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Classical Random Walks

m We walk on an N vertex graph.

=
A

0



Limitations of quantum walks and search
L Classical Random Walks
Classical Random Walks

m A state of the walk xis a
probability distribution over the
vertices — x(i) is the probability of
being at vertex i.

= ) x()=1.

i€[N]

m The probability of going from u to
v in a single step: puy.

u Zpuv: 1.

ur~v
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Walk Operator

m Let x; — probability distribution after t steps. We start at x.

m A single step of the walk — a matrix operator:

pi1 P21 P31 ... PN

P12 P22 P32 ... PAR
P= . . . .

PIN P2N P3N ---  PNN

m We can express t steps as P

x¢ = Pxi—1 = Pxp.
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Example: Walk on a Line

| X()(O) = 1.

1
B Pii-1 = Pii+1 = 3-
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Example: Walk on a Line

m Probability after 40 steps.
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Discrete Time Quantum Walk

m Instead of vertices, our state is distributed over directed edges.
m For every edge u — v we have a basis state |uv).

m A state of the walk — a vector over the edges:

) = Z Qv |uv) .

u—v
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Discrete Time Quantum Walk

m Instead of probabilties, a,, are complex amplitudes.

m The probability of obtaining |uv) is |au,|?.

) ot =1.

u—v
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Quantum Walk State Example

n ) = L Jab) — L fac) + - |ad).

m The walk is at:
a — b with prob. 1/s;
a — c with prob. 1/2;
a — d with prob. 1/3.

At vertex a with probability 1.
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Quantum Walk Operator

|t)¢) — the state after t steps. We start at [¢g).

A single step of the walk — some unitary transformation U.
Wt> = U’¢t—1> = Ut’¢0>-

m Afterwards, we measure the state of the walk: with probability
|y (¥1)]? we obtain u — v.

With probability Z lovuw(1h¢)|? we obtain position wu.

viu—v
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Quantum Walk Operator

m U=S5C

m C — the “coin” operator. This disperses the amplitudes among
the directions within a single vertex.

m S — the shift operator. This moves the amplitudes along the
edges of the graph.
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Example: Quantum Walk on a Line

m U=5C
m Clx, «) = f |x, <) + ﬁ |x, =)
Clx, =) = 2 \x —)+ %\)g —)

mSix, <) =|x—1,+)
Slx, =) =|x+1, =)

m Start at [¢g) = f |0, <) + % |0, —=).
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Example: Quantum Walk on a Line

m Probability after 40 steps.
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Exponential Speedup

m Join two binary trees of
depth D at the leaves.

m The number of steps needed
to go from a to b with some
constant probability:

m Random walk: O(20).

m Quantum walk: O(D?).
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Localization

m Localization — a phenomenon where the walk remains at the
starting position [¢)g) with high probability.

m Formally, for any t:
2
|(Wo|U'|vo)|” =~ 1,

where |(a|b)|? is essentially the inner product of a and b.
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The Examined Walks

m We examine walks on d-regular N vertex graphs.

m As C we use Grover’s diffusion:

Cluv) = —\uv>+%z luw) .

u—w

An inversion about the average amplitude at each vertex.

m As S we use the “flip-flop” shift:

Sluv) = |vu).
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Our Paper

m A. Ambainis, K. Prisis, J. Vihrovs, and T. G. Wong.

Oscillatory localization of quantum walks by classical electric
circuits, 2016

m Oscillatory localization — the walk jumps back and forth
between two states.

m Formally, for any t:

}<¢0|U2t|¢0>|2 ~ L
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Oscillatory Localization Example

m The complete graph Ky.

X

m Starting in the state

1
= — a s
|17Z}0> m a§_>v| V>
the walk disperses. A

m Starting in [1)o) = |ab), it localizes.
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Oscillatory Localization Example

m The complete graph Ky.

X

m Starting in the state

1
= — a s
|17Z}0> m a§_>v| V>
the walk disperses. A

m Starting in [1)o) = |ab), it localizes.
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Oscillatory Localization Example

m Example for N = 16, black circles are probability at |ab), red
squares are probability at |ba).
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Eigenvectors

m In fact, we can look at the 1-eigenvectors of U?.
m The walk localizes if |1)g) is close to these.

m It turns out there are only two types of such eigenvectors.
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Uniform States

m The first type we call uniform states.

m If the graph is not bipartite, the only such state is the uniform
distribution over all edges:

=X Ve

luv) .

m It the graph is bipartite, these are uniform over the edges of
each part.
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Flip States

m We call the second type flip states.

m A state |¢) is a flip state if the following two conditions hold
for every vertex v:

Zauv:O, Zavuzo.

u—v u<—v
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Flip State Example
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Flipped States

m |¢)

m For flip states, U|¢) = |9).
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Our Result

m Express the starting state in terms of normalized flip and
uniform states with some remainder state |p):

o) = a|o) + Blo) +vlp) -
m After an even number of steps 2t,
| (o P[0} | > 2 (laf® + 18]7) — 1.
m After an odd number of steps 2t + 1,

[ ol U+ o) | = 2max (Ja? |81%) — 1.
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Projection unto Flip States

m We want to find flip states close to our starting state.
m We do not know how to do this for arbitrary starting states.

m For single edge starting states, we can do this using electric
networks.
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Result

m High connectivity between neighboring vertices a,b implies
oscillatory localization single edge starting states:

m |ab),
m 5 |ab) — 5 |ba).
m Many common graphs have high connectivity, such as

high-degree edge transitive graphs, which include the
complete graph and the hypercube.



Limitations of quantum walks and search
LQuantum Search

Outline

Quantum Search



Limitations of quantum walks and search
LQuantum Search

Search on a Graph

m We walk on an N vertex graph, where some vertices are
marked.

\ L
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Quantum Search

m Denote the number of edges of the graph by |E].

m We start in a uniform superposition over all edges of the
graph:

|vbo) = |uv,

Ve

m U= SCQ.

uv u is not marked;
Qluy) = {177 v
—|uv) uis marked.
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Example: Quantum Search on a Grid

m This algorithm finds a marked vertex on the periodic 2D
lattice in O(v/Nlog N) time.
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Multiple Marked Vertices

m Classically, additional marked vertices always make search
easier — the expected runtime for k marked vertices is O(N/k).

m This is not always the case for quantum search.

m In some cases, multiple marked vertices can make the search
remain at the starting uniform state.
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Multiple Marked Vertices Example

m Nahimov's result: quantum search does not work on the 2D
lattice with 2 adjacent marked vertices.
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Stationary States

m In this case, we look at the 1-eigenvectors of U= SCQ.

m The search remains stationary if the uniform starting state

[Y0) = \/27:_ L;/|

is close to some stationary |t)):

[ (ol ) ?



Limitations of quantum walks and search

LStationary States

Stationary State Example

m Nahimov's stationary state:

a a a a
arN a .~ a aN
(O an (v (O (O
a a a a
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arN a — aN
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Our Paper

m K. Prasis, J. Vihrovs, and T. G. Wong. Stationary states in

quantum walk search.
Phys. Rev. A, 94:032334, Sep 2016

m We give some general criteria for when such stationary states
exist.

m We give additional criteria for stationary states close to the
starting uniform states.
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Flip and Uniform Components

m For any state |¢)), we can decompose its amplitudes at a
vertex [t),) into uniform and flip components:

= [¢a)
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Search Operator on Flip and Uniform Components

m If vis not marked:

CQloy) = |ov) CRlpv) = —[9v) -

m If vis marked:

CRlov) = —|ov) CQlpv) = [dv) -
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Stationary State Conditions

m A state is stationary if and only if, for every edge ab:

m If exactly one of a,b is marked, the following holds (for b
marked):

Oab = Pba  Pab= —Oba.
m If they are both unmarked:

Oab=0Oba  Pab = —Qba.
m If they are both marked:

Oab = —Oba Gab = Pba-
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Optimal Stationary States

m We are interested in finding the stationary state closest to the
starting state.

m The flip components of unmarked vertices and the uniform
components of marked vertices contribute 0 to |(t|t)|*.

m Theorem: the stationary state [)) maximizing |{1g|1)]?
satisfies the following conditions:
m If vis unmarked, |1),) = |o).

m If vis marked, |¢,) = |d,).

m For every adjacent u,v, a,, = Q.
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Existing Examples are Optimal

m This matches the conditions for the grid.
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Existance Criteria

m A stationary state exists if every connected component of
marked vertices is either:

m not bipartite;

m bipartite, but the sums of the amplitudes on the edges going
to unmarked vertices are equal for each part.
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Questions?
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