
Polynomials, quantum query complexity,
and Grothendieck’s inequality

Scott Aaronson1, Andris Ambainis2, Jānis Iraids2, Martins Kokainis2,
Juris Smotrovs2

1Department of Computer Science, UT Austin

2Faculty of Computing, University of Latvia

Joint Estonian-Latvian Theory Days 2016

Aaronson, Ambainis, Iraids, K, Smotrovs,
Polynomials, Quantum Query Complexity, and Grothendieck’s Inequality,

arXiv:1511.08682

Query model

Function f (x1, x2, . . . , xn), xi ∈ {0, 1}.

xi given by a black box:

i −→ −→ xi

Complexity = number of queries.

Quantum query model

|0〉

U0

OX

U1

OX

. . .

OX

UT

|0〉 . . .
|0〉 . . .
|0〉 . . .
|0〉 . . .
|0〉 . . .
|0〉 . . .
|0〉 . . .

U0, U1, . . . , UT , independent of x1, . . . , xn.

OX – query operators:∑
i

ai |i〉
OX−→

∑
i

ai (−1)xi |i〉

Qε(f) – minimum number of queries in a quantum algorithm
computing f correctly with probability ≥ 1− ε.

Quantum algorithms that
make T queries

=⇒
[BBCMW01]

Multilinear polynomials of
degree 2T

Lower bounds on quantum query complexity

OR: no polynomial of degree o(
√
n) approximating OR [NS94], thus no

quantum algorithm making o(
√
n) queries.

Collision problem, element distinctness problem, . . .

The obtained bounds can be asymptotically lower than Qε(f).

Opposite direction?

Multilinear polynomials of
degree d

=⇒
[BBCMW01]

Quantum algorithms that
make O(d6) queries

A multilinear polynomial of
degree d

&
[ABK16]

Quantum algorithms make
Ω̃(d4) queries

Quantum algorithms that
make T queries

=⇒

⇐=
??

Multilinear polynomials of
degree 2T

Quantum algorithms that
make T queries

=⇒

⇐=
??

Multilinear polynomials of
degree 2T

This work:

Quantum algorithms that
make 1 query ⇐⇒

Multilinear polynomials of
degree 2

Recently shown [AA15]:

A task that requires 1 query quantumly and Θ(
√
n) queries classically.

Any quantum algorithm which makes 1 query can be simulated by a
probabilistic algorithm making O(

√
n) queries.

Multilinear polynomials

p : Rn → R is a multilinear polynomial of degree d if

p(x1, . . . , xn) =
∑
S⊂[n]
|S|≤d

aS
∏
i∈S

xi , xj ∈ R.

A multilinear polynomial p : Rn → R represents f : {−1, 1}n → {0, 1}
with error δ ∈ [0; 0.5) if, for all x ∈ {−1, 1}n,

f (x) = 0 ⇒ p(x) ∈ [0; δ],

f (x) = 1 ⇒ p(x) ∈ [1− δ; 1], and

p(x) ∈ [0; 1].

If δ = 0, the polynomial p is said to represent f exactly.

Block-multilinear polynomials

q : Rd(n+1) → R is a block-multilinear multilinear polynomial of
degree d if

q(x (1), . . . , x (d)) =
∑

i1,i2,...,id=0...n

ai1i2...id x
(1)
i1

x
(2)
i2
. . . x

(d)
id
, x (j) ∈ Rn+1.

A block-multilinear polynomial q : Rd(n+1) → R of degree d represents
f : {−1, 1}n → {0, 1} with error δ ∈ [0; 0.5) if, for all x ∈ {−1, 1}n,

f (x) = 0 ⇒ q(x̃ , x̃ , . . . , x̃) ∈ [0; δ], x̃ := (1, x),

f (x) = 1 ⇒ q(x̃ , x̃ , . . . , x̃) ∈ [1− δ; 1], x̃ := (1, x), and

q(x (1), . . . , x (d)) ∈ [−1; 1] for all x (1), . . . , x (d) ∈ {−1, 1}n+1.

If δ = 0, the polynomial q is said to represent f exactly.

Example

Consider NAE (x1, x2, x3) = ¬(x1 = x2 = x3).
Ordinary exact representation:

p(x1, x2, x3) =
3− x1x2 − x1x3 − x2x3

4

Block-multilinear exact representation:

q(x0, . . . , x3, y0, . . . , y3) =
2x0y0 − x1y2 − x1y3 − x3y2 + x3y3

4

Notice that setting x0 = y0 = 1 and xi = yi yields

q(1, x1, x2, x3, 1, x1, x2, x3) = p(x1, x2, x3).

From quantum algorithms to polynomials

d̃egε(f): the minimum degree of a polynomial p representing f with
error ε;

b̃mdegε(f): the minimum degree of a block-multilinear polynomial q
representing f with error ε.

Theorem ([BBCMW01])

Qε(f) ≥ 2d̃egε(f)

Theorem ([AA15])

Qε(f) ≥ 2b̃mdegε(f)

Theorem

Qε(f) = 1 for some ε < 0.5 ⇔ d̃egδ(f) = 2 for some δ < 0.5

Sketch of the proof

1 From a multilinear polynomial p to a block-multilinear polynomial q.

2 By splitting variables from q to a block-multilinear polynomial q′.

3 A quantum algorithm which estimates q′ by making a single query.

Estimating a polynomial with a quantum algorithm

A block-multilinear polynomial q of degree 2:

q(x1, . . . , xn, y1, . . . , yn) =
n∑

i=1

n∑
j=1

aijxiyj .

Let A = (aij) and suppose U = n · A is unitary.

One can prepare with a single query each of the states

|Ψx〉 =
1√
n

n∑
i=1

xi |i〉 , |Ψy 〉 =
1√
n

n∑
j=1

yj |j〉 ,

thus with a single query it is possible to estimate

〈Ψx |U|Ψy 〉 = q(x1, . . . , xn, y1, . . . , yn).

Still works if ‖U‖ ≤ C .

Preprocessing a block-multilinear polynomial

Have: |q| ≤ 1, i.e.,

max
x ,y∈{−1,1}n

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

aijxiyj

∣∣∣∣∣∣ ≤ 1 or ‖A‖∞→1 ≤ 1.

Need: n ‖A‖ ≤ C .

Solution: variable splitting.

A variable xi can be replaced by new variables xi1 , . . . , xik as follows:

xi −→
xi1 + xi2 + . . .+ xik

k
.

Preprocessing a block-multilinear polynomial

Have: |q| ≤ 1, i.e.,

max
x ,y∈{−1,1}n

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

aijxiyj

∣∣∣∣∣∣ ≤ 1 or ‖A‖∞→1 ≤ 1.

Need: n ‖A‖ ≤ C .

Solution: variable splitting.

A variable xi can be replaced by new variables xi1 , . . . , xik as follows:

xi −→
xi1 + xi2 + . . .+ xik

k
.

Another block-multilinear polynomial q′ is obtained with a coefficient
matrix A′ of size n′ ×m′.

Still |q′| ≤ 1 or ‖A′‖∞→1 ≤ 1.

Can we achieve
√
n′m′ ‖A′‖ ≤ C?

Another block-multilinear polynomial q′ is obtained with a coefficient
matrix A′ of size n′ ×m′.

Still |q′| ≤ 1 or ‖A′‖∞→1 ≤ 1.

Can we achieve
√
n′m′ ‖A′‖ ≤ C?

Claim

For each δ > 0 it is possible to split variables so that the obtained matrix
A′ satisfies √

n′m′
∥∥A′∥∥ ≤ K + δ,

where K < 1.7823 – Groethendieck’s constant.

Key idea: splitting variables is equivalent to factorizing the matrix A.

Splitting variables ≡ splitting rows/columns of A

Splitting a variable xi into k new variables corresponds to splitting the
ith row of A into k equal rows.

Example

Let q = 1
2 (x1y1 + x2y1 + x1y2 − x2y2), then A =

(
0.5 0.5
0.5 −0.5

)
.

Replacing x2 with
x ′2+x ′3+x ′4

3 corresponds to . . .
. . . replacing A with

A′ =



1
2

1
2

1
6 −1

6

1
6 −1

6

1
6 −1

6

 .

Splitting variables ≡ splitting rows/columns of A

Splitting a variable xi into k new variables corresponds to splitting the
ith row of A into k equal rows.

Example

Let q = 1
2 (x1y1 + x2y1 + x1y2 − x2y2), then A =

(
0.5 0.5
0.5 −0.5

)
.

Replacing x2 with
x ′2+x ′3+x ′4

3 corresponds to . . .
. . . replacing A with

A′ =



1
2

1
2

1
6 −1

6

1
6 −1

6

1
6 −1

6

 .

Splitting variables ≡ splitting rows/columns of A

Splitting a variable xi into k new variables corresponds to splitting the
ith row of A into k equal rows.

Example

Let q = 1
2 (x1y1 + x2y1 + x1y2 − x2y2), then A =

(
0.5 0.5
0.5 −0.5

)
.

Replacing x2 with
x ′2+x ′3+x ′4

3 corresponds to . . .
. . . replacing A with

A′ =



1
2

1
2

1
6 −1

6

1
6 −1

6

1
6 −1

6

 .

Suppose that A is of size n ×m and its

1st row is split into k1 rows,

2nd row – into k2 rows,

. . .

nth row – into kn rows,

obtaining A′ of size n′ ×m′.

Clearly, m′ = m, n′ = k1 + k2 + . . .+ kn.

What about ‖A′‖?

We have ‖A′‖ = ‖B‖, where

B =



a11√
k1

a12√
k1

. . . a1m√
k1

a21√
k2

a22√
k2

. . . a2m√
k2

. . .

an1√
kn

an2√
kn

. . . anm√
kn


Consequently, ∥∥A′∥∥√n′m′ = ‖B‖ ‖w‖ ‖v‖ ,

where w = (
√
k1, . . . ,

√
kn), v = (1, . . . , 1).

Splitting rows/columns ≡ factorizing A

Let A be of size n ×m and C > 0.

Claim:

∃B ∈ Rn×m and w ∈ Rn
+, v ∈ Rm

+:

aij = wibijvj , ∀i , j ,

w2
i , v

2
j ∈ Q, ∀i , j ,

‖B‖ ‖w‖ ‖v‖ = C

⇐⇒

∃A′ ∈ Rn′×m′
:

A −→ A′,

‖A′‖
√
n′m′ = C

Splitting rows/columns ≡ factorizing A

Let A be of size n ×m and C > 0.

Claim:

∃B ∈ Rn×m and w ∈ Rn
+, v ∈ Rm

+:

aij = wibijvj , ∀i , j ,

w2
i , v

2
j ∈ Q, ∀i , j ,

‖B‖ ‖w‖ ‖v‖ = C

=⇒

∀δ > 0 ∃A′ ∈ Rn′×m′
:

A −→ A′,

‖A′‖
√
n′m′ = C+δ

Grothendieck’s Inequality: I

Suppose that

A is a n ×m matrix with real components;

H is an arbitrary Hilbert space;

x1, . . . , xn, y1, . . . , ym ∈ H are of norm at most 1.

Then ∣∣∣∣∣∣
n∑

i=1

m∑
j=1

aij 〈xi , yj〉

∣∣∣∣∣∣ ≤ K ‖A‖∞→1 ,

where

‖A‖∞→1 = max
x∈{−1,1}n
y∈{−1,1}m

∣∣∣∣∣∣
n∑

i=1

m∑
j=1

aijxiyj

∣∣∣∣∣∣ .

Grothendieck’s Inequality: II

Suppose that A is a n× n matrix. Then the following are equivalent:

1 for each H and all xi , yj ∈ H (of norm ≤ 1), i , j ∈ [n],∣∣∣∣∣∣
n∑

i=1

n∑
j=1

aij 〈xi , yj〉

∣∣∣∣∣∣ ≤ 1;

2 there is an n × n matrix B and vectors w , v ∈ Rn
+, s.t.

‖w‖ = ‖v‖ = 1;

‖B‖ ≤ 1;

wibijvj = aij for all i , j .

Putting everything together

Since ‖A‖∞→1 ≤ 1, there is a matrix B and vectors w , v s.t.

‖w‖ = ‖v‖ = 1, ‖B‖ ≤ K and wibijvj = aij for all i , j .

Then we can split variables so that the obtained matrix A′ satisfies
‖A′‖

√
n′m′ ≤ K + δ, for every δ > 0.

Therefore there is a 1-query quantum algorithm which estimates q′

(the polynomial corresponding to A′),

thus evaluating the polynomial q.

d̃eg = 2⇔ b̃mdeg = 2

Claim

Suppose that
p : Rn → R is a multilinear polynomial of degree 2,
p(x) ∈ [0, 1] for each x ∈ {−1, 1}n.

Then there exists a block-multilinear polynomial g : R2n+2 → R s.t.
deg g = 2,
g(x̃ , x̃) = p(x), x̃ := (1, x), for each x ∈ {−1, 1}n,

|g(z)| ≤ 1 for each z ∈ {−1, 1}2n+2.

From polynomials to block-multilinear polynomials

We have shown that d̃eg = 2⇔ b̃mdeg = 2. What about higher
degrees?

Generally, from each multilinear polynomial a block-multilinear one
can be constructed, albeit with a larger approximation error.

Claim

Suppose that
p : Rn → R is a multilinear polynomial of degree d ,
|p(x)| ≤ 1 for each x ∈ {−1, 1}n.

Then there exists a block-multilinear polynomial g : Rd(n+1) → R s.t.
deg g = d ,
g(x̃ , . . . , x̃) = p(x) for each x ∈ {−1, 1}n, x̃ := (1, x);

|g(z)| ≤ Cd = O(3.5911...d) for each z ∈ {−1, 1}d(n+1).

Key ideas:

1 replace each monomial with its symmetric block-multilinear version
(average over all the ways how one could use one term per block),
e.g.,

x1x2 . . . xr −→
1(d
r

)
r !

∑
B⊂[d]:
|B|=r

∑
b:

b:[r]→B
b – bijection

x
(b(1))
1 x

(b(2))
2 . . . x

(b(r))
r .

2 Apply the polarization identity to show the boundedness of g :

d!F
(
u(1), u(2), . . . , u(d)

)
=
∑
T⊂[d]
T 6=∅

(−1)d−|T |f

∑
j∈T

u(j)

 ,

where f (x) := F (x , x , . . . , x) and F : Ed → R is a d-linear and
symmetric map.

Corollary: solution of an open problem from [AA15].

Claim

Let g : Rn → R be a multilinear polynomial of degree d with |g(y)| ≤ 1
for any y ∈ {−1, 1}n. Then g(y) can be approximated within precision ±ε
whp by querying O((n

ε2
)1−1/d)) variables (with a big-O constant

depending on d).

The same result (and transformation of ordinary multilinear
polynomials to block-multilinear ones) has been independently shown
by O’Donnell and Zhao by means of decoupling theory.

Separation between Q and bmdeg

Q and bmdeg are not equivalent: there is a function exhibiting a
quadratic separation between both measures.

Theorem

There exists f with Qε(f) = Ω̃(bmdeg20(f)).

Recently [ABK16] an analogous result for Qε and deg0 using the
cheat sheet framework.

We show that the same function provides the separation between Qε

and bmdeg0.

? Characterize quantum algorithms with 2, 3, ..., queries?

? 2 queries ≡ polynomials of degree 4?

Thank you for your attention!

? Characterize quantum algorithms with 2, 3, ..., queries?

? 2 queries ≡ polynomials of degree 4?

Thank you for your attention!

