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1. ND-AUTOMATA

Definition

(Po(M) stands for the set of non-empty subsets of M)

We keep sets X and Y fixed.



Some notation

- X* :=U(X™: n>0) is the set of all input strings,

- Y* :=U(Y™ n > 0) is the set of all output sytrings,

- 0 IS the empty string,

: || is the length of a string o € X*U Y™,

- o [ 3. the string « is an initial segment of 5.

- a1 3. the greatest common initial segment of a and (.
Yy =Yl for a € X*.

If a,8 € X*, |af < |B] and L C Yg, then

- the restriction of L to |« is
Llaw .= {~v € Ya: yC § for some § € K},
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ND-operators and generalized states

ND operators, if considered as sets of ordered pairs, are ordered
by inclusion:
f Cgqiff f(a) C g(e) foOr all o € X*.
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ND-operators and generalized states

ND operators, if considered as sets of ordered pairs, are ordered
by inclusion:
f Cgqiff f(a) C g(e) for all o € X*.

We can associate with any ND-automaton A an ND-operator T
as follows: for every a € X*,
(T(a) = the set of all possible responses to a.}
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More generally, every macrostate Zg C Z induces an ND-operator
Tz, as follows:

[(ylyQ yn) € Ty (z122 - - T fF J

n = m and Y; € )\(CBZ,ZZ) with zZ1 € ZO and Zi4+1 c 5(3727'27,)

In particular, Ty, =T, and Ty = <.
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More generally, every macrostate Zg C Z induces an ND-operator
Tz, as follows:

[(ylyQ yn) € Ty (z122 - - T fF J

n=m and y; € A(x;, z;) wWith 21 € Zg and z;41 € 6(x4, 2;)
In particular, Ty, =T, and Ty = <.

By a generalized state of A we mean any ND-operator f such
that f C T.
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More generally, every macrostate Zg C Z induces an ND-operator
Tz, as follows:

[(ylyQ yn) € Ty (z122 - - T fF J

n = m and Y; € )\(CBZ,ZZ) with zZ1 € ZO and Zi4+1 c 5(3727'27,)

In particular, Ty, =T, and Ty = <.

By a generalized state of A we mean any ND-operator f such
that f C T.

The poset of all generalized states is closed under arbitrary
nonempty unions and forms a complete lattice with top 7" and

bottom &.
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Experiments and observables

A simple experiment on an automaton A consists of applying
an input string to A in an arbitrary (unknown!) initial state and
registering the response string produced by the automaton (the
outcome).

(An adaptive experiment is determined by a partial function Y* — X.)
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A simple experiment on an automaton A consists of applying
an input string to A in an arbitrary (unknown!) initial state and
registering the response string produced by the automaton (the
outcome).

(An adaptive experiment is determined by a partial function Y* — X.)

We identify a simple experiment with the corresponding
input string.
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Experiments and observables

A simple experiment on an automaton A consists of applying
an input string to A in an arbitrary (unknown!) initial state and
registering the response string produced by the automaton (the
outcome).

(An adaptive experiment is determined by a partial function Y* — X.)

We identify a simple experiment with the corresponding
input string.

An observable of A associated with an experiment « is any func-
tion ¢ whose domain is T'(«).
The observable is measured first fulfilling the experiment o and then calcu-

lating the value of ¢ on the registered outcome.
19
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2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.
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2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

Statements

An (experimental) statement about A is a pair («a, K) with
a € X* and K C T(«) interpreted as an assertion

the outcome of « lies in K |.

22



2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.
Statements
An (experimental) statement about A is a pair («a, K) with

a € X* and K C T(«) interpreted as an assertion
the outcome of « lies in K |.

(a, K) is true in state z : T.(a) C K.
(o, K) is false in state z : KNT.(a) = 2.
(o, K) is true of A if it is true in all states z.

(o, K) is possible in A if it is true in some state z.
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2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.
Statements

An (experimental) statement about A is a pair (a, K) with
a € X* and K C T'(a) interpreted as an assertion

‘the outcome of a lies in K .

(a, K) is true in state z : T.(a) C K.
(o, K) is false in state z : KNT.(a) = 2.

(a, K) is true of A if it is true in all states z.
(o, K) is possible in A if it is true in some state z.

Let F stand for the set of all statements.
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Entailment

informally:

formally:
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Entailment

mformally

formally:
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Equivalent statements

In the classical propositional logic equivalent formulas present the same propo-

sition, and all propositions form a Boolean algebra.
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Equivalent statements

In the classical propositional logic equivalent formulas present the same propo-

sition, and all propositions form a Boolean algebra.
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Equivalent statements

In the classical propositional logic equivalent formulas present the same propo-

sition, and all propositions form a Boolean algebra.

The equivalence classes [(«, K)] of ~ are considered as experi-
mental propositions about A.
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The logic
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The logic

We may consider the logic as an algebraic system (L, <1.0, 1),
where the elements 0,1 of L and an operation L on L are
defined as follows:

0:=[(0, ] ], [1:=[a,T@N]]. | [(a, K)I* := [(a, —K)] |
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Normally, joins and meets in L are partial operations.
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Proposition
The logic L is an orthoposet, i.e., for all p,q € LL
-0<p<1,

- ptt =,

+ if p < q, then ¢+ < pt,
-p/\pLzO and p\/plz :

In an orthoposet, De Morgan laws hold in the following form:
if one side in the subsequent equalities is defined, then the
other also is, and both are equal:

- (pV @)t =ptAgh
- (pAg)t=ptvgt.
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For every a« € X*, let
Lo :={[(e, K)]: K CT(a)}
be the set of all propositions decidable by the experiment o.
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For every a« € X*, let
Lo :={[(e, K)]: K CT(a)}
be the set of all propositions decidable by the experiment o.

We say that two or more propositions are coherent if they all
belong to the same component L.
We write p | ¢ to mean that p and ¢ are coherent.

Only coherent propositions can be (experimentally) decided
simultaneously.
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For every a« € X*, let
Lo ;= {[(a, K)]: K CT()}
be the set of all propositions decidable by the experiment o.

We say that two or more propositions are coherent if they all
belong to the same component L.
We write p | ¢ to mean that p and g are coherent.

{Only coherent propositions can be (experimentally) decided]

simultaneously.

Theorem
Each subset L, contains 0,1 and is closed under operations

\/,/\,L. Moreover, it forms a complete atomistic Boolean sub-
algebra of L.




3. STATES AND OBSERVABLES ON A LOGIC
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3. STATES AND OBSERVABLES ON A LOGIC

Let L be the logic of an ND-automaton A.
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STATES AND OBSERVABLES ON A LOGIC

Let L be the logic of an ND-automaton A.

Filters and states

For example, {1} and L itself are examples of complete filters.
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STATES AND OBSERVABLES ON A LOGIC

Let L be the logic of an ND-automaton A.

Filters and states

Filters of L may be interpreted as truth sets in L.
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Theorem
(a) if f is a generalized state of A, then the subset

fTi=A{l(a, K)] € L: f(a) C K}
iIs a complete filter.

(b) If ' is a complete filter of L, then the mapping
Ft:=a—NK: [(o, K)] € F)
IS a generalized state of A.

(c) The transformations I and ¥ are mutually inverse and es-
tablish an anti-isomorphism between the lattices of generalized
states and complete filters.
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Theorem
(a) if f is a generalized state of A, then the subset

fT:=A{l(a, K)] € L: f(a) C K}
IS a complete filter.

(b) If ' is a complete filter of L, then the mapping
Ft:=a— N(K: [(a, K)] € F)
iS @ generalized state of A.

(c) The transformations T and ¥ are mutually inverse and es-
tablish an anti-isomorphism between the lattices of generalized
states and complete filters.

fT is the set of propositions true in the generalized state f
F*is a generalized state in which just propositions from F are true.
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Blocks and observables

Two elements p and g of L are said to be orthogonal (in symbols,
p L q), if p<qt or, equivalently, g < p=.

A subset of L is orthogonal if it is empty or its elements are
mutually orthogonal.
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Blocks and observables

Two elements p and g of L are said to be orthogonal (in symbols,
p L q), if p<qt or, equivalently, g < p=.

A subset of L is orthogonal if it is empty or its elements are
mutually orthogonal.

In the rest, we assume that Y (hence, also every T(a)) is
finite, and deal only with finite maximal orthogonal subsets.
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Blocks and observables

Two elements p and g of LL are said to be orthogonal (in symbols,
p L q), if p<qt or, equivalently, g < p=.
A subset of L is orthogonal if it is empty or its elements are

mutually orthogonal.

A block in L is a maximal orthogonal subset every subset of
which has a join.

In the rest, we assume that Y (hence, also every T(«)) is]

Q‘inite, and deal only with finite maximal orthogonal subsets.

A maximal orthogonal subset B of L is a block if and only if
it is coherent.
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An observable for L is a function ® whose domain is a block. I

If

- ¢ IS an observable associated with an experiment «,
- Qo is the corresponding partition of T(«),
then, setting for every K € Qq,

[¢T([(Q,K)]) = ¢(B), where 3 is any element of KJ,

we obtain a function chf defined elsewhere on the blok By, i.e.,
an observable for L,
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An observable for I is a function ® whose domain is a block. I

If

- ¢ IS an observable associated with an experiment «,
- Qo is the corresponding partition of T'(«),
then, setting for every K € Qa,

[quf([(oz,K)]) = ¢(B), where 3 is any element of KJ,

we obtain a function ng defined elsewhere on the blok B¢, i.e.,
an observable for L,

Every observable ® for L can be obtained in this way from an
appropriate (and unique) observable &% of A.
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More formally:

Theorem
(a) If ¢ is an observable of A associated with an experiment
a, then the function ¢ on By defined by
¢T([(a, K)]) := ¢(B) where 3 € K
is an observable for L.
(b) If @ is an observable for L with domain B C L, for some
a € X*, then the function ®* on T'(«) defined by
®¥(B) := P([(a, K)]) Where K 5
is an observable of A.

(c) The transformations 1 and { are mutually inverse and es-
tablish a bijective correspondence between observables of A
and observables for L.
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