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Basic Settings

Code alphabet Q = {0, 1}.

Codebook, S , of codewords x = (x1, x2, . . . , xn) ∈ Qn.

The read word r = (r1, . . . , rn), ri ∈ R:

r = a(x + ν) + b1 + cs ,

where 1 = (1, . . . , 1), and s = (1, 2, . . . , n).

Unknown (positive) attenuation a ∈ R, a > 0, and unknown
varying offset, b1 + cs, where b and c ∈ R.

Additive Gaussian noise ν = (ν1, . . . , νn), νi ∈ R, with
distribution N(0, σ2), where σ2 ∈ R is the variance.

K.A.S. Immink and J.H. Weber, “Minimum Pearson Distance Detection for Multi-Level Channels with Gain and/or
Offset Mismatch,” IEEE Trans. Inform. Theory, vol. IT-60, pp. 5966-5974, Oct. 2014.
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Minimum Euclidean Distance Detector

xo = arg min
x̂∈S

δe(r , x̂) ,

where

δe(r , x̂) =
n∑

i=1

(ri − x̂i )
2 .

We obtain:

δe(r , x̂) =
n∑

i=1

(x ′i − x̂i )
2 + (b + ci)2

+ 2b
n∑

i=1

x ′i + 2c
n∑

i=1

ix ′i − 2b
n∑

i=1

x̂i − 2c
n∑

i=1

i x̂i ,

where x ′i = a(xi + νi ).
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Pearson Distance

δ(r , x̂) = 1− ρr ,x̂ ,

where

ρr ,x̂ =

∑n
i=1(ri − r)(x̂i − x̂)

σrσx̂

is the Pearson correlation coefficient,

x̂ =
1

n

n∑
i=1

x̂i

is the average symbol value of x̂ , and

σ2
x̂ =

n∑
i=1

(x̂i − x̂)2

is the (unnormalized) symbol value variance of x̂ .
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Minimization of Pearson Distance

The relevant (b, c , x̂)-dependent term of δ(r , x̂) equals

n∑
i=1

(b′ + ci)(x̂i − x̂) = b′
n∑

i=1

(x̂i − x̂) + c
n∑

i=1

i(x̂i − x̂) .

The first term is zero since

n∑
i=1

(x̂i − x̂) =
n∑

i=1

x̂i − nx̂ = 0 .

The second term is zero if all codewords, x̂ ∈ S , satisfy

n∑
i=1

i x̂i = x̂
n∑

i=1

i =
1

2
n(n + 1)x̂ .
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Minimization of Pearson Distance

Principal Condition

2
n∑

i=1

i x̂i = (n + 1)
n∑

i=1

x̂i .

The remaining term is

1− 1

σrσx̂

n∑
i=1

x ′i (x̂i − x̂) ,

and it is independent of a, b, and c .

Conclusion

Minimum Pearson distance detector is (a, b, c)-immune.
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Properties of Codewords

Principal Condition Rewritten

n∑
i=1

(
i − n + 1

2

)
x̂i = 0 .

Properties

The inverse of a codeword is a codeword.

The reverse of a codeword is a codeword

Let n is odd, and x ∈ S . Assume that x̃ agrees with x on all
x̃i , i 6= (n + 1)/2, and x̃(n+1)/2 = 1− x̂(n+1)/2. Then, x̃ ∈ S .
The minimum distance of S equals unity.

If n is even, any x ∈ S contains an even number of ones.
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Counting using Generating Functions

Define a bi-variate generating function

hn(x , y) = (1 + xy)(1 + xy2) . . . (1 + xyn) .

The coefficient of x i0y j0 equals the number of sequences that
satisfy the conditions

n∑
i=1

xi = i0 and
n∑

i=1

ixi = j0 .

The number Ndc2(n) of dc2-balanced length-n codewords is

given by the coefficient of xn/2y
n(n+1)

4 .

The number N(n) of desired length-n codewords is given by

the sum of the coefficients of x iy
i(n+1)

2 , for 0 ≤ i ≤ n.
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Counting using Generating Functions (cont.)

Denote by Cm(i , j) the coefficient of x iy j in hm(x , y).

Recursive Relation

For m = 1, . . . , n, i = 0, . . . ,m, and j = 0, . . . ,m(m + 1)/2,

Cm(i , j) = Cm−1(i , j) + Cm−1(i − 1, j −m) ,

initial conditions C0(0, 0) = 1 and C0(i , j) = 0 for any
(i , j) 6= (0, 0).
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Computational Results

Table: Size of codebook, N(n), and Ndc2 (n).

n N(n) Ndc2(n)

4 4 2
5 8 0
6 8 0
7 20 0
8 18 8
9 52 0

10 48 0
11 152 0
12 138 58
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Asymptotical Analysis

Define stochastic variables

s = x1 + x2 + . . .+ xn and p = x1 + 2x2 + . . .+ nxn ,

where xi , 1 ≤ i ≤ n, are i.i.d. binary random variables.

E [x2
i ] = E [xi ] = 1/2 and E [xixj ] = 1/4 .

If n is large, by the central limit theorem, the number of
n-sequences, denoted by ϕ(s, p), is given by

ϕ(s, p) ≈ 2n

2πσsσp
√

1− ρ2
· e−

f (s,p)

2(1−ρ2) ,

where

f (s, p) =

(
s − µs
σs

)2

+

(
p − µp
σp

)2

− 2ρ(s − µs)(p − µp)

σsσp
.
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Asymptotical Analysis (cont.)

µs and µp are the average of s and p, respectively.

σ2
s and σ2

p are the variance of s and p, respectively.

ρ is the linear correlation between s and p.

µs = n
2 , σ2

s = n
4 ,

µp = n(n+1)
4 , σ2

p = n(n+1)(2n+1)
24 ,

ρ2 = 3
2 ·

n+1
2n+1 .

The number of dc2-balanced codewords is:

Ndc2(n) ≈ ϕ(µs , µp) ≈ 2n

2πσsσp
√

1− ρ2
,

and therefore

rdc2(n) ≈ 2 log2 n − log2
4
√

3

π
.
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Asymptotical Analysis (cont.)
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Redundancy Estimate

N(n) ≈ Ndc2(n) ·
n∑

s=0
s(n+1) mod 2=0

e
−

f

(
s,

(n+1)s
2

)
2(1−ρ2) .

For n odd, N(n) ≈ 2n

n3/2

√
24

π
.

For n even, N(n) ≈ 2n

n3/2

√
6

π
.

Redundancy Estimate

r(n) = n − log2 N(n) ≈ 3

2
log2 n + α ,

where α = −1.467... for n odd, and α = −0.467... for n even.
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Thank you!

Thank you!
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