On the Hierarchies for Deterministic, Nondeterministic and Probabilistic Ordered Read-k-times Branching Programs.

join work with Farid Ablayev, Rishat Ibrahimov, Abuzer Yakaryilmaz

> University of Latvia Faculty of Computing

Lilaste – 2016

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

Definitions.

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

ヘロン 人間 とくほど くほとう

2

- Definitions.
- Communication complexity technique for deterministic, nondeterministic and probabilistic models.

イロト イポト イヨト イヨト

- Definitions.
- Communication complexity technique for deterministic, nondeterministic and probabilistic models.
- Hierarchies of Complexity.

イロト イポト イヨト イヨト

- Definitions.
- Communication complexity technique for deterministic, nondeterministic and probabilistic models.
- Hierarchies of Complexity.
- Functional representation of deterministic, nondeterministic models.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Definitions.
- Communication complexity technique for deterministic, nondeterministic and probabilistic models.
- Hierarchies of Complexity.
- Functional representation of deterministic, nondeterministic models.
- Hierarchies of Complexity.
- Using same technique for automata.

• It is known that LSPACE/poly = BP.

(日) (四) (日) (日) (日)

- It is known that LSPACE/poly = BP.
- And $NC^1 = BP_{const}$.

ヘロト 人間 ト ヘヨト ヘヨト

3

- It is known that LSPACE/poly = BP.
- And $NC^1 = BP_{const}$.
- *k*-OBDD can be interpreted as extension of automata.

▲ □ ▶ ▲ □ ▶ ▲

- ⊒ →

- It is known that LSPACE/poly = BP.
- And $NC^1 = BP_{const}$.
- *k*-OBDD can be interpreted as extension of automata.
- *k*-OBDD can be interpreted as model of streaming algorithms .

・聞き ・ヨト ・ヨト

Branching Program (BP) is directed acycling graph with following properties:

- One initial node and two final (sink) nodes.
- Each inner node associated with variable and edges labeled by values of variable.

.⊒...>

Branching Program *P* computes Boolean Function $f(x_1, \ldots, x_n)$.

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Branching Program *P* computes Boolean Function $f(x_1, \ldots, x_n)$.

Size S(P) of Branching Program P is number of inner nodes.

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

OBDD

Ordered Binary Decision Diagram (OBDD) *P* is Branching Program with following properties:

- leveled
- oblivious
- read-once

 $\theta(P)$ is reading order of variables for *P*.

→ Ξ → < Ξ →</p>

< 🗇 🕨

э

k-OBDD is Branching programs which consist on *k* layers P_i , each of them is OBDD. Each layer has same order of variables.

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

k-OBDD is Branching programs which consist on *k* layers P_i , each of them is OBDD. Each layer has same order of variables.

Nondeterministic k-OBDD (k-NOBDD) is nondeterministic version. It returns 1 if there is at least one path from initial node to 1-sink node.

(同) くほり くほう

k-OBDD is Branching programs which consist on *k* layers P_i , each of them is OBDD. Each layer has same order of variables.

Nondeterministic k-OBDD (k-NOBDD) is nondeterministic version. It returns 1 if there is at least one path from initial node to 1-sink node.

Bounded error Probabilistic *k*-OBDD (*k*-NOBDD) is probabilistic version. It returns 1 if probability of reaching 1-sink is there is at least one path from initial node to 1-sink node $P_1 > 0.5 + \delta$ for some constant δ . Smae for 0.

く 同 と く ヨ と く ヨ と

Width of *k*-OBDD

Width *i*-th level: *w_i* is number of nodes in *i*-th level

イロト イポト イヨト イヨト

Width of *k*-OBDD

Width *i*-th level: *w_i* is number of nodes in *i*-th level

Width of *k*-OBDD *P*: $w(P) = max_iw_i$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Width *i*-th level: *w_i* is number of nodes in *i*-th level

Width of *k*-OBDD *P*: $w(P) = max_iw_i$

 $OBDD_w$ is class of Boolean function which are computed by OBDD of width w.

ヘロン 人間 とくほ とくほ とう

1

Width *i*-th level: *w_i* is number of nodes in *i*-th level

Width of *k*-OBDD *P*: $w(P) = max_iw_i$

 $OBDD_w$ is class of Boolean function which are computed by OBDD of width w.

 $k-OBDD_w$ is class of Boolean function which are computed by k-1OBDD of width w.

Width *i*-th level: *w_i* is number of nodes in *i*-th level

Width of *k*-OBDD *P*: $w(P) = max_iw_i$

 $OBDD_w$ is class of Boolean function which are computed by OBDD of width w.

 $k-OBDD_w$ is class of Boolean function which are computed by k-1OBDD of width w.

For set \mathcal{W} we have:

$$\mathbf{k} - \mathbf{OBDD}_{\mathcal{W}} = \bigcup_{\mathbf{w} \in \mathcal{W}} \mathbf{k} - \mathbf{OBDD}_{\mathbf{w}}$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

• We want to build hierarchy of $\mathbf{k} - \mathbf{OBDD}_{\mathcal{W}}$

(日) (四) (日) (日) (日)

- We want to build hierarchy of $\mathbf{k} \mathbf{OBDD}_{\mathcal{W}}$
- Lower bound:

・ロト ・四ト ・ヨト ・ヨト

- We want to build hierarchy of k-OBDD_W
- Lower bound:

Characteristic of model

・ロト ・四ト ・ヨト ・ヨト

3

- We want to build hierarchy of $\mathbf{k} \mathbf{OBDD}_{W}$
- Lower bound:

 - Characteristic of model
 - Characteristic of Boolean function.

・ 回 ト ・ ヨ ト ・ ヨ ト

- We want to build hierarchy of $\mathbf{k} \mathbf{OBDD}_{\mathcal{W}}$
- Lower bound:
 - Characteristic of model
 - 2 Characteristic of Boolean function.
 - Relation between them.

・ 回 ト ・ ヨ ト ・ ヨ ト

- We want to build hierarchy of **k**-OBDD_W
- Lower bound:
 - Characteristic of model
 - 2 Characteristic of Boolean function.
 - ③ Relation between them.
- Upper bound.

・ 回 ト ・ ヨ ト ・ ヨ ト

We simulate *k*-OBDD *P* by (2k - 1)-round automata communication protocol *R* for some partition π of input $\nu = (\sigma, \gamma)$.

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

$$M_{R}(\sigma,\gamma) = \begin{pmatrix} 0 & |M_{P}(\sigma)| \\ \hline M_{R}(\gamma) & 0 \end{pmatrix}$$
$$M_{R}(\sigma) = \begin{pmatrix} 0 & |M_{R}^{(1)}(\sigma)| & 0 & |\dots| & 0 & | \\ \hline 0 & 0 & |M_{R}^{(2)}(\sigma)| & \dots & 0 & | \\ \hline 0 & 0 & 0 & |\dots| & M_{R}^{(k-2)}(\sigma) & 0 & | \\ \hline 0 & 0 & |\dots| & 0 & |M_{R}^{(k-1)}(\sigma) \end{pmatrix}$$
$$M_{R}(\gamma) = \begin{pmatrix} \frac{M_{R}^{(1)}(\gamma) & 0 & |\dots| & 0 & | \\ \hline 0 & M_{R}^{(2)}(\gamma) & \dots & 0 & | \\ \hline 0 & 0 & |\dots| & 0 & | \\ \hline 0 & 0 & |\dots| & 0 & | \\ \hline 0 & 0 & |\dots| & 0 & | \\ \hline 0 & 0 & |\dots| & 0 & | \\ \hline \end{pmatrix}$$

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

Description of the first round:

$$p_R^0(\sigma) = (0, \dots, 0, 1, 0, \dots, 0)$$

Description of the last round:

$$q_R(\gamma) = (0,\ldots,0,q^{(2k-1)}(\gamma))$$

Linear representation of computation process:

$$m{R}(
u) = m{p}_R^0(\sigma) \cdot \left(m{M}_R(\sigma,\gamma)^{2k-2}
ight)m{q}_R^T(\gamma)$$

Description of the first round:

$$p_R^0(\sigma) = (0, \dots, 0, 1, 0, \dots, 0)$$

Description of the last round:

$$q_R(\gamma) = (0, \ldots, 0, q^{(2k-1)}(\gamma))$$

Linear representation of computation process:

$$\boldsymbol{R}(\nu) = \boldsymbol{p}_{R}^{0}(\sigma) \cdot \left(\boldsymbol{M}_{R}(\sigma,\gamma)^{2k-2}\right) \boldsymbol{q}_{R}^{T}(\gamma)$$

Definition

Capacity of protocol $\psi(R)$ is number of possible different pairs $(p_R^0(\sigma), M_R(\sigma))$.

Definition

• $N^{\pi}(f)$ is number of subfunctions with respect to partition $\pi = (X_A, X_B)$.

< 回 > < 回 > < 回 > .

Definition

- $N^{\pi}(f)$ is number of subfunctions with respect to partition $\pi = (X_A, X_B)$.
- $N^{\theta}(f) = max_{\pi \in \Pi(\theta)}N^{\pi}(f)$, where $\theta = (j_1, \dots, j_n)$, $\Pi(\theta) = \{\pi : \pi = (\{x_{j_1}, \dots, x_{j_u}\}, \{x_{j_{u+1}}, \dots, x_{j_n}\})$, for $1 \le u \le n-1\}$.

Definition

- $N^{\pi}(f)$ is number of subfunctions with respect to partition $\pi = (X_A, X_B)$.
- $N^{\theta}(f) = \max_{\pi \in \Pi(\theta)} N^{\pi}(f)$, where $\theta = (j_1, \dots, j_n)$, $\Pi(\theta) = \{\pi : \pi = (\{x_{j_1}, \dots, x_{j_u}\}, \{x_{j_{u+1}}, \dots, x_{j_n}\})$, for $1 \le u \le n-1\}$.
- N(f) = min_{θ∈Θ(n)}N^θ(f), where Θ(n) is set of permutations of numbers (1,..., n).

Definition

- $N^{\pi}(f)$ is number of subfunctions with respect to partition $\pi = (X_A, X_B)$.
- $N^{\theta}(f) = max_{\pi \in \Pi(\theta)}N^{\pi}(f)$, where $\theta = (j_1, \dots, j_n)$, $\Pi(\theta) = \{\pi : \pi = (\{x_{j_1}, \dots, x_{j_u}\}, \{x_{j_{u+1}}, \dots, x_{j_n}\})$, for $1 \le u \le n-1\}$.
- N(f) = min_{θ∈Θ(n)}N^θ(f), where Θ(n) is set of permutations of numbers (1,..., n).

Property 1.1.1

If a Boolean function *f* is computed by a (π, t, l) -automata protocol *R*, then we have:

$$N^{\pi}(f) \leq \psi(R).$$
"Communication Model of k-OBDD". Result.

Theorem 1.1.2

Let Boolean function f(X) is computed by *k*-OBDD of width *w*. Then $N(f) \le w^{(k-1)w+1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

"Communication Model of k-OBDD". Result.

Theorem 1.1.2

Let Boolean function f(X) is computed by *k*-OBDD of width *w*. Then $N(f) \le w^{(k-1)w+1}$.

Theorem 1.1.3

For k = k(n), w = w(n) and r = r(n) such that $kw(\log_2 w) = o(n)$, k > 4, w > 20, $r > \frac{48v \log_2 v}{w \log_2 w}$, $w, v \in W$ for set $W \in \{\text{const, superpolylog, sublinear}\}$, the following inclusion is true: $\lfloor k/r \rfloor$ -OBDD $_W \subsetneq k$ -OBDD $_W$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

"Communication Model of k-OBDD". Consequence

Consequence 1.1.4

• $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor - \mathbf{OBDD_{const}} \subsetneq \mathbf{k} - \mathbf{OBDD_{const}}$, for $k = o(n / \log_2 n)$;

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

個 とく ヨ とく ヨ とう

1

"Communication Model of k-OBDD". Consequence

Consequence 1.1.4

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{OBDD}_{const} \subsetneq \mathbf{k} \mathbf{OBDD}_{const}$, for $k = o(n / \log_2 n)$;
- $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor$ OBDD_{polylog} $\subsetneq \mathbf{k}$ OBDD_{polylog}, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$

個 とくほ とくほ とう

"Communication Model of k-OBDD". Consequence

Consequence 1.1.4

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{OBDD}_{const} \subsetneq \mathbf{k} \mathbf{OBDD}_{const}$, for $k = o(n / \log_2 n)$;
- $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor$ OBDD_{polylog} $\subsetneq \mathbf{k}$ OBDD_{polylog}, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$
- $\lfloor \mathbf{k}/(\mathbf{n}^{\alpha}(\log_2 \mathbf{n})^2) \rfloor \mathbf{OBDD}_{\mathrm{sublinear}_{\alpha}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\mathrm{sublinear}_{\alpha}}$, for $0 < \alpha < 0.5 - \varepsilon$, $\varepsilon > 0$, $k > n^{\alpha}(\log_2 n)^2$, $k = o(n^{1-\alpha}/\log_2 n)$;

個人 くほん くほん しほ

"Communication Model of *k*-OBDD". Nondeterministic case.

Theorem 1.2.1

Let Boolean function f(X) is computed by *k*-NOBDD of width *w*. Then $N(f) \leq 2^{w((k-1)w+1)}$.

"Communication Model of *k*-OBDD". Nondeterministic case.

Theorem 1.2.1

Let Boolean function f(X) is computed by *k*-NOBDD of width *w*. Then $N(f) \leq 2^{w((k-1)w+1)}$.

Theorem 1.2.2

For k = k(n), w = w(n) and r = r(n) such that $kw^2 = o(n)$, k > 4, w > 20, $r > \frac{48v^2}{w\log_2 w}$, $v, w \in W$ for set $W \in \{\text{const, superpolylog, sublinear}\}$, the following inclusion is right: $\lfloor k/r \rfloor$ -NOBDD_W $\subsetneq k$ -NOBDD_W

ヘロト 人間 ト ヘヨト ヘヨト

Consequence 1.2.3

• $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor - \mathbf{NOBDD_{const}} \subsetneq \mathbf{k} - \mathbf{NOBDD_{const}}$, for $k = o(n / \log_2 n)$;

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Consequence 1.2.3

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{NOBDD_{const}} \subsetneq \mathbf{k} \mathbf{NOBDD_{const}}$, for $k = o(n / \log_2 n)$;
- $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor$ -NOBDD_{polylog} $\subsetneq \mathbf{k}$ -NOBDD_{polylog}, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$

Consequence 1.2.3

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{NOBDD_{const}} \subsetneq \mathbf{k} \mathbf{NOBDD_{const}}$, for $k = o(n / \log_2 n)$;
- $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor$ -NOBDD_{polylog} $\subsetneq \mathbf{k}$ -NOBDD_{polylog}, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$
- $\lfloor \mathbf{k}/(\mathbf{n}^{2\alpha}(\log_2 \mathbf{n})^2) \rfloor \mathbf{NOBDD}_{\mathbf{sublinear}_{\alpha}} \subsetneq$ $\mathbf{k} - \mathbf{NOBDD}_{\mathbf{sublinear}_{\alpha}}, \text{ for } 0 < \alpha < \frac{1}{3} - \varepsilon, \varepsilon > 0,$ $k > n^{2\alpha}(\log_2 n)^2, k = o(n^{1-\alpha}/\log_2 n);$

(四) (日) (日) 日

"Communication Model of *k*-OBDD". Probabilistic case.

Theorem 1.3.1

Let function f(X) be computed by bounded error *k*-POBDD *P* of width *w*, then

$$N(f) \le (C_1 k (C_2 + \log_2 w + \log_2 k))^{(k+1)w^2}$$

for some constants C_1 and C_2 .

▲ @ ▶ ▲ 三 ▶ ▲

"Communication Model of *k*-OBDD". Probabilistic case.

Theorem 1.3.1

Let function f(X) be computed by bounded error *k*-POBDD *P* of width *w*, then

$$N(f) \le (C_1 k (C_2 + \log_2 w + \log_2 k))^{(k+1)w^2}$$

for some constants C_1 and C_2 .

Theorem 1.3.2

For k = k(n), w = w(n) and r = r(n) such that $kw^2 \log(k(\log w + \log k)) = o(n)$, k > 4, w > 20, $w^2 \log(k(\log k + \log w)) = o(r)$, $w \in W$ for set $W \in \{\text{const, superpolylog, sublinear}\}$, the following inclusion is right: $\lfloor k/r \rfloor$ -**POBDD**_W \subsetneq k-**POBDD**_W

Consequence 1.3.3

•
$$bf(k/(\log_2 n \log_2 \log_2 n)) - POBDD_{const} \subsetneq k - POBDD_{const}$$
, for $k = o(n/\log_2 n)$;

(日) (四) (日) (日) (日)

э

Consequence 1.3.3

- $bf(k/(\log_2 n \log_2 \log_2 n)) POBDD_{const} \subsetneq$ $k - POBDD_{const}$, for $k = o(n/\log_2 n)$;
- $(\mathbf{k}/\mathbf{n}^{\varepsilon}) \mathbf{POBDD}_{\mathbf{polylog}} \subsetneq \mathbf{k} \mathbf{POBDD}_{\mathbf{polylog}}$, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$

個人 くほん くほん 一日

Consequence 1.3.3

•
$$bf(k/(\log_2 n \log_2 \log_2 n)) - POBDD_{const} \subsetneq$$

 $\mathbf{k} - \mathbf{POBDD_{const}}, \text{ for } k = o(n/\log_2 n);$

•
$$(\mathbf{k}/\mathbf{n}^{\varepsilon}) - \mathbf{POBDD}_{\mathbf{polylog}} \subsetneq \mathbf{k} - \mathbf{POBDD}_{\mathbf{polylog}}$$
, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k$;

•
$$(\mathbf{k}/(\mathbf{n}^{2\alpha}(\log_2 \mathbf{n})^3)) - \mathbf{POBDD}_{\mathbf{sublinear}_{\alpha}} \subseteq \mathbf{k} - \mathbf{POBDD}_{\mathbf{sublinear}_{\alpha}}$$
, for $0 < \alpha < \frac{1}{3} - \varepsilon$, $\varepsilon > 0$, $k > n^{2\alpha}(\log_2 n)^3$, $k = o(n^{1-\alpha}/\log_2 n)$;

イロン イロン イヨン イヨン

э

Theorem 2.1

For integer k, w, d, such that $k \log w < n$, following statement is true:

k-NOBDD_w \subseteq NOBDD_{w^{2k-1}}.

- ⊒ →

Theorem 2.1

For integer k, w, d, such that $k \log w < n$, following statement is true:

```
k-NOBDD<sub>w</sub> \subseteq NOBDD<sub>w<sup>2k-1</sup></sub>.
```

Claim

For integer k, w, such that $k \log w < n$, the following statement is true:

$$f(X) = \bigvee_{j=1}^{w^{k-1}} \bigwedge_{i=1}^{k} g_{j,i}(X)$$

where $N(g_{j,i}) \leq w$

イロト イポト イヨト イヨト

Functional representation of *k*-OBDD.

Theorem 2.2

For k = k(n) and w = w(n) such that $k \log w = o(n)$, $w \in W$ for set $W \in \{\text{poly}, \text{superpoly}_{\alpha}, \text{subexp}_{\alpha}\}$, the following inclusion is true:

$\lfloor k/r floor$ -NOBDD $_{\mathcal{W}} \subsetneq$ -NOBDD $_{\mathcal{W}}$

for log w' = o(r), r < k for any $w' \in W$.

(雪) (ヨ) (ヨ)

Functional representation of k-OBDD.

Theorem 2.2

For k = k(n) and w = w(n) such that $k \log w = o(n)$, $w \in W$ for set $W \in \{\text{poly}, \text{superpoly}_{\alpha}, \text{subexp}_{\alpha}\}$, the following inclusion is true:

$\lfloor k/r floor$ -NOBDD $_{\mathcal{W}} \subsetneq$ -NOBDD $_{\mathcal{W}}$

for log w' = o(r), r < k for any $w' \in W$.

Theorem 2.3

For k = k(n) and w = w(n) such that $k \log w = o(n)$, $w \in W$ for set $W \in \{\text{poly}, \text{superpoly}_{\alpha}, \text{subexp}_{\alpha}\}$, the following inclusion is true:

$\lfloor k/r \rfloor$ -OBDD_W \subsetneq -OBDD_W

for log w' = o(r), r < k for any $w' \in W$.

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996

 $P-(k-1)OBDD \subsetneq P-kOBDD$, for $k = o(n^{1/2}log^{3/2}n)$

• $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor - \mathbf{OBDD}_{const} \subsetneq \mathbf{k} - \mathbf{OBDD}_{const}$, for $k = o(n / \log_2 n)$;

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996

 $P-(k-1)OBDD \subsetneq P-kOBDD$, for $k = o(n^{1/2}log^{3/2}n)$

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{OBDD}_{\text{const}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\text{const}}$, for $k = o(n / \log_2 n);$
- 2 $\lfloor k/n^{\varepsilon} \rfloor$ -OBDD_{polylog} $\subsetneq k$ -OBDD_{polylog}, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996

 $P-(k-1)OBDD \subsetneq P-kOBDD$, for $k = o(n^{1/2}log^{3/2}n)$

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{OBDD}_{const} \subsetneq \mathbf{k} \mathbf{OBDD}_{const}$, for $k = o(n / \log_2 n)$;
- **2** $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor \mathbf{OBDD}_{\text{polylog}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\text{polylog}}$, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$
- $\begin{aligned} & \\ \bullet \left[\mathbf{k} / (\mathbf{n}^{\alpha} (\log_2 \mathbf{n})^2) \right] \mathbf{OBDD}_{\mathbf{sublinear}_{\alpha}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\mathbf{sublinear}_{\alpha}}, \\ & \\ & \text{for } \mathbf{0} < \alpha < 0.5 \varepsilon, \varepsilon > 0, \ k > n^{\alpha} (\log_2 n)^2, \\ & \\ & k = o(n^{1-\alpha} / \log_2 n); \end{aligned}$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996

 $P-(k-1)OBDD \subsetneq P-kOBDD$, for $k = o(n^{1/2}log^{3/2}n)$

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{OBDD}_{const} \subsetneq \mathbf{k} \mathbf{OBDD}_{const}$, for $k = o(n / \log_2 n)$;
- **2** $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor \mathbf{OBDD}_{\mathbf{polylog}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\mathbf{polylog}}$, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$
- $\begin{aligned} & \\ \bullet \left\lfloor \mathbf{k}/(\mathbf{n}^{\alpha}(\log_{2}\mathbf{n})^{2}) \right\rfloor \mathbf{OBDD}_{\mathbf{sublinear}_{\alpha}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\mathbf{sublinear}_{\alpha}}, \\ & \text{for } \mathbf{0} < \alpha < \mathbf{0.5} \varepsilon, \varepsilon > \mathbf{0}, \ k > n^{\alpha}(\log_{2}n)^{2}, \\ & k = o(n^{1-\alpha}/\log_{2}n); \end{aligned}$
- $\lfloor k/\log^2 n \rfloor OBDD_{poly} \subsetneq k OBDD_{poly}$, for $k = o(n/\log_2 n);$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996

 $P-(k-1)OBDD \subsetneq P-kOBDD$, for $k = o(n^{1/2}log^{3/2}n)$

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{OBDD}_{const} \subsetneq \mathbf{k} \mathbf{OBDD}_{const}$, for $k = o(n / \log_2 n)$;
- **2** $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor \mathbf{OBDD}_{\mathbf{polylog}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\mathbf{polylog}}$, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$
- $\begin{aligned} & \\ \bullet \left\lfloor \mathbf{k}/(\mathbf{n}^{\alpha}(\log_{2}\mathbf{n})^{2}) \right\rfloor \mathbf{OBDD}_{\mathbf{sublinear}_{\alpha}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\mathbf{sublinear}_{\alpha}}, \\ & \text{for } \mathbf{0} < \alpha < \mathbf{0.5} \varepsilon, \varepsilon > \mathbf{0}, \ k > n^{\alpha}(\log_{2}n)^{2}, \\ & k = o(n^{1-\alpha}/\log_{2}n); \end{aligned}$
- $\lfloor k/\log^2 n \rfloor OBDD_{poly} \subsetneq k OBDD_{poly}$, for $k = o(n/\log_2 n);$
- [k/log^{α+2}n]−OBDD_{superpoly_α} ⊆ k−OBDD_{superpoly_α}, for
 $k = o(n/log_2^{α+1}n), \alpha = const, \alpha > 0;$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

B. Bolling, M. Sauerhoff, D. Sieling, I. Wegener , 1996

 $P-(k-1)OBDD \subsetneq P-kOBDD$, for $k = o(n^{1/2}log^{3/2}n)$

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{OBDD}_{\text{const}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\text{const}}$, for $k = o(n / \log_2 n);$
- **2** $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor \mathbf{OBDD}_{\mathbf{polylog}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\mathbf{polylog}}$, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$
- $\lfloor k/\log^2 n \rfloor OBDD_{poly} \subsetneq k OBDD_{poly}$, for $k = o(n/\log_2 n);$
- [k/log^{α+2}n]−OBDD_{superpoly_α} ⊆ k−OBDD_{superpoly_α}, for
 $k = o(n/log_2^{\alpha+1}n), \alpha = const, \alpha > 0;$
- $\lfloor \mathbf{k}/(\mathbf{n}^{\alpha}\log_{2}^{2}\mathbf{n}) \rfloor \mathbf{OBDD}_{\mathrm{subexp}_{\alpha}} \subsetneq \mathbf{k} \mathbf{OBDD}_{\mathrm{subexp}_{\alpha}}$, for $k = o(n^{1-\alpha}/\log_{2}n), 0 < \alpha \leq 1 - \varepsilon, \varepsilon = const, \varepsilon \geq 0$, $z \in \mathbb{C}$

Okol'nishnikova E., 1997

NP-*k*BP \subseteq NP-(*k* ln *k*/2 + *C*)BP, for *k* = $o(\sqrt{\ln n}/\ln \ln n)$.

• $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor - \mathbf{NOBDD_{const}} \subsetneq \mathbf{k} - \mathbf{NOBDD_{const}}$, for $k = o(n / \log_2 n)$;

▲□ → ▲ 三 → ▲ 三 → つく(~

Okol'nishnikova E., 1997

NP-*k*BP \subseteq NP-(*k* ln *k*/2 + *C*)BP, for $k = o(\sqrt{\ln n} / \ln \ln n)$.

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{NOBDD_{const}} \subsetneq \mathbf{k} \mathbf{NOBDD_{const}}$, for $k = o(n / \log_2 n)$;
- 2 $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor$ -NOBDD_{polylog} $\subsetneq \mathbf{k}$ -NOBDD_{polylog}, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$

Okol'nishnikova E., 1997

NP-*k*BP \subseteq NP-(*k* ln *k*/2 + *C*)BP, for $k = o(\sqrt{\ln n} / \ln \ln n)$.

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{NOBDD}_{const} \subsetneq \mathbf{k} \mathbf{NOBDD}_{const}$, for $k = o(n / \log_2 n)$;
- ② $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor$ -NOBDD_{polylog} \subsetneq **k**-NOBDD_{polylog}, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$

▲□ → ▲ 三 → ▲ 三 → りへ(~

Okol'nishnikova E., 1997

NP-*k*BP \subseteq NP-(*k* ln *k*/2 + *C*)BP, for $k = o(\sqrt{\ln n} / \ln \ln n)$.

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{NOBDD_{const}} \subsetneq \mathbf{k} \mathbf{NOBDD_{const}}$, for $k = o(n / \log_2 n)$;
- 2 $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor$ -NOBDD_{polylog} $\subsetneq \mathbf{k}$ -NOBDD_{polylog}, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$
- $\lfloor k/\log^2 n \rfloor \text{NOBDD}_{\text{poly}} \subsetneq k \text{NOBDD}_{\text{poly}}$, ãäå $k = o(n/\log_2 n);$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Okol'nishnikova E., 1997

NP-*k*BP \subseteq NP-(*k* ln *k*/2 + *C*)BP, for $k = o(\sqrt{\ln n} / \ln \ln n)$.

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \mathbf{NOBDD_{const}} \subsetneq \mathbf{k} \mathbf{NOBDD_{const}}$, for $k = o(n / \log_2 n)$;
- 2 $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor$ -NOBDD_{polylog} $\subsetneq \mathbf{k}$ -NOBDD_{polylog}, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$
- $\begin{array}{l} \displaystyle \textcircled{\begin{sublinear}{l} \bullet \end{sublinear}} & \displaystyle \fbox{\begin{sublinear}{l} \bullet \end{sublinear}} & \displaystyle \fbox{\begin{sublinear}{l} \bullet \end{sublinear}} \\ & \displaystyle \texttt{k} \texttt{NOBDD}_{\texttt{sublinear}_{\alpha}}, \end{sublinear} & \displaystyle \texttt{for } 0 < \alpha < \frac{1}{3} \varepsilon, \varepsilon > 0, \\ & \displaystyle \texttt{k} > n^{2\alpha} (\log_2 n)^2, \end{sublinear} & \displaystyle \texttt{sublinear}_{\alpha} / \log_2 n); \end{array}$
- $\lfloor k/\log^2 n \rfloor \text{NOBDD}_{\text{poly}} \subsetneq k \text{NOBDD}_{\text{poly}}$, ãäå $k = o(n/\log_2 n);$

<ロ> (四) (四) (三) (三) (三) (三)

Okol'nishnikova E., 1997

NP-*k*BP \subseteq NP-(*k* ln *k*/2 + *C*)BP, for $k = o(\sqrt{\ln n} / \ln \ln n)$.

- $\lfloor \mathbf{k} / \log_2 \log_2 \mathbf{n} \rfloor \text{NOBDD}_{\text{const}} \subsetneq \mathbf{k} \text{NOBDD}_{\text{const}}$, for $k = o(n / \log_2 n)$;
- 2 $\lfloor \mathbf{k}/\mathbf{n}^{\varepsilon} \rfloor$ -NOBDD_{polylog} $\subsetneq \mathbf{k}$ -NOBDD_{polylog}, for $\varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$
- $\lfloor k/\log^2 n \rfloor \text{NOBDD}_{\text{poly}} \subsetneq k \text{NOBDD}_{\text{poly}}$, ãäå $k = o(n/\log_2 n);$
- $(k/\log^{\alpha+2}n) NOBDD_{superpoly_{\alpha}} \subsetneq k NOBDD_{superpoly_{\alpha}},$ $for k = o(n/\log_{2}^{\alpha+1}n), \alpha = const, \alpha > 0;$
- $\lfloor \mathbf{k}/(\mathbf{n}^{\alpha}\log_{2}^{2}\mathbf{n}) \rfloor \mathbf{NOBDD}_{\mathbf{subexp}_{\alpha}} \subsetneq \mathbf{k} \mathbf{NOBDD}_{\mathbf{subexp}_{\alpha}}$, for $k = o(n^{1-\alpha}/\log_{2}n), 0 < \alpha \leq 1 - \varepsilon, \varepsilon = const, \varepsilon \geq 0$. Even in the second second

Hromkovich J. and Sauerhoff M., 2003

BPP-(k - 1)BP \subseteq BPP-*k*BP, for $k \leq \log n/3$.

•
$$(\mathbf{k}/(\log_2 n \log_2 \log_2 n)) - \mathbf{POBDD}_{const} \subsetneq \mathbf{k} - \mathbf{POBDD}_{const},$$

for $k = o(n/\log_2 n);$

ヘロン 人間 とくほ とくほ とう

э.

Hromkovich J. and Sauerhoff M., 2003

BPP-(k - 1)BP \subseteq BPP-*k*BP, for $k \le \log n/3$.

•
$$(\mathbf{k}/(\log_2 n \log_2 \log_2 n)) - \mathbf{POBDD}_{\text{const}} \subsetneq \mathbf{k} - \mathbf{POBDD}_{\text{const}},$$

for $k = o(n/\log_2 n);$

$$(\mathbf{k}/\mathbf{n}^{\varepsilon}) - \mathbf{POBDD}_{\mathbf{polylog}} \subsetneq \mathbf{k} - \mathbf{POBDD}_{\mathbf{polylog}}, \text{ for} \\ \varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ ● ○ ○ ○

Hromkovich J. and Sauerhoff M., 2003

BPP-(k - 1)BP \subseteq BPP-*k*BP, for $k \le \log n/3$.

•
$$(k/(\log_2 n \log_2 \log_2 n)) - POBDD_{const} \subsetneq k - POBDD_{const},$$

for $k = o(n/\log_2 n);$

$$(\mathbf{k}/\mathbf{n}^{\varepsilon}) - \mathbf{POBDD}_{\mathbf{polylog}} \subsetneq \mathbf{k} - \mathbf{POBDD}_{\mathbf{polylog}}, \text{ for} \\ \varepsilon > 0, k = o(n^{1-\varepsilon}), n^{\varepsilon} < k;$$

$$\begin{array}{l} \displaystyle \textcircled{\textbf{o}} \quad \left(\mathbf{k}/(\mathbf{n}^{2\alpha}(\log_2 \mathbf{n})^3) \right) - \mathbf{POBDD}_{\mathbf{sublinear}_{\alpha}} \subsetneq \\ \displaystyle \mathbf{k} - \mathbf{POBDD}_{\mathbf{sublinear}_{\alpha}}, \text{ for } \mathbf{0} < \alpha < \frac{1}{3} - \varepsilon, \varepsilon > \mathbf{0}, \\ \displaystyle k > n^{2\alpha}(\log_2 n)^3, \ k = o(n^{1-\alpha}/\log_2 n); \end{array}$$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Automata

We can convert OBDD to automata:

• Transition do not depends on index of variable.

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

・ 回 ト ・ ヨ ト ・ ヨ ト

э

Automata

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order

・ 回 ト ・ ヨ ト ・ ヨ ト
We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

ヘロト 人間 ト ヘヨト ヘヨト

æ

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

 To move input head to the left, to the right or stay on the same position.

ヘロト 人間 ト ヘヨト ヘヨト

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

 To move input head to the left, to the right or stay on the same position.

Three models of two way autoamta

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

 To move input head to the left, to the right or stay on the same position.

Three models of two way autoamta

Classical one;

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

 To move input head to the left, to the right or stay on the same position.

Three models of two way autoamta

- Classical one;
- A nonuniform head-position-dependent two-way automaton;

We can convert OBDD to automata:

- Transition do not depends on index of variable.
- Only natural order
- Constant width

Two way automata:

 To move input head to the left, to the right or stay on the same position.

Three models of two way autoamta

- Classical one;
- A nonuniform head-position-dependent two-way automaton;
- A nonuniform head-position-dependent shuffling two-way automaton

Automata. Lower bounds

Deterministic case

• 2DFA:
$$R_n(L) \le (d+1)^{d+1}$$
.

•
$$2DA_n: N^{id}(f) \le (d+1)^{d+1}$$

•
$$2DA_n^{\Theta}: N(f) \le (d+1)^{d+1}$$

< 🗇

э

< ∃ > <

э

Automata. Lower bounds

Deterministic case

• 2DFA:
$$R_n(L) \le (d+1)^{d+1}$$
.

•
$$2DA_n: N^{id}(f) \le (d+1)^{d+1}$$

•
$$2\mathsf{DA}_n^\Theta$$
: $N(f) \leq (d+1)^{d+1}$

Nondeterministic case

• 2NFA:
$$R_n(L) \le 2^{(d+1)^2}$$

•
$$2NA_n$$
: $N^{id}(f) \le 2^{(d+1)^2}$

•
$$2NA_n^{\Theta}: N(f) \le 2^{(d+1)^2}$$

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

э

- < ≣ → <

э

Automata. Lower bounds

Deterministic case

• 2DFA:
$$R_n(L) \le (d+1)^{d+1}$$
.

•
$$2DA_n: N^{id}(f) \le (d+1)^{d+1}$$

•
$$2\mathsf{DA}_n^\Theta$$
: $N(f) \leq (d+1)^{d+1}$

Nondeterministic case

- 2NFA: $R_n(L) \leq 2^{(d+1)^2}$.
- $2NA_n: N^{id}(f) \le 2^{(d+1)^2}$
- $2NA_n^{\Theta}: N(f) \le 2^{(d+1)^2}$

Probabilistic case

- $2PA_n: N^{id}(f) \le (32d \log T)^{(d+1)^2}$
- $2PA_n^{\Theta}$: $N(f) \le (32d \log T)^{(d+1)^2}$

Automata. Hierarchies

Deterministic case

- 2DFA: 2DFASIZE $(d-3) \subsetneq$ 2DFASIZE $(\lceil 11d \log d \rceil)$.
- $2DA_n$: $2DSIZE(d) \subsetneq 2DSIZE(13d + 42)$
- $2\mathsf{DA}_n^{\Theta}$: $2\mathsf{D}\Theta SIZE(d) \subsetneq 2\mathsf{D}\Theta SIZE(13d + 42)$

Deterministic case

- 2DFA: 2DFASIZE $(d-3) \subsetneq$ 2DFASIZE $(\lceil 11d \log d \rceil)$.
- $2DA_n$: $2DSIZE(d) \subsetneq 2DSIZE(13d + 42)$
- $2\mathsf{DA}_n^{\Theta}$: $2\mathsf{D}\Theta SIZE(d) \subsetneq 2\mathsf{D}\Theta SIZE(13d + 42)$

Nondeterministic case

- 2NFA: 2NFASIZE($\lfloor \sqrt{d} \rfloor$) \subsetneq 2NFASIZE($\lceil 11d \log d \rceil$).
- $2NA_n: 2NSIZE(\lfloor\sqrt{d}\rfloor) \subsetneq 2NSIZE(13d+4)$
- $2NA_n^{\Theta}$: $2N\Theta SIZE(\lfloor\sqrt{d}\rfloor) \subsetneq 2N\Theta SIZE(13d+4)$

Deterministic case

- 2DFA: 2DFASIZE $(d-3) \subsetneq$ 2DFASIZE $(\lceil 11d \log d \rceil)$.
- $2DA_n$: $2DSIZE(d) \subsetneq 2DSIZE(13d + 42)$
- $2\mathsf{DA}_n^{\Theta}$: $2\mathsf{D}\Theta SIZE(d) \subsetneq 2\mathsf{D}\Theta SIZE(13d + 42)$

Nondeterministic case

- 2NFA: 2NFASIZE($\lfloor \sqrt{d} \rfloor$) \subsetneq 2NFASIZE($\lceil 11d \log d \rceil$).
- $2NA_n: 2NSIZE(\lfloor\sqrt{d}\rfloor) \subsetneq 2NSIZE(13d+4)$
- $2NA_n^{\Theta}$: $2N\Theta SIZE(\lfloor \sqrt{d} \rfloor) \subsetneq 2N\Theta SIZE(13d+4)$

Probabilistic case

- $2\mathsf{PA}_n: 2\mathsf{BSIZE}(\lfloor \frac{\sqrt{d}}{32\log T} \rfloor) \subsetneq 2\mathsf{BSIZE}(13d+4)$
- $2\mathsf{PA}_n^{\Theta}$: $2\mathsf{B}\Theta SIZE(\lfloor \frac{\sqrt{d}}{32\log T} \rfloor) \subsetneq 2\mathsf{B}\Theta SIZE(13d+4)$

Thank you for your attention!

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

ヨ ト ・

Decomposition

$$P(\nu) = \chi_{1,m_0,m_1}(\nu) \wedge \chi_{2,m_1,m_2}(\nu) \wedge \\\chi_{i,m_2,m_3}(\nu) \wedge \cdots \wedge \chi_{k,m_{k-1},m_k}(\nu) \wedge m_k$$

Kamil Khadiev On the Hierarchies for k-OBDD, k-NOBDD and k-POBDD.

・ロト ・回 ト ・ ヨ ト ・

э

Decomposition

$$P(\nu) = \chi_{1,m_0,m_1}(\nu) \wedge \chi_{2,m_1,m_2}(\nu) \wedge \chi_{i,m_2,m_3}(\nu) \wedge \cdots \wedge \chi_{k,m_{k-1},m_k}(\nu) \wedge m_k$$

Decomposition

For $NE(P) = \{\nu \in \{0, 1\}^n : \text{for any inputs } \nu \text{ and } \nu' \text{ traces are different } \}.$

$$P(X) = \bigvee_{\nu' \in \mathsf{NE}(P)} \chi_{1,m_0,m_1(\nu')}(X) \wedge \cdots \wedge \chi_{k,m_{k-1}(\nu'),1}(X)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □