k=o\left(n / \log _{2} n\right)$;

Results. Nondeterministic Model

Okol'nishnikova E., 1997

NP-kBP $\subsetneq N P-(k \ln k / 2+C) B P$, for $k=o(\sqrt{\ln n} / \ln \ln n)$.
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {const }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ NOBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k$;
(3) $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{2 \alpha}\left(\log _{2} \mathbf{n}\right)^{2}\right)\right\rfloor-$ NOBDD $_{\text {sublinear }_{\alpha} \subsetneq} \subsetneq$ $\mathbf{k}-\mathbf{N O B D D}_{\text {sublinear }_{\alpha}}$, for $0<\alpha<\frac{1}{3}-\varepsilon, \varepsilon>0$, $k>n^{2 \alpha}\left(\log _{2} n\right)^{2}, k=o\left(n^{1-\alpha} / \log _{2} n\right)$;
(1) $\left\lfloor\mathbf{k} / \log ^{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {poly }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {poly }}$, ãäå $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{l o g}^{\alpha+2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {superpoly }_{\alpha}} \subsetneq \mathbf{k}-$ NOBDD $_{\text {superpoly }_{\alpha}}$, for $k=o\left(n / \log _{2}^{\alpha+1} n\right), \alpha=$ const, $\alpha>0$;

Results. Nondeterministic Model

Okol'nishnikova E., 1997

NP-kBP $\subsetneq N P-(k \ln k / 2+C) B P$, for $k=o(\sqrt{\ln n} / \ln \ln n)$.
(1) $\left\lfloor\mathbf{k} / \log _{2} \log _{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {const }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \mathbf{n}^{\varepsilon}\right\rfloor-$ NOBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k$;
(3) $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{2 \alpha}\left(\log _{2} \mathbf{n}\right)^{2}\right)\right\rfloor-$ NOBDD $_{\text {sublinear }_{\alpha} \subsetneq} \subsetneq$ $\mathbf{k}-\mathbf{N O B D D}_{\text {sublinear }_{\alpha}}$, for $0<\alpha<\frac{1}{3}-\varepsilon, \varepsilon>0$, $k>n^{2 \alpha}\left(\log _{2} n\right)^{2}, k=o\left(n^{1-\alpha} / \log _{2} n\right)$;
(1) $\left\lfloor\mathbf{k} / \log ^{2} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {poly }} \subsetneq \mathbf{k}-$ NOBDD $_{\text {poly }}$, ãäå $k=o\left(n / \log _{2} n\right)$;
(2) $\left\lfloor\mathbf{k} / \boldsymbol{l o g}^{\alpha+\mathbf{2}} \mathbf{n}\right\rfloor-$ NOBDD $_{\text {superpoly }_{\alpha} \subsetneq \mathbf{k}-\text { NOBDD }_{\text {superpoly }}^{\alpha}}$, for $k=o\left(n / \log _{2}^{\alpha+1} n\right), \alpha=$ const, $\alpha>0$;
(3) $\left\lfloor\mathbf{k} /\left(\mathbf{n}^{\alpha} \log _{2}^{2} \mathbf{n}\right)\right\rfloor-$ NOBDD $_{\text {subexp }_{\alpha}} \subsetneq \mathbf{k}-$ NOBDD $_{\text {subexp }_{\alpha}}$, for $k=o\left(n^{1-\alpha} / \log _{2} n\right), 0<\alpha \leq 1-\varepsilon, \varepsilon=$ const,$\varepsilon>0$.

Hromkovich J. and Sauerhoff M., 2003

BPP- $(k-1) \mathrm{BP} \subsetneq$ BPP- k BP, for $k \leq \log n / 3$.
(c) $\left(\mathbf{k} /\left(\log _{2} \mathbf{n} \log _{2} \log _{2} \mathbf{n}\right)\right)-$ POBDD $_{\text {const }} \subsetneq \mathbf{k}-$ POBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;

Hromkovich J. and Sauerhoff M., 2003

BPP- $(k-1) \mathrm{BP} \subsetneq \mathrm{BPP}-k B P$, for $k \leq \log n / 3$.
(1) $\left(\mathbf{k} /\left(\log _{2} \mathbf{n} \log _{2} \log _{2} \mathbf{n}\right)\right)-$ POBDD $_{\text {const }} \subsetneq \mathbf{k}-$ POBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left(\mathbf{k} / \mathbf{n}^{\varepsilon}\right)-$ POBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ POBDD $_{\text {polylog }}$, for
$\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k ;$

Hromkovich J. and Sauerhoff M., 2003

BPP- $(k-1) \mathrm{BP} \subsetneq \mathrm{BPP}-k B P$, for $k \leq \log n / 3$.
(1) $\left(\mathbf{k} /\left(\log _{2} \mathbf{n} \log _{2} \log _{2} \mathbf{n}\right)\right)-$ POBDD $_{\text {const }} \subsetneq \mathbf{k}-$ POBDD $_{\text {const }}$, for $k=o\left(n / \log _{2} n\right)$;
(2) $\left(\mathbf{k} / \mathbf{n}^{\varepsilon}\right)-$ POBDD $_{\text {polylog }} \subsetneq \mathbf{k}-$ POBDD $_{\text {polylog }}$, for $\varepsilon>0, k=o\left(n^{1-\varepsilon}\right), n^{\varepsilon}<k ;$
(3) $\left(\mathbf{k} /\left(\mathbf{n}^{2 \alpha}\left(\log _{2} \mathbf{n}\right)^{3}\right)\right)-$ POBDD $_{\text {sublinear }_{\alpha}} \subsetneq$ $\mathbf{k}-\mathbf{P O B D D}_{\text {sublinear }_{\alpha}}$, for $0<\alpha<\frac{1}{3}-\varepsilon, \varepsilon>0$, $k>n^{2 \alpha}\left(\log _{2} n\right)^{3}, k=o\left(n^{1-\alpha} / \log _{2} n\right)$;

Automata

We can convert OBDD to automata:

- Transition do not depends on index of variable.

Automata

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order

Automata

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Automata

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

Automata

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

- To move input head to the left, to the right or stay on the same position.

Automata

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

- To move input head to the left, to the right or stay on the same position.

Three models of two way autoamta

Automata

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

- To move input head to the left, to the right or stay on the same position.

Three models of two way autoamta

- Classical one;

Automata

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

- To move input head to the left, to the right or stay on the same position.

Three models of two way autoamta

- Classical one;
- A nonuniform head-position-dependent two-way automaton;

Automata

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

- To move input head to the left, to the right or stay on the same position.

Three models of two way autoamta

- Classical one;
- A nonuniform head-position-dependent two-way automaton;
- A nonuniform head-position-dependent shuffling two-way automaton

Automata. Lower bounds

Deterministic case

- 2DFA: $R_{n}(L) \leq(d+1)^{d+1}$.
- 2DA $: N^{i d}(f) \leq(d+1)^{d+1}$
- $2 \mathrm{DA}_{n}^{\Theta}: N(f) \leq(d+1)^{d+1}$

Automata. Lower bounds

Deterministic case

- 2DFA: $R_{n}(L) \leq(d+1)^{d+1}$.
- 2DA $: N^{i d}(f) \leq(d+1)^{d+1}$
- $2 \mathrm{DA}_{n}^{\Theta}: N(f) \leq(d+1)^{d+1}$

Nondeterministic case

- 2NFA: $R_{n}(L) \leq 2^{(d+1)^{2}}$.
- $2 \mathrm{NA}_{n}: N^{i d}(f) \leq 2^{(d+1)^{2}}$
- $2 \mathrm{NA}_{n}^{\Theta}: N(f) \leq 2^{(d+1)^{2}}$

Automata. Lower bounds

Deterministic case

- 2DFA: $R_{n}(L) \leq(d+1)^{d+1}$.
- 2DA $: N^{i d}(f) \leq(d+1)^{d+1}$
- $2 \mathrm{DA}_{n}^{\Theta}: N(f) \leq(d+1)^{d+1}$

Nondeterministic case

- 2NFA: $R_{n}(L) \leq 2^{(d+1)^{2}}$.
- $2 \mathrm{NA}_{n}: N^{i d}(f) \leq 2^{(d+1)^{2}}$
- $2 N A_{n}^{\Theta}: N(f) \leq 2^{(d+1)^{2}}$

Probabilistic case

- $2 \mathrm{PA}_{n}: N^{i d}(f) \leq(32 d \log T)^{(d+1)^{2}}$
- $2 \mathrm{PA}_{n}^{\ominus}: N(f) \leq(32 d \log T)^{(d+1)^{2}}$

Automata. Hierarchies

Deterministic case

- 2DFA: 2DFASIZE $(\mathrm{d}-3) \subsetneq 2 D F A S I Z E(\lceil 11 \mathrm{~d} \log \mathrm{~d}\rceil)$.
- 2DA ${ }_{n}: 2 D S I Z E(\mathrm{~d}) \subsetneq 2 D S I Z E(13 \mathrm{~d}+42)$
- $2 \mathrm{DA}_{n}^{\Theta}: 2 D \Theta \operatorname{SIZE}(\mathrm{~d}) \subsetneq 2 D \Theta \operatorname{SIZE}(13 \mathrm{~d}+42)$

Automata. Hierarchies

Deterministic case

- 2DFA: 2DFASIZE $(\mathrm{d}-3) \subsetneq 2 \operatorname{DFASIZE}(\lceil 11 \mathrm{~d} \log \mathrm{~d}\rceil)$.
- 2DA ${ }_{n}: 2 D S I Z E(\mathrm{~d}) \subsetneq 2 D S I Z E(13 \mathrm{~d}+42)$
- $2 \mathrm{DA}_{n}^{\Theta}: 2 D \Theta \operatorname{SIZE}(\mathrm{~d}) \subsetneq 2 D \Theta \operatorname{SIZE}(13 \mathrm{~d}+42)$

Nondeterministic case

- 2NFA: 2NFASIZE $(\lfloor\sqrt{\mathrm{d}}\rfloor) \subsetneq$ 2NFASIZE $(\lceil 11 \mathrm{~d} \log \mathrm{~d}\rceil)$.
- 2 NA $_{n}: 2 N S I Z E(\lfloor\sqrt{\mathrm{~d}}\rfloor) \subsetneq 2 N S I Z E(13 \mathrm{~d}+4)$
- $2 \mathrm{NA}_{n}^{\Theta}: 2 N \Theta \operatorname{SIZE}(\lfloor\sqrt{\mathrm{~d}}\rfloor) \subsetneq 2 N \Theta \operatorname{SIZE}(13 \mathrm{~d}+4)$

Automata. Hierarchies

Deterministic case

- 2DFA: 2DFASIZE (d - 3$) \subsetneq 2 D F A S I Z E([11 \mathrm{~d} \log \mathrm{~d} 7)$.
- 2DA $n: 2 D S I Z E(d) \subsetneq 2 D S I Z E(13 d+42)$
- $2 \operatorname{DA}_{n}^{\Theta}: 2 D \Theta \operatorname{SIZE}(\mathrm{~d}) \subsetneq 2 D \Theta \operatorname{SIZE}(13 \mathrm{~d}+42)$

Nondeterministic case

- 2NFA: 2NFASIZE $(\lfloor\sqrt{\mathrm{d}}\rfloor) \subsetneq$ 2NFASIZE $(\lceil 11 \mathrm{dlog} \mathrm{d}\rceil)$.
- 2 NA $_{n}: 2 N S I Z E(\lfloor\sqrt{\mathrm{~d}}\rfloor) \subsetneq 2 N S I Z E(13 \mathrm{~d}+4)$
- $2 N A_{n}^{\Theta}: 2 N \Theta \operatorname{SIZE}(\lfloor\sqrt{\mathrm{~d}}\rfloor) \subsetneq 2 N \Theta \operatorname{SIZE}(13 \mathrm{~d}+4)$

Probabilistic case

- 2PA $A_{n}: 2 B S I Z E\left(\left\lfloor\frac{\sqrt{d}}{32 \log \mathrm{~T}}\right\rfloor\right) \subsetneq 2 B S I Z E(13 \mathrm{~d}+4)$
- 2 PA $_{n}^{\Theta}: 2 B \Theta \operatorname{SIZE}\left(\left\lfloor\frac{\sqrt{d}}{32 \log \mathrm{~T}}\right\rfloor\right) \subsetneq 2 B \Theta \operatorname{SIZE}(13 \mathrm{~d}+4)$

Thank you for your attention!

Thank you for your attention!

Technique.

Decomposition

$$
\begin{gathered}
P(\nu)=\chi_{1, m_{0}, m_{1}}(\nu) \wedge \chi_{2, m_{1}, m_{2}}(\nu) \wedge \\
\chi_{i, m_{2}, m_{3}}(\nu) \wedge \cdots \wedge \chi_{k, m_{k-1}, m_{k}}(\nu) \wedge m_{k}
\end{gathered}
$$

Technique.

Decomposition

$$
\begin{gathered}
P(\nu)=\chi_{1, m_{0}, m_{1}}(\nu) \wedge \chi_{2, m_{1}, m_{2}}(\nu) \wedge \\
\chi_{i, m_{2}, m_{3}}(\nu) \wedge \cdots \wedge \chi_{k, m_{k-1}, m_{k}}(\nu) \wedge m_{k}
\end{gathered}
$$

Decomposition

For $N E(P)=\left\{\nu \in\{0,1\}^{n}\right.$: for any inputs ν and ν^{\prime} traces are different $\}$.

$$
P(X)=\bigvee_{\nu^{\prime} \in N E(P)} \chi_{1, m_{0}, m_{1}\left(\nu^{\prime}\right)}(X) \wedge \cdots \wedge \chi_{k, m_{k-1}\left(\nu^{\prime}\right), 1}(X)
$$

