Testing Monotonicity

Alexander Belov University of Latvia Eric Blais
University of Waterloo

14-Oct-2016, Lilaste

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

- Accept hypothesis that are true;
- Reject hypothesis that are too wrong:
 Fail on too many occasions.

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Population: Boolean function $f: \{0,1\}^n \to \{0,1\}$.

Inputs \longleftrightarrow Objects

Variables ←→ Parameters

Value of the function ←→ Property under investigation

 \blacksquare Hypothesis: The function f possesses some property \mathcal{P} .

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Population: Boolean function $f: \{0,1\}^n \to \{0,1\}$.

Inputs
$$\longleftrightarrow$$
 Objects

Variables ←→ Parameters

Value of the function ←→ Property under investigation

Hypothesis: The function f possesses some property \mathcal{P} .

Given \mathcal{P} , construct an algorithm that

- lacksquare Accepts if $f \in \mathcal{P}$.
- \blacksquare Rejects if f is far from \mathcal{P} :

for any $g \in \mathcal{P}$, relative Hamming distance $h(f,g) \geq \varepsilon$: f and g differ on $\geq \varepsilon 2^n$ inputs.

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Population: Boolean function $f: \{0,1\}^n \to \{0,1\}$.

Value of the function \longleftrightarrow Property under investigation

 \blacksquare Hypothesis: The function f possesses some property \mathcal{P} .

Given \mathcal{P} , construct an algorithm that

- lacksquare Accepts if $f \in \mathcal{P}$.
- \blacksquare Rejects if f is far from \mathcal{P} :

```
for any g \in \mathcal{P}, relative Hamming distance h(f,g) \geq \varepsilon:

f and g differ on \geq \varepsilon 2^n inputs.
```

Popular \mathcal{P} s:

- Juntas: the function depends on few variables.
- Monotonicity: improving a parameter improves the property.

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Population: Boolean function $f: \{0,1\}^n \to \{0,1\}$.

Variables ←→ Parameters

Value of the function ←→ Property under investigation

Hypothesis: The function f possesses some property \mathcal{P} .

Given \mathcal{P} , construct an algorithm that

- Accepts if $f \in \mathcal{P}$.
- Rejects if f is far from \mathcal{P} :

for any $g \in \mathcal{P}$, relative Hamming distance $h(f,g) \geq \varepsilon$: f and g differ on $\geq \varepsilon 2^n$ inputs.

Popular \mathcal{P} s:

- Juntas: the function depends on few variables.
- Monotonicity: improving a parameter improves the property.

Monotonicity

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Partial order on Boolean strings:

$$x \leq y$$
: $\forall i \in [n]: x_i = 1 \Longrightarrow y_i = 1.$
0010 \leq 0111

A function $f: \{0,1\}^n \to \{0,1\}$ is monotone iff

$$\forall x, y \in \{0, 1\}^n \colon x \leq y \Longrightarrow f(x) \leq f(y).$$

Clarifications

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

- Monotone = Monotonely non-decreasing
- Interested in query complexity
 - \square as a function of n and ε ;
 - \square dependence on n more important;
 - \square the size of the input $N=2^n$.
- Restrict to the inputs in the middle of the cube:

$$|x| = \frac{n}{2} \pm O_{\varepsilon}(\sqrt{n})$$

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

[Goldreich, Goldwasser, Lehman, Ron '1998]

Defined the problem, proposed a simple edge tester.

2015

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

[Goldreich, Goldwasser, Lehman, Ron '1998]

Defined the problem, proposed a simple edge tester.

[Dodis, Goldreich, Lehman, Raskhodnikova, Ron, Samorodnitsky '1999]

Analysed the edge tester. $O(n/\varepsilon)$ upper bound.

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Analysed the edge tester. $O(n/\varepsilon)$ upper bound.

[Fischer, Lehman, Newman, Raskhodnikova, Rubinfeld, Samorodnitsky '2002] $\Omega(\log n)$ lower bound for non-adaptive algorithms;

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

[Goldreich, Goldwasser, Lehman, Ron '1998]
 Defined the problem, proposed a simple edge tester.

[Dodis, Goldreich, Lehman, Raskhodnikova, Ron, Samorodnitsky '1999]

Analysed the edge tester. $O(n/\varepsilon)$ upper bound.

[Fischer, Lehman, Newman, Raskhodnikova, Rubinfeld, Samorodnitsky '2002]

 $\Omega(\log n)$ lower bound for non-adaptive algorithms; $\Omega(\log \log n)$ general lower bound;

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

[Dodis, Goldreich, Lehman, Raskhodnikova, Ron, Samorodnitsky '1999]

Analysed the edge tester. $O(n/\varepsilon)$ upper bound.

[Fischer, Lehman, Newman, Raskhodnikova, Rubinfeld, Samorodnitsky '2002]

 $\Omega(\log n)$ lower bound for non-adaptive algorithms;

 $\Omega(\log \log n)$ general lower bound;

 $\Omega(\log \log \log N)$ lower bound, N: size of the input.

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Time Line: Zoom In

Time Line: Zoom In

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Time Line: Zoom In

Introduction

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Non-Adaptive Algorithms

Edge Tester

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

2000

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

[Goldreich, Goldwasser, Lehman, Ron '1998]
 Defined the problem, proposed a simple edge tester.

[Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

ky '1999]

edge tester. $O(n/\varepsilon)$ upper bound.

man, Newman, Raskhodnikova, morodnitsky '2002]

er bound for non-adaptive algorithms; general lower bound;

(N) lower bound, N: size of the input.

Edge Tester

Edge Tester: Algorithm

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

- Sample an edge xy of the hypercube $\{0,1\}^n$ uniformly at random $(x \prec y)$, at distance 1).
- Accept if the edge is monotone, and reject otherwise.

Edge Tester: Algorithm

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

- Sample an edge xy of the hypercube $\{0,1\}^n$ uniformly at random $(x \prec y)$, at distance 1).
- Accept if the edge is monotone, and reject otherwise.

Edge Tester: Algorithm

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

- Sample an edge xy of the hypercube $\{0,1\}^n$ uniformly at random $(x \prec y)$, at distance 1).
- Accept if the edge is monotone, and reject otherwise.

Theorem. The edge tester

- (a) always accepts a monotone function;
- (b) rejects a non-monotone function with probability $\Omega(arepsilon/n)$.
- requires $O(n/\varepsilon)$ queries to test for monotonicity with $\Omega(1)$ success probability.
- is a non-adaptive tester with one-sided error.

Edge Tester: Analysis

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Theorem. The edge tester

- (a) always accepts a monotone function;
- (b) rejects a non-monotone function with probability $\Omega(\varepsilon/n)$.

follows from

Observation. There exists a monotone function at distance $\leq 2K$ from $f: \{0,1\}^n \to \{0,1\}$, where K is the number of non-monotone edges of f.

Indeed, $n2^{n-1}$ is the total number of edges, and $\varepsilon 2^{n-1}$ is the number of non-monotone ones.

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Observation. There exists a monotone function at distance $\leq 2K$ from $f: \{0,1\}^n \to \{0,1\}$, where K is the number of non-monotone edges of f.

■ For i = 1, ..., n:

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Observation. There exists a monotone function at distance $\leq 2K$ from $f: \{0,1\}^n \to \{0,1\}$, where K is the number of non-monotone edges of f.

■ For
$$i = 1, ..., n$$
:

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Observation. There exists a monotone function at distance $\leq 2K$ from $f: \{0,1\}^n \to \{0,1\}$, where K is the number of non-monotone edges of f.

■ For i = 1, ..., n:

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Observation. There exists a monotone function at distance $\leq 2K$ from $f: \{0,1\}^n \to \{0,1\}$, where K is the number of non-monotone edges of f.

■ For i = 1, ..., n:

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Observation. There exists a monotone function at distance $\leq 2K$ from $f: \{0,1\}^n \to \{0,1\}$, where K is the number of non-monotone edges of f.

■ For i = 1, ..., n:

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Observation. There exists a monotone function at distance $\leq 2K$ from $f: \{0,1\}^n \to \{0,1\}$, where K is the number of non-monotone edges of f.

■ For
$$i = 1, ..., n$$
:

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Observation. There exists a monotone function at distance $\leq 2K$ from $f: \{0,1\}^n \to \{0,1\}$, where K is the number of non-monotone edges of f.

■ For i = 1, ..., n:

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Observation. There exists a monotone function at distance $\leq 2K$ from $f: \{0,1\}^n \to \{0,1\}$, where K is the number of non-monotone edges of f.

■ For i = 1, ..., n:

Sort the edges along the i-th direction (Replace 10-edges by 01-edges.)

Lemma. Shifting in the i-th direction does not increase the number of non-monotone edges in the j-th direction.

Path Tester

Path Tester: Motivation

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

The edge tester performs badly on the anti-dictator function:

$$f(x) = \neg x_i.$$

- \blacksquare At distance 1/2 to monotone.
- Only 2^{n-1} non-monotone edges: Probability 1/n to succeed.

Path Tester: Motivation

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

The edge tester performs badly on the anti-dictator function:

$$f(x) = \neg x_i.$$

- At distance 1/2 to monotone.
- Only 2^{n-1} non-monotone edges: Probability 1/n to succeed.

Idea: Test multiple coordinates with one query. Query $x \prec y$ at larger distances.

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

A Linear Threshold Function (LTF)

$$f \colon \{-1,1\}^{n+m} \to \{-1,1\}$$
, with $m \ll n$.

Write f(u, v) with $u \in \{-1, 1\}^n$, and $v \in \{-1, 1\}^m$.

$$f(u,v) = 1$$
 iff $\frac{1}{\sqrt{n}} \sum_{i} u_i - \frac{1}{\sqrt{m}} \sum_{j} v_j \ge 0$

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

$$h(u,v) = \frac{1}{\sqrt{n}} \sum_{i} u_i - \frac{1}{\sqrt{m}} \sum_{j} v_j \ge 0$$

Suppose $(u, v) \prec (u', v')$ are at distance k.

We want f(u, v) = 1 and f(u', v') = 0.

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

$$h(u,v) = \frac{1}{\sqrt{n}} \sum_{i} u_i - \frac{1}{\sqrt{m}} \sum_{j} v_j \ge 0$$

Suppose $(u, v) \prec (u', v')$ are at distance k. We want f(u, v) = 1 and f(u', v') = 0.

If k is large, this almost never happens, since, almost surely,

$$h(u', v') - h(u, v)$$

$$\approx \frac{1}{\sqrt{n}} \cdot k - \frac{1}{\sqrt{m}} \cdot k \frac{m}{n} = k \left(\frac{1}{\sqrt{n}} - \frac{\sqrt{m}}{n} \right) > 0.$$

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

$$h(u,v) = \frac{1}{\sqrt{n}} \sum_{i} u_i - \frac{1}{\sqrt{m}} \sum_{j} v_j \ge 0$$

Suppose $(u, v) \prec (u', v')$ are at distance k. We want f(u, v) = 1 and f(u', v') = 0.

If $k = \frac{1}{10} \sqrt{\frac{n}{m}}$, then, with probability $\Omega(1)$, $f(u, \cdot) = f(u', \cdot)$.

Success Probability
$$=\frac{1}{\sqrt{m}}\cdot k\frac{m}{n}=\frac{1}{\sqrt{m}}\cdot \sqrt{\frac{n}{m}}\frac{m}{n}=\frac{1}{\sqrt{n}}.$$

 \blacksquare If k is even smaller, the probability decreases.

Path Tester: Algorithm

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

- Pick a parameter $k=1,2,4,8,\ldots,\sqrt{n}$ uniformly at random.
- \blacksquare Sample, uniformly at random, $x \prec y$ at distance k.
- Accept if the edge is monotone, and reject otherwise.

Theorem[Knot, Minzer, Safra '2015]. The pair tester rejects a non-monotone function with probability $\widetilde{\Omega}(\varepsilon^2/\sqrt{n})$.

Summary

Introduction

Non-Adaptive Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower Bounds

Adaptivity

Summary

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Random LTFs

Adaptivity

Summary

Non-Adaptive Lower Bounds

Random LTFs

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Random LTFs

Adaptivity

Summary

Consider a random LTF $f: \{-1,1\}^n \to \{-1,1\}$:

$$f(x) = \operatorname{sgn}(\nu_1 x_1 + \nu_2 x_2 + \dots + \nu_n x_n),$$

where

Yes case

$$u_i = \begin{cases} 1, & \text{w/ prob. } 1/2 \\ 3, & \text{w/ prob. } 1/2 \end{cases}$$

No case

$$\nu_i = \begin{cases} 1, & \text{w/ prob. } 1/2 \\ 3, & \text{w/ prob. } 1/2 \end{cases} \qquad \nu_i = \begin{cases} -1, & \text{w/ prob. } 1/10 \\ 7/3, & \text{w/ prob. } 9/10 \end{cases}$$

Theorem[Chen, Servedio, Tan]. For any nearly-balanced $x_1, \ldots, x_q \in \{-1, 1\}^n$,

$$d_{\text{TVD}}\bigg(\Big(f(x_1),\ldots,f(x_q)\Big)_{f\sim \text{Yes}},\ \Big(g(x_1),\ldots,g(x_q)\Big)_{g\sim \text{No}}\bigg)=\widetilde{O}\bigg(\frac{q^{5/4}}{n^{1/4}}\bigg).$$

Gives $\Omega(n^{1/5})$ lower bound. $n^{1/2-o(1)}$ bound is similar.

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

Adaptivity

Intro

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

Remember the edge tester.

Intro

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

- Remember the edge tester.
- For any monotone

$$f\colon\{0,1\}^n\to\{0,1\},$$
 at most $O(\frac{1}{\sqrt{n}})$ fraction of the edges are "interesting" (non-constant).

Intro

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

- Remember the edge tester.
- For any monotone

$$f\colon\{0,1\}^n\to\{0,1\},$$
 at most $O(\frac{1}{\sqrt{n}})$ fraction of the edges are "interesting" (non-constant).

Can we get an algorithm that always query "interesting" edges?

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

- Sample $x \in f^{-1}(0)$ and $y \in f^{-1}(1)$ uniformly at random.
- **While** x and y differ in more than 1 variable:
 - \square Generate a uniformly random z between x and y
 - \Box If f(z) = 0, let $x \leftarrow z$; otherwise, $y \leftarrow z$.
- **Accept** if xy is a monotone edge, and **reject** otherwise.

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

- Sample $x \in f^{-1}(0)$ and $y \in f^{-1}(1)$ uniformly at random.
- **While** x and y differ in more than 1 variable:
 - \square Generate a uniformly random z between x and y
 - \Box If f(z) = 0, let $x \leftarrow z$; otherwise, $y \leftarrow z$.
- **Accept** if xy is a monotone edge, and **reject** otherwise.

The algorithm only tests non-constant edges.

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

- Sample $x \in f^{-1}(0)$ and $y \in f^{-1}(1)$ uniformly at random.
- **While** x and y differ in more than 1 variable:
 - \square Generate a uniformly random z between x and y
 - \Box If f(z) = 0, let $x \leftarrow z$; otherwise, $y \leftarrow z$.
- **Accept** if xy is a monotone edge, and **reject** otherwise.

- The algorithm only tests non-constant edges.
- Who knows as to which probability distribution it does it.

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

- Sample $x \in f^{-1}(0)$ and $y \in f^{-1}(1)$ uniformly at random.
- **While** x and y differ in more than 1 variable:
 - \square Generate a uniformly random z between x and y
 - \Box If f(z) = 0, let $x \leftarrow z$; otherwise, $y \leftarrow z$.
- **Accept** if xy is a monotone edge, and **reject** otherwise.

- The algorithm only tests non-constant edges.
- Who knows as to which probability distribution it does it.
- lacktriangle Tests "nice" LTFs in $O(\log n)$ queries.

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

Let f be a monotone Boolean function.

$$f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10})$$

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

Let f be a monotone Boolean function.

Bisection algorithm generates probability distribution on variables.

$$f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10})$$

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

Let f be a monotone Boolean function.

Bisection algorithm generates probability distribution on variables.

Negating some variables, we get a non-monotone function

$$x \mapsto f(x^S).$$

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

Let f be a monotone Boolean function.

Bisection algorithm generates probability distribution on variables.

Negating some variables, we get a non-monotone function

$$x \mapsto f(x^S).$$

1. Probability of the Bisection algorithm rejecting it —?

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

Let f be a monotone Boolean function.

Bisection algorithm generates probability distribution on variables.

Negating some variables, we get a non-monotone function

$$x \mapsto f(x^S).$$

1. Probability of the Bisection algorithm rejecting it —?

$$\sum_{i \in S} p_i$$

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

2. Distance to monotonicity of

$$f(x_1, x_2, \neg x_3, x_4, \neg x_5, x_6, x_7, \neg x_8, x_9, x_{10})$$

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

2. Distance to monotonicity of

$$f(x_1, x_2, \neg x_3, x_4, \neg x_5, x_6, x_7, \neg x_8, x_9, x_{10})$$

Noise sensitivity of a function f is defined as

$$NS_{\delta}(f) = \Pr_{x, S} [f(x) \neq f(x^{S})],$$

where $x \sim \{0,1\}^n$ and $S \subseteq [n]$, each element with probability δ .

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

2. Distance to monotonicity of

$$f(x_1, x_2, \neg x_3, x_4, \neg x_5, x_6, x_7, \neg x_8, x_9, x_{10})$$

Noise sensitivity of a function f is defined as

$$NS_{\delta}(f) = \Pr_{x, S} [f(x) \neq f(x^S)],$$

where $x \sim \{0,1\}^n$ and $S \subseteq [n]$, each element with probability δ .

The distance is at least

$$\frac{1}{2} \Pr_{x \sim \{0,1\}^n} \left[f(x) \neq f(x^S) \right].$$

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

The distance of $x \mapsto f(x^S)$ to monotonicity is at least

$$\frac{1}{2} \Pr_{x \sim \{0,1\}^n} \left[f(x) \neq f(x^S) \right].$$

Proof. Write x=(u,v) for $u\in\{0,1\}^{[n]\backslash S}$, $v\in\{0,1\}^S$.

Let μ and \varkappa be the distance to a monotone and a constant function.

$$\mu(f) \ge \mathbb{E}_u \mu(f(u, \cdot)) = \mathbb{E}_u \varkappa(f(u, \cdot))$$

$$\ge \frac{1}{2} \mathbb{E}_u \Pr_v \Big[f(u, v) \ne f(u, v^S) \Big] = \frac{1}{2} \Pr_x \Big[f(x) \ne f(x^S) \Big].$$

Fooling Bisection Algorithm: Fooled!

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

$$f$$
 ($x_1, x_2,
eg x_3, x_4,
eg x_5, x_6, x_7,
eg x_8, x_9, x_{10}$)
 $p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_{10}$
 $\sum_{i \in S} p_i$ vs. $\frac{1}{2} \Pr_{x \sim \{0,1\}^n} \Big[f(x) \neq f(x^S) \Big]$
 $\exists f \colon \operatorname{NS}_{\frac{1}{\sqrt{n}}}(f) = \Pr_{x \in S} \Big[f(x) \neq f(x^S) \Big] = \Omega(1).$

Fooling Bisection Algorithm: Fooled!

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

Exists S such that $x \mapsto f(x^S)$

- (a) is $\Omega(1)$ far from monotone;
- (b) is rejected by the Bisection algorithm with probability $O\left(\frac{1}{\sqrt{n}}\right)$.

Noise Sensitive Functions

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

What are the noise-sensitive monotone functions?

(a) Iterated Majority

Noise Sensitive Functions

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

What are the noise-sensitive monotone functions?

(b) Talagrand's Random DNF

A disjunction of $2^{\sqrt{n}}$ independent random clauses of size \sqrt{n} .

$$f_C(x) = \bigwedge_{a \in [\sqrt{n}]} x_{C(a)} \quad \text{and} \quad f(x) = \bigvee_{j \in [2^{\sqrt{n}}]} f_{C_j}(x).$$

General Lower Bound

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection Algorithm

Distance

Fooled!

Noise Sensitive Functions

General Lower Bound

Summary

Let Tal be Talagrand's Random DNF, and

$$\operatorname{Tal}^{\pm} = \left\{ x \mapsto f(x^S) \mid f \sim \operatorname{Tal}, S \right\}.$$

Theorem. For all $q = O(n^{1/4} \log^{-2} n)$, nearly-balanced $x_1, \ldots, x_q \in \{0, 1\}^n$ and $b_1, \ldots, b_q \in \{0, 1\}$, we have

$$\Pr_{f \sim \mathsf{Tal}} \left[\forall i \colon f(x_i) = b_i \right]$$

$$\leq (1 + o(1)) \Pr_{g \sim \mathsf{Tal}^{\pm}} \left[\forall i \colon g(x_i) = b_i \right] + o(2^{-q}).$$

Open Problems

Introduction

Non-Adaptive Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

- Close the gap between $\widetilde{\Omega}(n^{1/4})$ and $\widetilde{O}(\sqrt{n})$.
- Can we get more from the bisection algorithm? When is it effective?
- Prove quantum lower bounds.
 - \square Monotonicity on the line ? $f: [n] \rightarrow [m]$.

Introduction

Non-Adaptive

Algorithms

Non-Adaptive Lower Bounds

Adaptivity

Summary

Thank you!