Partiality as an Effect, Made Rigourous

Tarmo Uustalu and Niccold Veltri

Institute of Cybernetics at Tallinn University of Technology

Joint Estonian-Latvian Theory Days in Lilaste, 16 October 2016

Introduction

e Topic of this talk: modeling possibly non-terminating
computations in type theory (Agda).

e Agda is a dependently typed functional programming
language.

e E.g. the type of vectors of a given length:

x: X xs:VecXn
[: VecX0 x:xs:VecX(n+1)

e Agda is a foundational language for the development of
constructive mathematics (based on Martin-Lof type theory).

+comm :Vnm:N.n+m=m+n

e types « propositions, terms «~ proofs.

Introduction

e Agda is a total language, non-terminating programs are not
allowed.

e E.g. Kleene's minimization operator.

minim : (N - N) - N
minim f = “the smallest n such that f n = 0"

e We can treat possible non-termination as an effect and use a
monad to deal with it.
= Capretta's delay monad

e We are interested in termination of computations and not the
exact computation time.
= Weak bisimilarity

e We quotient the delay monad by weak bisimilarity, we obtain
another monad (777) Dx.

Introduction

e What does it mean that Dy, is a "monad for partiality”, or a
“monad for non-termination” ?

e In order to make these statements precise, we give a precise
category theoretical characterization of D,.

e Building on top of work by Cockett, Lack and Guo, we
introduce a new class of monads for partiality.
= w-join classifying monads

e We proved in Agda that D4, is the initial join classifying
monad.

e In this sense, the monad D~ provides a canonical solution for
introducing non-termination in type theory.

Monads

e A monad is a map T : Set — Set together with operations:
e aunitnx : X — TX;
e a substitution (bind) operation

f:X—>TY
f*:TX —>TY
subjects to conditions
nx = idrx
ffonx = f
g* o f‘* = (g* o f‘)*

e Intuition: think at TX = Termy X terms over a signature X.

Monads and effects

e Exception: ExcX = X + E.

e (Maybe: Maybe X = X +1.)

e Non-determinism: NonDet X = List X.
e State: State X = (§ — S x X).

e Effectful computations: f: X — TY.
e Pure functions: f : X — Y.
e 1x : X — TX identity on X thought of as trivially effectful.

e Composition of effectful computations f : X — TY and
g:Y—=TZ:
gof=g"of

e What about non-termination?

Delay monad

e For a given type X, each element of DX is a possibly infinite
computation that returns a value of X, if it terminates. We
define DX as a coinductive type by the rules

c:DX
now x : DX laterc: DX

e Examples: now x, later” (now x), never = later never.

e The delay datatype is a monad: unit 7 : X — D X is now;
bind operation:

f* (later” (nowx)) = later” (f x)
f*never = never

Equality of computations: weak bisimilarity

e Weak bisimilarity is defined in terms of convergence. This
binary relation between DX and X relates a terminating
computation to its value and is inductively defined by the rules

clx
now x | x laterc | x

e Two computations are weakly bisimilar if they differ by a finite
number of application of the constructor later, i.e., they either
converge to the same value or diverge. Weak bisimilarity is
defined coinductively by the rules

alx olx 1~
1~ G later ¢; ~ later o

o Examples: later” (now x) ~ later® (now x), never ~ never.

Quotiented delay monad

e We quotient the delay monad by weak bisimilarity.
Do X =D X/~

e Agda does not have quotient types. We extend the type
theory with Hofmann’s quotient types.

e Previous work: is Dy a monad? Yes, but we have to postulate
additional principles, such as the axiom of countable choice.

D. delivers free wcppos

o A w-complete pointed partial order (wcppo) is a poset (X, <)
with a bottom element, L : X, in which every increasing
sequence s : N — X has a least upper bound (lub) Us : X.

e DX is the free wcppo over X.
e Let Y be awcppoand f: X — Y. Then:

X now D

N

X

— =

7

<=

(f structure preserving.)

Classifying monads

e A monad T is a classifying monad if there exists an operation

f: X—=TY
f:X—>TX

called restriction, satisfying certain conditions.

fof = f
gof = fog
nyof = nx

e ldea:
o f identifies the domain of definedness of f. It is the
partial identity function associated to f.
e The pure functions are total.

The additional condition CM6

Cockett and Lack, condition CM6:

idrx

idrx = Tnx X TTX

Tnx

Fundamental requirement for connecting classifying monads
with partial map categories and partial map classifiers.

We do not use it in our initiality result.

e Some consequences of CM6:
e Not all monads are classifying monads: we could choose
f = nx (i.e. every function is total), but generally

idrx =nrx # Tnx.
o |t excludes e.g. non-determinism.

Restriction order

e Given T classifying monad, every function space X — TY is a
poset.
f

f<g = gof
e < is called restriction order.

e |dea: g is defined on the domain of definedness of f, and it
coincides with f on it. g is more defined than f.

Join classifying monads
e A classifying monad T is a join classifying monad if there
exist two operations

s:N— (X —TY) islncr<s
J_X7y:X—>TY Us: X > TY

satisfying the following conditions:

BOTL Lxy <f

LUB1 sn<Us

LUB2 ifsn<tforall n:N, thenUs < t
(Function spaces are wcppos.)

BOT2 J_y7z of = J_XZ

LUB3 Usof =U(An.snof)
(Precomposition is a structure preserving operation).

e Important property: join classifying monads admit unguarded
iteration:
f:X—=T(Y+X)
fl:X—TY fl=ny,flof

Join classifying monads: examples

The quotiented delay monad Dy is the initial such monad!

Main result: given a join classifying monad T, there exists a
unique join classifying monad morphism «a : Dy = T.
(cv structure preserving).

Non-example: maybe monad Maybe X = X + 1.

Non-trivial example:

Prop/X = Z isProp P x (P — X)
P:Set

(A “proposition” is a type with at most one inhabitant.)

Conclusions

e We defined join classifying monads, a class of monads for
non-termination in type theory.

e Capretta's (quotiented) delay monad is canonical among such
monads.

e Everything | presented has been fully formalized in Agda.

e Future work:

e Condition CM67?

e Other examples of join classifying monads?

e Join classifying monads, delay monad and weak
bisimilarity in a general category.

e Counterpart of join classifying monads for partial map
categories and partial map classifiers.

