Interaction morphisms

Tarmo Uustalu, Inst. of Cybernetics, Tallinn
joint work with Shin-ya Katsumata, Kyoto University

Theory Days at Lilaste, 13-16 October 2016

Motivation

- What is a systematic way to go about running effectful computations (in functional programming), handling effects, reducing effects to manipulation of state?
- Effects: finitary nondeterminism, finitary probabilistic choice (on different levels of abstraction), interactive I/O, state etc.
We model them by monads.
- Manipulation of readable/writeable state is the only effect available "in the metal".
We model it by the state monad for the given state set.

Example: Finite nondeterminism and state

- We model finitary nondet. computations over a set X by the monad of binary leaf trees:
$T X=$ LTree $X=\mu Z . X+(2 \Rightarrow Z)$
- Here are some runners:
- LTree $X \rightarrow \operatorname{Str} 2 \Rightarrow X \times \operatorname{Str} 2$
- $\underbrace{\text { LTree } X}_{T X} \rightarrow \underbrace{Y \Rightarrow X \times Y}_{s^{r} X}$
for some fixed set Y and maps $Y \rightarrow 2$ and $Y \rightarrow Y$.
- The first example is a special case of the second.
- Importantly, the state set is a coalgebra of the comonad $D Y=\nu Z . Y \times(2 \times Z) \cong \operatorname{Str}(Y \times 2)$.
- If you model finitary nondet. with nonempty finite lists or nonempty multisets, it becomes more difficult or impossible to run!

Motivation (ctd)

- Prior work, U. (MFPS 2015): stateful runners. The theory was centered around associating to a monad a comonad going via the (generally large) Lawvere theory corresponding to the monad.
- This talk, joint work with Katsumata: interaction morphisms as a more abstract approach.
- On a higher-level, this is a functional programmer's take on certain types of protocols of two-party communication (must be closed under sequential composition of sessions).

This talk

- Interaction morphisms
as an abstract way to specify environments capable of handling effects in computations and the ways how they do it
- Their relationship to runners of effects...
- ... and to monad morphisms

Interaction morphisms: Examples

- $T X=S \Rightarrow S \times X, D Y=S \times(S \Rightarrow Y)$

$$
\theta_{X, Y}: \underbrace{(S \Rightarrow S \times X)}_{T X} \times \underbrace{(S \times(S \Rightarrow Y))}_{D Y} \rightarrow X \times Y
$$

- $T X=S \Rightarrow S \times X, D Y=C \times(C \Rightarrow Y)$ in the presence of get: $C \rightarrow S$, put : $C \times S \rightarrow C$ satisfying the lens laws

$$
\theta_{X, Y}: \underbrace{(S \Rightarrow S \times X)}_{T X} \times \underbrace{(C \times(C \Rightarrow Y))}_{D Y} \rightarrow X \times Y
$$

- $T X=\mu Z . X+\Sigma s: S .(P s \Rightarrow Z)$, $D Y=\nu Z . Y \times \Pi s: S . P s \times Z$

Interaction morphisms

- Given a monad $T=(T, \eta, \mu)$ and a comonad $D=(D, \varepsilon, \delta)$ on a category with finite products (or, more generally, a monoidal category).
- An interaction morphism between T, D is a nat. transf. ψ with comps.

$$
\psi_{X, Y}: T X \times D Y \rightarrow X \times Y
$$

satisfying

Interaction morphisms as monoids

- Interaction morphisms are monoids in a suitable monoidal category (just as monads, comonads).
- An object in this category is
a pair of functors F, G, with a nat. transf. ϕ with comps. $\phi_{X, Y}: F X \times G Y \rightarrow X \times Y$
- A map between $(F, G, \phi),\left(F^{\prime}, G^{\prime}, \phi^{\prime}\right)$ is a pair of nat. transfs. $f: F \rightarrow F^{\prime}, g: G^{\prime} \rightarrow G$ such that

Runners

- Given a monad T on a category \mathcal{C}.
- A runner of T is an object Y with a nat. transf. θ with comps.

$$
\theta_{X}: T X \times Y \rightarrow X \times Y
$$

satisfying

- More concisely, a runner of a monad T is an object Y together with a monad morphism from T to the state monad for Y.

$$
\frac{T X \times Y \rightarrow X \times Y}{T X \rightarrow \underbrace{Y \Rightarrow X \times Y}_{\mathrm{s}^{Y} X}}
$$

Interaction morphisms and runners

- Interaction morphisms between T, D are in a bijection with carrier-preserving functors from coalgebras of D to runners of T.

$$
\begin{aligned}
& \left(i(\psi)_{X}^{Y, \gamma}=T X \times Y \xrightarrow{T X \times \gamma} T X \times D Y \xrightarrow{\psi_{X, Y}} X \times Y\right. \\
& \left(i^{-1}(\theta)\right)_{X, Y}=T X \times D Y \xrightarrow{\theta_{X}^{D Y, \delta_{Y}}} X \times D Y \xrightarrow{X \times \varepsilon_{Y}} X \times Y
\end{aligned}
$$

Interaction morphisms and monad morphisms

- Given a comonad D on \mathcal{C}, we can turn it into a monad $\ulcorner D\urcorner$ by

$$
\ulcorner D\urcorner X=\int_{Y} D Y \Rightarrow X \times Y
$$

(because $\ulcorner-\urcorner:[\mathcal{C}, \mathcal{C}]^{\text {op }} \rightarrow[\mathcal{C}, \mathcal{C}]$ is lax monoidal, hence sends monoids to monoids)

- Interaction morphisms between T, D are in a bijection with monad morphisms between T and $\ulcorner D\urcorner$, i.e., nat. transfs. $\tau: T \rightarrow\ulcorner D\urcorner$ satisfying certain equations.

$$
\frac{\theta_{X, Y}: T X \times D Y \rightarrow X \times Y}{(\operatorname{cur} \theta)_{X}: T X \rightarrow \underbrace{\int_{Y} D Y \Rightarrow X \times Y}_{\ulcorner D\urcorner X}}
$$

Interaction morphisms and monad morphisms

- The obvious natural transformation ev^{D} with components

$$
\mathrm{ev}_{X, Y}^{D}: \underbrace{\left(\int_{Y} D Y \Rightarrow X \times Y\right)}_{\ulcorner D\urcorner X} \times D Y \rightarrow X \times Y
$$

is an interaction morphism.

- The monad morphism cur θ is the unique interaction morphism morphism between ev^{D} and θ.

Summing up

- Interaction morphisms seem (from the categorical point of view) a natural concept with neat properties.
- They also seem to be a good abstraction for analyzing running/handling of effects.
- Alternatively, they are way to talk about communication protocols of two parties over a channel and the duality involved.
- Lots of cool category theory still to be worked out.

