
Partiality as an Effect, Made Rigourous

Tarmo Uustalu and Niccolò Veltri

Institute of Cybernetics at Tallinn University of Technology

Joint Estonian-Latvian Theory Days in Lilaste, 16 October 2016



Introduction

• Topic of this talk: modeling possibly non-terminating
computations in type theory (Agda).

• Agda is a dependently typed functional programming
language.

• E.g. the type of vectors of a given length:

[] : VecX 0
x : X xs : VecX n
x :: xs : VecX (n + 1)

• Agda is a foundational language for the development of
constructive mathematics (based on Martin-Löf type theory).

+comm : ∀n,m : N. n + m ≡ m + n

• types ! propositions, terms ! proofs.



Introduction

• Agda is a total language, non-terminating programs are not
allowed.

• E.g. Kleene’s minimization operator.

minim : (N→ N)→ N
minim f = “the smallest n such that f n ≡ 0′′

• We can treat possible non-termination as an effect and use a
monad to deal with it.
⇒ Capretta’s delay monad

• We are interested in termination of computations and not the
exact computation time.
⇒ Weak bisimilarity

• We quotient the delay monad by weak bisimilarity, we obtain
another monad (???) D≈.



Introduction

• What does it mean that D≈ is a “monad for partiality”, or a
“monad for non-termination”?

• In order to make these statements precise, we give a precise
category theoretical characterization of D≈.

• Building on top of work by Cockett, Lack and Guo, we
introduce a new class of monads for partiality.
⇒ ω-join classifying monads

• We proved in Agda that D≈ is the initial join classifying
monad.

• In this sense, the monad D≈ provides a canonical solution for
introducing non-termination in type theory.



Monads

• A monad is a map T : Set → Set together with operations:

• a unit ηX : X → TX ;
• a substitution (bind) operation

f : X → TY
f ∗ : TX → TY

subjects to conditions

η∗X ≡ idTX
f ∗ ◦ ηX ≡ f
g∗ ◦ f ∗ ≡ (g∗ ◦ f )∗

• Intuition: think at TX = TermΣ X terms over a signature Σ.



Monads and effects

• Exception: ExcX = X + E .

• (Maybe: MaybeX = X + 1.)

• Non-determinism: NonDetX = ListX .

• State: StateX = (S → S × X ).

• . . .
• Effectful computations: f : X → TY .

• Pure functions: f : X → Y .

• ηX : X → TX identity on X thought of as trivially effectful.

• Composition of effectful computations f : X → TY and
g : Y → TZ :

g � f = g∗ ◦ f

• What about non-termination?



Delay monad

• For a given type X , each element of DX is a possibly infinite
computation that returns a value of X , if it terminates. We
define DX as a coinductive type by the rules

now x : DX
c : DX

later c : DX

• Examples: now x , latern (now x), never = later never.

• The delay datatype is a monad: unit η : X → DX is now;
bind operation:

f ∗ (latern (now x)) = latern (f x)
f ∗ never = never



Equality of computations: weak bisimilarity

• Weak bisimilarity is defined in terms of convergence. This
binary relation between DX and X relates a terminating
computation to its value and is inductively defined by the rules

now x ↓ x
c ↓ x

later c ↓ x

• Two computations are weakly bisimilar if they differ by a finite
number of application of the constructor later, i.e., they either
converge to the same value or diverge. Weak bisimilarity is
defined coinductively by the rules

c1 ↓ x c2 ↓ x
c1 ≈ c2

c1 ≈ c2

later c1 ≈ later c2

• Examples: latern (now x) ≈ laterk (now x), never ≈ never.



Quotiented delay monad

• We quotient the delay monad by weak bisimilarity.

D≈ X = DX/≈

• Agda does not have quotient types. We extend the type
theory with Hofmann’s quotient types.

• Previous work: is D≈ a monad? Yes, but we have to postulate
additional principles, such as the axiom of countable choice.



D≈ delivers free ωcppos

• A ω-complete pointed partial order (ωcppo) is a poset (X ,≤)
with a bottom element, ⊥ : X , in which every increasing
sequence s : N→ X has a least upper bound (lub) ts : X .

• D≈X is the free ωcppo over X .

• Let Y be a ωcppo and f : X → Y . Then:

X
now //

f ""

D≈X

f̂
��
Y

(f̂ structure preserving.)



Classifying monads

• A monad T is a classifying monad if there exists an operation

f : X → TY

f : X → TX

called restriction, satisfying certain conditions.

f � f ≡ f

g � f ≡ f � g
ηY ◦ f ≡ ηX

...

• Idea:

• f identifies the domain of definedness of f . It is the
partial identity function associated to f .

• The pure functions are total.



The additional condition CM6

• Cockett and Lack, condition CM6:

idTX ≡ TηX TX
idTX //
TηX

// TTX

• Fundamental requirement for connecting classifying monads
with partial map categories and partial map classifiers.

• We do not use it in our initiality result.

• Some consequences of CM6:

• Not all monads are classifying monads: we could choose
f = ηX (i.e. every function is total), but generally
idTX = ηTX 6≡ TηX .

• It excludes e.g. non-determinism.



Restriction order

• Given T classifying monad, every function space X → TY is a
poset.

f ≤ g = g � f ≡ f

• ≤ is called restriction order.

• Idea: g is defined on the domain of definedness of f , and it
coincides with f on it. g is more defined than f .



Join classifying monads
• A classifying monad T is a join classifying monad if there

exist two operations

⊥X ,Y : X → TY

s : N→ (X → TY ) isIncr≤ s

ts : X → TY

satisfying the following conditions:

BOT1 ⊥X ,Y ≤ f
LUB1 s n ≤ ts
LUB2 if s n ≤ t for all n : N, then ts ≤ t

(Function spaces are ωcppos.)

BOT2 ⊥Y ,Z � f ≡ ⊥X ,Z

LUB3 ts � f ≡ t(λn. s n � f )

(Precomposition is a structure preserving operation).
• Important property: join classifying monads admit unguarded

iteration:

f : X → T (Y + X )

f † : X → TY f † ≡ [ηY , f
†] � f



Join classifying monads: examples

• The quotiented delay monad D≈ is the initial such monad!

• Main result: given a join classifying monad T , there exists a
unique join classifying monad morphism α : D≈ ⇒ T .
(α structure preserving).

• Non-example: maybe monad MaybeX = X + 1.

• Non-trivial example:

Prop/X =
∑
P:Set

isPropP × (P → X )

(A “proposition” is a type with at most one inhabitant.)



Conclusions

• We defined join classifying monads, a class of monads for
non-termination in type theory.

• Capretta’s (quotiented) delay monad is canonical among such
monads.

• Everything I presented has been fully formalized in Agda.

• Future work:

• Condition CM6?
• Other examples of join classifying monads?
• Join classifying monads, delay monad and weak

bisimilarity in a general category.
• Counterpart of join classifying monads for partial map

categories and partial map classifiers.


