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Introduction
• Consider	a	search	problem

– We	have	a	(structured	or	unstructured) search	space																															

consisting	of	N	items

– K	of	the	items	have	desired	property

• Consider		an	algorithm	solving	the	problem

• The	running	time	of	the	algorithm	depends	on
– the	number	of	the	solutions	K

– the	placement	of	the	solutions	(if	the	search	space	is	structured)

additional	solutions	do	not	make	
the	search	harder.

This	is	not	the	case	with	quantum	
algorithms	!!!

or,	at	least,

Classically,	the	more	solutions	you	have
the	faster	the	search	is
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Research	question
• Suppose	you	have	a	quantum	walk	based	search	algorithm	on	

some	graph	𝐺 (class	of	graphs) which	works	fast	for	a	single	marked	
vertex

Marked
vertex

More	efficient	
than	its	classical	
analogs

Usually	it	is	very	hard	to	extend	the	analysis	from	
one	marked	vertex	to	many	marked	vertices



Research	question
• Will	the	algorithm	work	fast	for	multiple	marked	vertices?

Marked
vertices

Marked
vertices

For	classical	random	walks	the	answer	is	trivially YES



Our	results
• We	study	search	by	quantum	walks	on	general	graphs	with	

multiple	marked	vertices

• We	show	a	wide	class	of	configurations	of	marked	vertices,	for	which	
quantum	walk	has no	speed-up	over	classical	exhaustive	search.

Discrete-time	coined	quantum	walk	with	coin	=	Grover’s	diffusion	operator



Previously	known	results
• Two	dimensional	grid	with	diagonal	being
• fully	marked

• Simplex	of	complete	graphs	with	one	of	
• the	subgraphs	being	fully	marked
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• Simplex	of	complete	graphs	with	one	of	
• complete	graphs	being	fully	marked

[AW15]	A.Ambainis,	T.	Wong.	Quantum	Search	with	Multiple	
Walk	Steps	per	Oracle	Query.	Phys.	Rev.	A	92,	022338	(2015)

[Ar08]	A.Ambainis,	A.	Rivosh.	Quantum	Walks	with	Multiple	
or	Moving	Marked	Locations.	Proceedings	of	SOFSEM’08
(2008)

In	both	cases	the	number	of	marked	
vertices	is	of	order	 𝑁�

We	demonstrate	configurations	consisting	
of	a	constant	number	of	marked	vertices
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Random	walks	on	a	graph

• We	have	a	graph	𝐺 𝑉, 𝐸 with	 𝑉 = 𝑛 and	 𝐸 = 𝑚.

• We	start	at	a	random	vertex

• At	each	step	of		the	walk	we:
– Randomly	choose	one	of	the	vertices	adjacent	to	

the	current	vertices

– Move	to	the	chosen	vertex

The	above	process	leads	to	a	probability	
distribution	over	the	vertices

𝑝+

𝑝,

𝑝-

𝑝.

𝑝/

𝑝0



Quantum	states	and	operations
• Consider	a	system	with	N	states

• Classically	the	system	is	in	one	of	the	states.

• Quantum	the	system	is	in	a	superposition	of	states	with	
“probabilities”	𝛼+, 𝛼., … , 𝛼3,	where	∑ 𝛼5 . = 13

57+ .

• We	can	apply	any	operation	which	preserves	∑ 𝛼5 . = 13
57+ .

We	call	coefficients	𝛼5 amplitudes
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In	quantum	walks	we	associate	“probabilities”	not	with	vertices,	
but	with	(vertex,	direction)	pairs



Quantum	walks	on	a	graph

• We	have	a	graph	𝐺 𝑉, 𝐸 with	 𝑉 = 𝑛 and	 𝐸 = 𝑚.

• We	start	at	equal	superposition	of	all	vertices

• At	each	step	of		the	walk	(for	each	vertex)	we:
– Rearrange	“probabilities”	of	going	to	adjacent	

vertices

– Move	to	the	chosen	vertex

The	above	process	leads	to	a	probability	distribution	
over	the	(vertex,	direction)	pairs

𝑝+.

𝑝+/ 𝑝./

𝑝.+

𝑝-0 𝑝0-

… …

𝑝,0



Quantum	walks	on	a	graph

• We	have	a	graph	𝐺 𝑉, 𝐸 with	 𝑉 = 𝑛 and	 𝐸 = 𝑚.

• We	start	at	equal	superposition	of	all	vertices

• At	each	step	of		the	walk	(for	each	vertex)	we:
– Rearrange	“probabilities”	of	going	to	adjacent	

vertices

– Move	to	the	chosen	vertex

In	some	sense	the	quantum	walks	are	
similar	to	Conway’s	Game	of	Life



Quantum	walks:	the	state	space

• We	have	a	graph	𝐺 𝑉, 𝐸 with	 𝑉 = 𝑛 and	 𝐸 = 𝑚.

• The	state	space	of	the	walk	is	{ 𝑣, 𝑐 : 𝑣 ∈ 𝑉, 0 ≤ 𝑐 ≤ 𝑑@},	
where	𝑑5 be	degree	of	vertex	𝑖.

Vertex Direction

Amplitudes	are	associated	with	(vertex,	direction)	pairs
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• Evolution	of	the	walk	is	given	by 𝑈 = 𝑆 ⋅ 𝐶



Quantum	walks:	the	evolution

• We	have	a	graph	𝐺 𝑉, 𝐸 with	 𝑉 = 𝑛 and	 𝐸 = 𝑚.

• The	state	space	of	the	walk	is	{ 𝑣, 𝑐 : 𝑣 ∈ 𝑉, 0 ≤ 𝑐 ≤ 𝑑@},	
where	𝑑5 be	degree	of	vertex	𝑖.

• Evolution	of	the	walk	is	given	by 𝑈 = 𝑆 ⋅ 𝐶

𝐶 = 𝐷HI ⊕ 𝐷HK ⊕⋯⊕𝐷HMCoin	operator

𝐷HN - Grover’s	diffusion	of	dimension	𝑑5

Grover’s	diffusion	=	the	inversion	above	the	average



Quantum	walks:	the	evolution

• We	have	a	graph	𝐺 𝑉, 𝐸 with	 𝑉 = 𝑛 and	 𝐸 = 𝑚.

• The	state	space	of	the	walk	is	{ 𝑣, 𝑐 : 𝑣 ∈ 𝑉, 0 ≤ 𝑐 ≤ 𝑑@},	
where	𝑑5 be	degree	of	vertex	𝑖.

• Evolution	of	the	walk	is	given	by

Shift		operator 𝑆 𝑖, 𝑐(5,P) = |𝑗, 𝑐 P,5 ⟩

𝑈 = 𝑆 ⋅ 𝐶

Direction	of	vertex	𝑖 pointing	towards	vertex	𝑗

For	each	edge	we	swap	amplitudes	on	its	ends



Quantum	walks:	search

• To	use	quantum	walk	as	a	tool	for	search	we	introduce	a	notion	
of	marked	locations.

• Evolution	operator	is	changed	to

• The	initial	state 𝜓(0) =
1
2𝑚� WW|𝑣, 𝑐⟩

HX

Y7+

M

@7+

𝑈Z = 𝑆 ⋅ 𝐶 ⋅ 𝑄

Uniform	superposition	over	all	vertices	and	directions

𝑄:	]			𝑄 𝑣, 𝑐 = −|𝑣, 𝑐⟩
𝑄 𝑣, 𝑐 = |𝑣, 𝑐⟩

Query	operator vertex	𝑣 is	marked

otherwise



Two	marked	vertices

• Consider	a	graph	with	two	adjacent	marked	vertices	𝑖 and	𝑗.

… …

…𝑖 𝑗…
𝑑 − 1 𝑑 − 1

− 𝑑 − 1 	𝑎

− 𝑑 − 1 	𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

have	the	same	degree



Two	marked	vertices

• Consider	a	graph	with	two	adjacent	marked	vertices	𝑖 and	𝑗.

• Consider	a	state	(all	other	amplitudes	are	equal	to	a)

𝜓abcbc = 𝑎WW|𝑣, 𝑐⟩
HX

Y7+

M

@7+

− 𝑑𝑎 𝑖, 𝑐 5,P + |𝑗, 𝑐 P,5 ⟩

… …

…𝑖 𝑗…
𝑑 − 1 𝑑 − 1

− 𝑑 − 1 	𝑎

− 𝑑 − 1 	𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎



Two	marked	vertices

• Theorem.	|𝜓abcbc ⟩ is	not	changed	by	the	step	of	the	quantum	
walk	algorithm,	i.e.	𝑈Z 𝜓abcbc = |𝜓abcbc ⟩.

• Proof.	The	step	of	the	algorithm	is

𝑈Z = 𝑆 ⋅ 𝐼 ⊗ 𝐶 ⋅ 𝑄 … …

…𝑖 𝑗…

−𝐷𝑎

−𝐷𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

where	𝐷 = 𝑑 − 1
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• Theorem.	|𝜓abcbc ⟩ is	not	changed	by	the	step	of	the	quantum	
walk	algorithm,	i.e.	𝑈Z 𝜓abcbc = |𝜓abcbc ⟩.

• Proof.	The	step	of	the	algorithm	is

• The	query	operator
– Marked	locations:	flips	sign
– Unmarked	locations:	does	nothing	

𝑈Z = 𝑆 ⋅ 𝐶 ⋅ 𝑄 … …

…𝑖 𝑗…

𝐷𝑎

𝐷𝑎

−𝑎

−𝑎

−𝑎

−𝑎

−𝑎

−𝑎

where	𝐷 = 𝑑 − 1



Two	marked	vertices

• Theorem.	|𝜓abcbc ⟩ is	not	changed	by	the	step	of	the	quantum	
walk	algorithm,	i.e.	𝑈Z 𝜓abcbc = |𝜓abcbc ⟩.

• Proof.	The	step	of	the	algorithm	is

• The	coin	operator	𝐷 = 2|𝑠⟩⟨𝑠| − 𝐼
– Marked	locations:	flips	sign
– Unmarked	locations:	does	nothing

𝑈Z = 𝑆 ⋅ 𝐶 ⋅ 𝑄 … …

…𝑖 𝑗…

−𝐷𝑎

−𝐷𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

where	𝐷 = 𝑑 − 1

Coin	operator	performs	inversion	above	the	average.



Two	marked	vertices

• Theorem.	|𝜓abcbc ⟩ is	not	changed	by	the	step	of	the	quantum	
walk	algorithm,	i.e.	𝑈Z 𝜓abcbc = |𝜓abcbc ⟩.

• Proof.	The	step	of	the	algorithm	is

• The	shift	operator
– Does	nothing

𝑈Z = 𝑆 ⋅ 𝐶 ⋅ 𝑄 … …

…𝑖 𝑗…
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Two	marked	vertices

• Theorem.	|𝜓abcbc ⟩ is	not	changed	by	the	step	of	the	quantum	
walk	algorithm,	i.e.	𝑈Z 𝜓abcbc = |𝜓abcbc ⟩.

• What	does	this	mean?

• The	initial	state	can	be	written	as

for	𝑎 = 1/ 2𝑚� .

𝜓 0 = 𝜓abcbc + 𝑑𝑎 𝑖, 𝑐 5,P + |𝑗, 𝑐 P,5 ⟩



Two	marked	vertices

• Theorem.	|𝜓abcbc ⟩ is	not	changed	by	the	step	of	the	quantum	
walk	algorithm,	i.e.	𝑈Z 𝜓abcbc = |𝜓abcbc ⟩.

• What	does	this	mean?

• The	initial	state	can	be	written	as

𝜓 0 = 𝜓abcbc + 𝑑𝑎 𝑖, 𝑐 5,P + |𝑗, 𝑐 P,5 ⟩

for	𝑎 = 1/ 2𝑚� .
is	changed	by	the	step	

of	the	algorithm
is	unchanged



Two	marked	vertices

• Theorem.	Let	𝐺 = (𝑉, 𝐸) be	graph	with	two	marked	vertices	𝑖
and	𝑗 with	𝑑5 = 𝑑P = 𝑑.	Then	the	state

• is	not	changed	by	the	step	of	the	algorithm.

• Theorem.	Let	𝐺 = (𝑉, 𝐸) be	graph	with	two	marked	vertices	𝑖
and	𝑗 with	𝑑5 = 𝑑P = 𝑑.	Then	the	probability	of	finding	a	

marked	vertex	is	𝑝j = 𝑂 HK

l .	

𝜓abcbc = 𝑎WW|𝑣, 𝑐⟩
HX

Y7+

M

@7+

− 𝑑𝑎 𝑖, 𝑐 5,P + |𝑗, 𝑐 P,5 ⟩



Examples
• Few	examples

Graph 𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲

Two-dimensional	grid 𝑂
1
𝑁

Hypercube
𝑂

log. 𝑁
𝑁

K-ary tree	(internal	vertices)
𝑂

𝑘.

𝑁

Complete	graph 𝑂 1



Examples

• Grid	of	size	300	×	300 with	two	marked	locations.
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Examples

• Hypercube	of	2+0 vertices	with	two	marked	locations.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

𝑀 = {0,1}

Overlap

Probability

-1

-0.5

0
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1

0 50 100 150 200 250 300 350 400

Overlap

Probability

𝑀 = {0,3}



Two	marked	vertices

• Consider	a	graph	with	two	adjacent	marked	vertices	𝑖 and	𝑗.

• Will	any	of	marked	vertices	be	found	by	the	quantum	walk?

– If	𝑑5 = 𝑑P then	the	state	is	the	stationary	state	of	the	quantum	walk

… …

…𝑖 𝑗…
𝑑 − 1 𝑑 − 1

− 𝑑 − 1 	𝑎

− 𝑑 − 1 	𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

all	other	amplitudes
are	equal	to	a



Two	marked	vertices

• Consider	a	graph	with	two	adjacent	marked	vertices	𝑖 and	𝑗.

• Will	any	of	marked	vertices	be	found	by	the	quantum	walk?

– If	𝑑5 = 𝑑P then	the	state	is	the	stationary	state	of	the	quantum	walk

– If	𝑑5 ≠ 𝑑P the	the	state	is	not	the	stationary	state	of	the	quantum	walk

… …

…𝑖 𝑗…
𝑑5 − 1 𝑑P − 1

− 𝑑P − 1 	𝑎

− 𝑑5 − 1 	𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

all	other	amplitudes
are	equal	to	a



Three	marked	vertices
• What	if	a	graph	has	three	adjacent	marked	vertices	𝑖, 𝑗 and	𝑘 ?

𝑑P − 2
… 𝑑� − 2…

…

𝑑5 − 2



Three	marked	vertices

• Trivially,	if	𝑑5 = 𝑑P = 𝑑� = 2𝑑 + 2 there	exist	a	stationary	state

𝑎

𝑎

−𝑑𝑎

−𝑑𝑎

2𝑑 …
𝑎

𝑎
2𝑑…

−𝑑𝑎

−𝑑𝑎

−𝑑𝑎

−𝑑𝑎

…
𝑎𝑎

2𝑑



Three	marked	vertices
• What	about	the	general	case	?

𝑎

𝑎
−𝑙P�𝑎

−𝑙�P𝑎

𝑑P − 2
…

𝑎

𝑎
𝑑� − 2…

−𝑙5P𝑎

−𝑙P5𝑎

−𝑙5�𝑎

−𝑙�5𝑎

…
𝑎𝑎

𝑑5 − 2

Should	be	equal

Should	be	equal

Should	be	equal



Three	marked	vertices
• In	general	case	we	have	the	system	of	linear	equations

𝑎

𝑎
−𝑙P�𝑎

𝑑P − 2

…
𝑎

𝑎

𝑑� − 2

…

−𝑙5P𝑎 −𝑙5�𝑎

…
𝑎𝑎

𝑑5 − 2
�
𝑙5� + 𝑙P� = 𝑑� − 2
𝑙5P + 𝑙5� = 𝑑5 − 2
𝑙5P + 𝑙P� = 𝑑P − 2



Three	marked	vertices
• In	general	case	we	have	the	system	of	linear	equations

𝑎

𝑎
−𝑙P�𝑎

𝑑P − 2

…
𝑎

𝑎

𝑑� − 2

…

−𝑙5P𝑎 −𝑙5�𝑎

…
𝑎𝑎

𝑑5 − 2

𝑙5P =
𝑑5 + 𝑑P − 𝑑�

2 − 1

�
𝑙5� + 𝑙P� = 𝑑� − 2
𝑙5P + 𝑙5� = 𝑑5 − 2
𝑙5P + 𝑙P� = 𝑑P − 2

which	always	have	a	solution

𝑙5� =
𝑑5 + 𝑑� − 𝑑P

2 − 1

𝑙P� =
𝑑P + 𝑑� − 𝑑5

2 − 1



Three	marked	vertices
• In	general	case	we	have	the	system	of	linear	equations

𝑎

𝑎
−𝑙P�𝑎

𝑑P − 2

…
𝑎

𝑎

𝑑� − 2

…

−𝑙5P𝑎 −𝑙5�𝑎

…
𝑎𝑎

𝑑5 − 2

𝑙5P =
𝑑5 + 𝑑P − 𝑑�

2 − 1

�
𝑙5� + 𝑙P� = 𝑑� − 2
𝑙5P + 𝑙5� = 𝑑5 − 2
𝑙5P + 𝑙P� = 𝑑P − 2

which	always	have	a	solution

𝑙5� =
𝑑5 + 𝑑� − 𝑑P

2 − 1

𝑙P� =
𝑑P + 𝑑� − 𝑑5

2 − 1

Every	three	adjacent	
marked	vertices	form	
a	stationary	state	!!!	



Three	marked	vertices
• In	general	case	we	have	the	system	of	linear	equations

𝑎

𝑎
−𝑙P�𝑎

𝑑P − 2

…
𝑎

𝑎

𝑑� − 2

…

−𝑙5P𝑎 −𝑙5�𝑎

…
𝑎𝑎

𝑑5 − 2

𝑙5P =
𝑑5 + 𝑑P − 𝑑�

2 − 1

�
𝑙5� + 𝑙P� = 𝑑� − 2
𝑙5P + 𝑙5� = 𝑑5 − 2
𝑙5P + 𝑙P� = 𝑑P − 2

which	always	have	a	solution

𝑙5� =
𝑑5 + 𝑑� − 𝑑P

2 − 1

𝑙P� =
𝑑P + 𝑑� − 𝑑5

2 − 1

The	result	can	be	
generalized	to	𝑘-
cliques	of	marked	

vertices	!!!

Every	three	adjacent	
marked	vertices	form	
a	stationary	state	!!!	



Stationary	states:	general	conditions
• For	the	2D	grid	the	stationary	state	has	three	properties:

1. All	directional	amplitudes	of	unmarked	locations	are	equal.	
This	is	necessary	for	the	coin	transformation	to	have	no	effect	on	the	unmarked	locations.

2. The	sum	of	the	directional	amplitudes	of	any	marked	location	is	
equal	to	0.																																																																																																					
This	is	necessary	for	the	coin	transformation	to	have	no	effect	on	marked	locations.

3. Directional	amplitudes	of	two	adjacent	locations	pointing	to	each	
other	are	equal.	
This	is	necessary	for	the	shift	transformation	to	have	no	effect	on	the	state.

• Any	state	having	these	three	properties	will	be	a	stationary	
state	of	the	quantum	walk	(using	Grover’s	coin).



Conclusions
• Will	the	algorithm	work	fast	for	the	same	graph	and	multiple	

marked	vertices?

Will	not	be	found	
3-clique

Will	not	be	found	
vertices	have	the	
same	degree

Will	be	found



Conclusions
• How	bad	the	situation	is	?

• Do	we	have	similar	effects	for	other	types	of	quantum	
algorithms	?

• Are	their	algorithmic	applications	of	the	effect?

Recently	it	was	shown	that	quantum	walks	with	SKW	coin	have	no	stationary	states

N.	Shenvi,	J.	Kempe,	K.	Whaley. A	Quantum	Random	Walk	Search	Algorithm
Phys.	Rev.	A,	Vol.	67	(5),	052307	(2003)



On	algorithmic	applications

• Consider	a	2D	grid	with	blocks	of	marked	vertices	of	sizes	1×1
and	2×1.

• The	algorithm	will	find	only	blocks	of	size	by	1×1,	but	not	of	
size	2×1.

𝑁�

𝑁�

Can	not	be	done	by	classical	random	walk!



Thank	you	!

For	more	details	see	arXiv:1605.05598


