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What will you Learn from this Talk?

= Quantum Crypto & Teleportation

= Position-Based Cryptography
= No-Go Theorem

» Garden-Hose Model




Quantum Mechanics
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No-Cloning Theorem
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Quantum Key Distribution (QKD g |

[Bennett Brassard 84, Ekert 91]
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= inf-theoretic security against unrestricted eavesdroppers:

= quantum states are unknown to Eve, she cannot copy them
= honest players can check whether Eve interfered

= technically feasible: no quantum computation required,
only qguantum communication



Quantum Teleportation

7 [Bennett Brassard Crépeau Jozsa Peres Wootters 19¢

= does not contradict relativity theory

= teleported state can only be recovered
once the classical information % arrives



Port-Based Teleportation
8 [Ishizaka Hiroshima 2008]

= no correction operation required

= works only approximately
= requires 2" EPR pairs for teleporting n qubits



What to Learn from this Talk?

‘/Quantum Crypto & Teleportation

= Position-Based Cryptography

2 No-Go Theorem

» Garden-Hose Model




How to Convince Someone of Your Presence at a Location
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The Great Moon
Landing Hoax

http://www.unmuseum.org/moonhoax.htm



Basic Task: Position Verification
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= Prove you are at a certain location:

= |launching-missile command comes from within the
military headquarters

= talking to the correct country

m pizza delivery problem

= building block for advanced cryptographic tasks:
= authentication, position-based key-exchange
= can only decipher message at specific location

Can the geographical location of a player be used

as cryptographic credential ?




Basic task: Position Verification

Verifierl Prover Verifier2
= Prover wants to convince verifiers that she is at a
particular position

= no coalition of (fake) provers, i.e. not at the claimed
position, can convince verifiers

®m assumptions: = communication at speed of light
= instantaneous computation
= verifiers can coordinate



Position Verification: First Try
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= distance bounding [Brands Chaum ‘93]



Position Verification: Second Try

position verification is classically impossible !




Equivalent Attacking Game
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m copying classical information
= this is impossible quantumly



Position Verification: Quantum Try

[Kent Munro Spiller 03/10]

‘ .

5 :”1“*\@

-y
§~~
-y
e

m Let us study the attacking game



Attacking Game
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®m impossible
= but possible with entanglement!!
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Entanglement attack
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Entanglement attack
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m the correct person can reconstruct the qubit in time!
= the scheme is completely broken



more complicated schemes?

= Different schemes proposed by
= Chandran, Fehr, Gelles, Goyal, Ostrovsky [2010]
= Malaney [2010]
= Kent, Munro, Spiller [2010]
= Lau, Lo [2010]
= Unfortunately they can all be broken!

m general no-go theorem [Buhrman, Chandran,
Fehr, Gelles, Goyal, Ostrovsky, S 2010]



Most General Single-Round Scheme

21

m Let us study the attacking game



Distributed Q Computation in 1 Round
22 ‘ -

m tricky back-and-forth teleportation [Vaidman 03]

= using a double exponential amount of EPR pairs,
players succeed with probability arbitrarily close to 1

= improved to exponential in [Beigi Konig ‘11]



Using Port-Based Teleportation

23 [Beigi Kénig ‘11]
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Using Port-Based Teleportation

24 [Beigi Konig ‘11]
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No-Go Theorem

= Any position-verification protocol can be broken
= using a double-exponential number of EPR-pairs
= reduced to single-exponential [Beigi, Kbnig‘11]

= Question: is this optimal?
= Does there exist a protocol such that:

= any attack requires many EPR-pairs
= honest prover and verifiers efficient



Single-Qubit Protocol: SQP;

[Kent Munro Spiller 03/10]

f:40,1}" x {0,1}" — {0,1}

efficiently computable



Attacking Game for SQP;

27 5

if f(x,y)=0 if f(x,y)=1

= Define E( SQP;) := minimum number of EPR pairs
required for attacking SQP;



What to Learn from this Talk?

‘/Quantum Crypto & Teleportation
‘/Position-Based Cryptography
‘/No-Go Theorem

» Garden-Hose Model

arXiv:1109.2563
Buhrman, Fehr, S, Speelman
The Garden-Hose Model




The Garden-Hose Model
f:10,1}" x {0,1}" — {0,1}
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The Garden-Hose Model

f:{0,1}" x{0,1}" — {0,1}

f (ac, y) — O if water exits @ Alice
f(x,y) = 1 if water exits @ Bob

=
f

= based on their inputs, players connect pipes with pieces of hose
= Alice also connects a water tap
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The Garden-Hose Model

(o f:{0,1}" x {0,1}" — {0,1}

< f (:B, y) — O if water exits @ Alice
f(x,y) = 1 if water exits @ Bob

=
f

Garden-Hose complexity of f:
GH(f) := minimum number of pipes needed to compute f



Demonstration: Inequality on Two Bits
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n-Bit Inequality Puzzle
= GH( Inequality ) -

m demonstration: 3n
m nice good-night puzzle: 2n +1
m [Margalit Matsliah ‘12]: ~¥1.547n (using IBM’s SAT solver)

Solutions Services Products  Support & downloads

Ponder This

April 2012
<<March April May>>

m ~1.536n, ~1.505n, ~1.457n [Dodson ‘12], ~1.448n
m GH( Inequality ) , n [Pietrzak ‘11]



Inequality with 4 Pipes and 6 Inputs
& rc{1,...,6) ye{l,...,6} &=

= Alice knows where water exits if x=y
= vields 4 /log(6) Ya1.547 pipes per bit

1,4,6




Any f has GH(f)- 2"*!
f:40,1}" x {0,1}" — {0, 1}

Vi¥oee¥p
00...0 > connects iff
&'\ﬂ . f(OO...O,y)=O
XXy X, k) connects iff

f(x,y)=0

f(X,y)zl *

111 > connects iff
f(11...1,y)=0

f(x,y)=0 2" pipes f(x,y)=1



Any f has GH(f)- 2n*!
f:4{0,1}" x {0,1}" —s {0, 1}

) VAV e
\
{OO... O\ > connects iff
3\ £(00...0,y)=0
XXy X, > connects iff
f(x,y)=0
f(x,y)=0
N
’11{_.1\ > connects iff
f(11...1,y)=0

f(X,y)ZO 2n+1 p|pes f(X’y):l



Relationship between
E(SQP;) and GH(f)



GH(f) , E(SQP;)




= using x &y, can follow the water/qubit % Alice’s Y,
telep. keys telep. keys

m correct water/qubit using all
measurement outcomes ><



. GH(f) = E(SQPy) ?
= last slide: GH(f) , E(SQP;)
= The two models are not equivalent:
= exists f such that GH(f) = n, but E(SQP) - log(n)
= Quantum garden-hose model:
= give Alice & Bob also entanglement

m research question: are the models now
equivalent?



Garden-Hose Complexity Theory

= every f has GH(f) - 2"*!
= if fin logspace, then GH(f) - polynomial
n efficient f & no efficient attack ) P= L
m exist f with GH(f) exponential (counting argument)
m for g 2 {equality, IP, majority}: GH(g) , n log(n)
m techniques from communication complexity

= Many open problems!



What Have You Learned from this Talk?
‘/Port-Based Quantum Teleportation
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What Have You Learned from this Talk?

»
& & P

= Impossible unconditionally, but attack requires
unrealistic amounts of resources

‘/Garden-Hose Model

= Restricted class of single-qubit schemes: SQP;
= Easily implementable

m Garden-hose model to study attacks

= Connections to complexity theory



Open Problems

= Is Quantum-GH(f) equivalent to E(SQP,)?

= Find good lower bounds on E(SQP)

m Does P=L/poly imply f in P with GH(f) > poly ?
= Are there other position-verification schemes?

m Parallel repetition, link with Semi-Definite
Programming (SDP) and non-locality.

= Implementation: handle noise & limited precision
= Can we achieve other position-based primitives?



