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Query model

e Function f(x1,x2,...,%,), X; € {0,1}.

@ x; given by a black box:

@ Complexity = number of queries.



Quantum query model
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e Uy, Uy, ..., Ur, independent of xq, ..., X,.

o Ox — query operators:
. Ox (1
D aili) =5 ai (=1 i)

@ Q.(f) — minimum number of queries in a quantum algorithm
computing f correctly with probability > 1 — .



Quantum algorithms that — Multilinear polynomials of
make T queries [BBCMWO1] degree 2T

@ Lower bounds on quantum query complexity

o OR: no polynomial of degree o(+/n) approximating OR [NS94], thus no
quantum algorithm making o(+/n) queries.

e Collision problem, element distinctness problem, ...
@ The obtained bounds can be asymptotically lower than Q.(f).

@ Opposite direction?



Multilinear polynomials of — Quantum algorithms that
degree d [BBCMWO1] make O(d®) queries

A multilinear polynomial of & Quantgm algorithms make
degree d [ABK16] Q(d*) queries
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This work:

Quantum algorithms that Multilinear polynomials of

make 1 query degree 2




@ Recently shown [AA15]:
o A task that requires 1 query quantumly and ©(y/n) queries classically.

e Any quantum algorithm which makes 1 query can be simulated by a
probabilistic algorithm making O(y/n) queries.



Multilinear polynomials

@ p:R” — R is a multilinear polynomial of degree d if

p(Xl,...,X,,): Z 35HX,', XJ'ER.

Sc[n] i€S
|S|<d



A multilinear polynomial p : R” — R represents f : {—1,1}" — {0,1}
with error § € [0;0.5) if, for all x € {—1,1}",

e f(x)=0 = p(x)€[0;4],
e f(x)=1 = p(x)€[l—-6;1], and
e p(x) € [0;1].

If § =0, the polynomial p is said to represent f exactly.



Block-multilinear polynomials

° g: RY("*1) 5 R is a block-multilinear multilinear polynomial of
degree d if

q(X(l)a s >X(d)) = Z ai1iz...idxi(11)xi(22) o Xi(dd)> X(j) € Rn+1-

i1,i2,...,id:0...n



A block-multilinear polynomial g : R¥("1) 5 R of degree d represents
f:{-1,1}" — {0,1} with error § € [0;0.5) if, for all x € {—1,1}",

o f(x)=0 = q(>"<,>“<,...,>~<)6[0;5], x:=(1,x),
o f(x)=1 = q(X, ,X)e[1—0;1], Xx:=(1,x), and
o g(x), ... d)) € [ 1;1] for all x( . x() e {—1, 1},

If § =0, the polynomial g is said to represent f exactly.



Example
o Consider NAE(x1, x2,x3) = —=(x1 = x2 = x3).
@ Ordinary exact representation:

3 - X1 X2 — X1X3 — X2X3
4

p(x1, X2, X3) =
@ Block-multilinear exact representation:

2X0Y0 — X1Y2 — X1Y3 — X3y2 + X3¥3

q(X07"'7X37y07"'>y3): 4

@ Notice that setting xo = yp = 1 and x; = y; yields

q(]-;XlaXZaX?M 17X17X2)X3) = p(X17X2aX3)~




From quantum algorithms to polynomials

° Eé'ée(f); the minimum degree of a polynomial p representing f with
error ¢;

° an\_/dege(f): the minimum degree of a block-multilinear polynomial g
representing f with error €.

Theorem ([BBCMWO1])

Q.(f) > 2deg,(f)

Theorem ([AA15])

—_——

Qc(f) > 2bmdeg,(f)




Qe(f) =1 for somee <05 <& a;ég(f) = 2 for some 6 < 0.5

Sketch of the proof
@ From a multilinear polynomial p to a block-multilinear polynomial gq.
@ By splitting variables from g to a block-multilinear polynomial ¢'.

© A quantum algorithm which estimates ¢’ by making a single query.



Estimating a polynomial with a quantum algorithm

@ A block-multilinear polynomial g of degree 2:

n n
G(X1, s Xny Y1y v oy Yn) = ZZa,-jx,-yj.

i=1 j=1

@ Let A= (aj) and suppose U = n- A is unitary.

@ One can prepare with a single query each of the states

I «— .. I — .
‘wx>:ﬁ;X’.‘l>’ |wy>:\/ﬁj_zlyj‘.j>7
thus with a single query it is possible to estimate
(Ve |UVY) = q(x1, - s Xns Y15+ -, Vi)

e Still works if ||U]| < C.



Preprocessing a block-multilinear polynomial

o Have: [q| <1, ie,

n n
L ZZa--x- 1 <1 or A 1.
xye{-1,1}" <= = §XiYj [Alloo1 <

e Need: n||A|| < C.



Preprocessing a block-multilinear polynomial

Have: |q| <1, i.e.,

n n
L ZZa--x- 1 <1 or A 1.
xye{-1,1}" <= = §XiYj [Alloo1 <

o Need: n||A|| < C.
@ Solution: variable splitting.

@ A variable x; can be replaced by new variables x;, ..., x;j, as follows:

k

X,'1+X,'2+...+X,'k
P .

Xj



@ Another block-multilinear polynomial ¢’ is obtained with a coefficient
matrix A’ of size n x m’.
<1.

o Still [¢'| <lor ||A| g <

e Can we achieve vV'm’ ||A|| < C?



@ Another block-multilinear polynomial ¢’ is obtained with a coefficient
matrix A’ of size n’ x m’.

e Still |¢'| <1or [|A <1

co—1 =

@ Can we achieve vV'm’ ||A|| < C?

For each 6 > 0 it is possible to split variables so that the obtained matrix
A’ satisfies

vn'm HA'H < K+ 6,

where K < 1.7823 — Groethendieck’s constant.

Key idea: splitting variables is equivalent to factorizing the matrix A.



Splitting variables = splitting rows/columns of A

@ Splitting a variable x; into k new variables corresponds to splitting the
ith row of A into k equal rows.



Splitting variables = splitting rows/columns of A

@ Splitting a variable x; into k new variables corresponds to splitting the
ith row of A into k equal rows.

Example

o Let g = 5 (xay1 + xoy1 + x1y2 — xay2), then A= (82 %5 ).
@ Replacing xo with w corresponds to ...




Splitting variables = splitting rows/columns of A

@ Splitting a variable x; into k new variables corresponds to splitting the
ith row of A into k equal rows.

Example

o Let g = 5 (xay1 + xoy1 + x1y2 — xay2), then A= (82 %5 ).
@ Replacing xo with w corresponds to ...

o ...replacing A with

1 1
2 2
1 _1
6 6
A =
1 _1
6 6
1 _1
6 6




@ Suppose that A is of size n x m and its
e 1st row is split into k; rows,

e 2nd row — into k> rows,

e nth row — into k,, rows,
obtaining A’ of size n’ x m’.
@ Clearly, m=m, ' = ki + ko + ... + k.
e What about ||A'||?



e We have |A’|| = ||BJ|, where

a1 a12 . alm
Vki ki Vki
a2 a2 am
vk  Vko Vka
B =
anl an2 dnm
Vkn vk Vkn

o Consequently,

|A| Vrmd = ||B]| [|w] Iv]],
where w = (vVk1,...,vVkn), v=(1,...,1).



Splitting rows/columns = factorizing A

@ Let A be of size nx mand C > 0.

o Claim:

dB e R™™and w € R}, v e RT:

IA e R XM
@ a; = W,‘b,‘j\/j, Vl',j,
e A— A,
° w? \/j2 e Q, Vvi,j, —
o |A||Vn'm =C

o [[Blllwl vl = ¢




Splitting rows/columns = factorizing A

@ Let A be of size nx mand C > 0.

o Claim:

dB e R™™and w € R}, v e RT: i
B Vo >03JA e R" >
@ aj = wibjvj, Vi,j,
o [[Blflwll vl =

e A— A,

o |A||Vn'm = C+§




hendieck’s Inequality: |

@ Suppose that
e Ais a n x m matrix with real components;
e 7 is an arbitrary Hilbert space;
@ X1, ..., Xn, Y1, ---, Ym € H are of norm at most 1.

Then

n

m
Zzaij xi, ¥i) | < KAl oss1 >

i=1 j=1

where

n m
1Aloo = max, > ayxy) -

ye(-1apm /==



Grothendieck’s Inequality: |

@ Suppose that A is a n x n matrix. Then the following are equivalent:

© for each H and all x;, yj € H (of norm < 1), i,j € [n],

Zzaij <Xivyj> <1

i=1 j=1
@ there is an n x n matrix B and vectors w, v € R, s.t.
o |lwll=|vll=1

° Bl <1;

o w;bjjv; = aj for all i,j.



Putting everything together

@ Since ||A|l <1, there is a matrix B and vectors w, v s.t.

co—1

lwl| =1lv|l=1, ||B| <K and wbjv; = aj forall i,j.

@ Then we can split variables so that the obtained matrix A’ satisfies
|A|| Vn'm' < K+ 6, for every § > 0.

@ Therefore there is a 1-query quantum algorithm which estimates ¢’

(the polynomial corresponding to A’),

@ thus evaluating the polynomial gq.



P

cﬁ/g:2(:>bmdeg:2

Suppose that
o p:R" — R is a multilinear polynomial of degree 2,
e p(x) €10,1] for each x € {—1,1}".

Then there exists a block-multilinear polynomial g : R®"2 — R s.t.
o degg =2,
e g(x,X) = p(x), X :=(1,x), for each x € {-1,1}",
o |g(2)| <1 foreach z € {—1,1}*""2,




From polynomials to block-multilinear polynomials

@ We have shown that dAeé =2& b/rrﬁe/g = 2. What about higher
degrees?

@ Generally, from each multilinear polynomial a block-multilinear one
can be constructed, albeit with a larger approximation error.



Suppose that
@ p:R" — R is a multilinear polynomial of degree d,
e |p(x)| <1 foreach x € {—1,1}".

Then there exists a block-multilinear polynomial g : R4 ("1 5 R s.¢.
o degg =d,
e g(X,...,X) = p(x) for each x € {-1,1}", X := (1, x);

e |g(2)| < Cy = O(3.5911...9) for each z € {—1,1}4("+1),




Key ideas:

© replace each monomial with its symmetric block-multilinear version
(average over all the ways how one could use one term per block),
e.g.,

X1X2 .. ( Z Z Xl(b(l))Xz(b(2)) L Xr(b(f)).

Bc[d
|B|=r b: [r]aB
b — bijection



@ Apply the polarization identity to show the boundedness of g:

tF (U0, ..., u@) = 37 (<=1l (37000

TC[d] JET
T#0

where f(x) := F(x,x,...,x) and F : E9 = R is a d-linear and
symmetric map.



e Corollary: solution of an open problem from [AA15].

Let g : R"” — R be a multilinear polynomial of degree d with |g(y)| <1
for any y € {—1,1}". Then g(y) can be approximated within precision +e
whp by querying O((E%)l_l/d)) variables (with a big-O constant
depending on d).

@ The same result (and transformation of ordinary multilinear
polynomials to block-multilinear ones) has been independently shown
by O'Donnell and Zhao by means of decoupling theory.



Separation between Q and bmdeg

@ Q and bmdeg are not equivalent: there is a function exhibiting a
quadratic separation between both measures.

There exists f with Q.(f) = Q(bmdegg(f)).

@ Recently [ABK16] an analogous result for Q. and deg using the
cheat sheet framework.

@ We show that the same function provides the separation between Q.
and bmdegy,.
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. Characterize quantum algorithms with 2, 3, ..., queries?
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« 2 queries = polynomials of degree 47
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Thank you for your attention!




