On Failing Sets of the Interval-Passing Algorithm for Compressed Sensing

Yauhen Yakimenka¹, Eirik Rosnes²

 1 University of Tartu 2 University of Bergen and Simula Research Lab

Joint Estonian-Latvian Theory Days Lilaste 2016

Acknowledgements:

- Norwegian-Estonian Research Cooperation Programme (grant EMP133)
- ▶ Research Council of Norway (grant 240985/F20)
- ▶ Simula@UiB
- ▶ High Performance Computing Centre of University of Tartu

Compressed sensing

ъ

- Compressed sensing
- Interval-Passing Algorithm

< 口 > < 同 >

- Compressed sensing
- Interval-Passing Algorithm
- ► Failing sets

- Compressed sensing
- ▶ Interval-Passing Algorithm
- Failing sets
- Numerical results

Compressed sensing

- ▶ Interval-Passing Algorithm
- Failing sets
- Numerical results

Compressed sensing

- $\boldsymbol{x} \in \mathbb{R}^n k$ -sparse $A \in \mathbb{R}^{m \times n} \ (m < n)$ Only $\boldsymbol{y} = A\boldsymbol{x}$ is stored Reconstruction algorithms:
 - ▶ $|x|_0 \rightarrow \min$ (the sparsest x, in general NP-hard)
 - ▶ $|x|_1 \rightarrow \min$ (lin. programming)
 - ▶ Interval-Passing Algorithm (fast)

- Compressed sensing
- ▶ Interval-Passing Algorithm
- Failing sets
- Numerical results

IPA: basic idea

Assume $\boldsymbol{x} \in \mathbb{R}^n_{\geq 0}$. Consider one measurement (i.e. one linear equation in $A\boldsymbol{x} = \boldsymbol{y}$)

$$a_{cv_1}x_{v_1} + a_{cv_2}x_{v_2} + \dots + a_{cv_{-}}x_{v_{-}} = y_c$$

Image: A state of the stat

IPA: basic idea

Assume $\boldsymbol{x} \in \mathbb{R}^n_{\geq 0}$. Consider one measurement (i.e. one linear equation in $A\boldsymbol{x} = \boldsymbol{y}$)

$$x_{v_1} = \frac{1}{a_{cv_1}} \left(y_c - (a_{cv_2} x_{v_2} + \dots + a_{cv_n} x_{v_n}) \right)$$

Image: A state of the stat

IPA: basic idea

Assume $\boldsymbol{x} \in \mathbb{R}^n_{\geq 0}$. Consider one measurement (i.e. one linear equation in $A\boldsymbol{x} = \boldsymbol{y}$)

$$x_{v_1} = \frac{1}{a_{cv_1}} \left(y_c - (a_{cv_2} x_{v_2} + \dots + a_{cv_n} x_{v_n}) \right)$$

Assume we know lower bounds on x's: $x_{v_i} \ge \mu_{v_i}$.

< □ > < ⊡ > < ≣ > < ≣ > ≣ < ⊃ < ⊘
On Failing sets of IPA for Compressed Sensing

IPA: basic idea

Assume $\boldsymbol{x} \in \mathbb{R}^n_{\geq 0}$. Consider one measurement (i.e. one linear equation in $A\boldsymbol{x} = \boldsymbol{y}$)

$$x_{v_1} \leq \frac{1}{a_{cv_1}} \left(y_c - \left(a_{cv_2} \mu_{v_2} + \dots + a_{cv_r} \mu_{v_r} \right) \right)$$

Assume we know lower bounds on x's: $x_{v_i} \ge \mu_{v_i}$. We obtained a (new) upper bound on x_{v_1} .

Tanner graph

IPA (contd.)

IPA is a message passing algorithm on edges of Tanner graph

• each message is $[\mu, M]$

On Failing sets of IPA for Compressed Sensing

IPA (contd.)

IPA is a message passing algorithm on edges of Tanner graph

- each message is $[\mu, M]$
- initialisation e.g. $[0, +\infty]$

On Failing sets of IPA for Compressed Sensing

IPA (contd.)

IPA is a message passing algorithm on edges of Tanner graph

- each message is $[\mu, M]$
- initialisation e.g. $[0, +\infty]$
- ▶ update in measurement nodes as described

On Failing sets of IPA for Compressed Sensing

IPA (contd.)

IPA is a message passing algorithm on edges of Tanner graph

- each message is $[\mu, M]$
- initialisation e.g. $[0, +\infty]$
- ▶ update in measurement nodes as described
- ▶ update in variable nodes just max or min

On Failing sets of IPA for Compressed Sensing

 $[\max, \min]$

v

MI.

 c_1

142,M2

 c_2

IPA (contd.)

IPA is a message passing algorithm on edges of Tanner graph

- each message is $[\mu, M]$
- initialisation e.g. $[0, +\infty]$
- ▶ update in measurement nodes as described
- ▶ update in variable nodes just max or min
- ▶ output: lower bounds (IPA favours zeroes)

- Compressed sensing
- ▶ Interval-Passing Algorithm
- ► Failing sets
- Numerical results

Reduction to binary case

Two related problems:

$$IPA(\boldsymbol{y}, A) \qquad IPA(\boldsymbol{s}, B)$$
$$\boldsymbol{x} \in \mathbb{R}^{n}_{\geq 0} \qquad \boldsymbol{z} \in \{0, 1\}^{n}$$
$$supp \, \boldsymbol{x} = supp \, \boldsymbol{z}$$
$$A = (a_{ji}) \in \mathbb{R}^{m \times n}_{\geq 0} \qquad B = (b_{ji}) \in \{0, 1\}^{m \times n}$$
$$b_{ji} = \begin{cases} 0 & \text{if } a_{ji} = 0, \\ 1 & \text{otherwise}. \end{cases}$$
$$\boldsymbol{y} = A\boldsymbol{x} \qquad \boldsymbol{s} = B\boldsymbol{z} \end{cases}$$

Exactly the same recovered positions! From now on everything is binary (but operations in \mathbb{R})

Termatiko sets

Def: supp(x) is *termatiko set* in A if IPA returns all zeroes for $\boldsymbol{y} = A\boldsymbol{x}$

э.

Termatiko sets

Def: supp(x) is *termatiko set* in A if IPA returns all zeroes for $\boldsymbol{y} = A\boldsymbol{x}$

Graph-theoretic description of termatiko set T:

Termatiko sets

Def: supp (\boldsymbol{x}) is *termatiko set* in A if IPA returns all zeroes for $\boldsymbol{y} = A\boldsymbol{x}$

Graph-theoretic description of termatiko set T:

Termatiko sets

Def: supp (\boldsymbol{x}) is *termatiko set* in A if IPA returns all zeroes for $\boldsymbol{y} = A\boldsymbol{x}$

Graph-theoretic description of termatiko set T:

Condition 1: $c_0, c_2 \in N$ is connected to both T and S

Termatiko sets

Def: supp (\boldsymbol{x}) is *termatiko set* in A if IPA returns all zeroes for $\boldsymbol{y} = A\boldsymbol{x}$

Graph-theoretic description of termatiko set T:

Condition 2: $c_1 \in N$ is connected to T only and

$$\left\{ v \in \mathcal{N}_{T}\left(c_{1}\right) : \forall c' \in \mathcal{N}\left(v\right), \left|\mathcal{N}_{T}\left(c'\right)\right| \geq 2 \right\} \middle| \geq 2$$

Termatiko sets (contd.)

Intuition on condition 2 for measurement nodes:

Propagation of exact bound

Termatiko sets (contd.)

Intuition on condition 2 for measurement nodes:

Propagation of exact bound

Termatiko sets (contd.)

Intuition on condition 2 for measurement nodes:

Propagation of exact bound

General failing sets

Termatiko set \Rightarrow complete failure of IPA Partial recover possible

Proposition

The IPA fails to fully recover a nonnegative real signal $\mathbf{x} \in \mathbb{R}^n_{\geq 0}$ if and only if the support of \mathbf{x} contains a nonempty termatiko set.

Heuristic to find termatiko sets

▶ Observation: $T \cup S$ is a stopping set (as defined for erasure decoding)

Heuristic to find termatiko sets

- ▶ Observation: $T \cup S$ is a stopping set (as defined for erasure decoding)
- \blacktriangleright \Rightarrow termatiko set is always a subset of some stopping set

Heuristic to find termatiko sets

- ▶ Observation: $T \cup S$ is a stopping set (as defined for erasure decoding)
- \blacktriangleright \Rightarrow termatiko set is always a subset of some stopping set
- ▶ Heuristic: enumerate all (small) stopping sets and check all their subsets

- Compressed sensing
- ▶ Interval-Passing Algorithm
- Failing sets
- Numerical results

Numerical results

Measurement matrix	\hat{h}_{\min}	$\#(\hat{h}_{\min})$	s_{\min}	$\#(s_{\min})$
(3,11) array-based	3	3630	6	1815
(155,64) Tanner code	9	465	18	465
1368 \times 1824, IEEE802.16e	8	228	9	76
276×552 , irregular	8	184	15	46
$159\times 265,$ regular	7	106	14	53

ъ

Numerical results (contd.)

(3,6)-regular, protograph-based codes (200 codes generated for each lifting factor)

lifting factor	ave. d_{\min}	ave. \tilde{s}_{\min}	ave. \hat{h}_{\min}
100	6.84	5.92	3.90
200	9.21	7.75	5.80

Thank you

On Failing sets of IPA for Compressed Sensing

æ 👘