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1. ND-AUTOMATA

Definition

By a (non-deterministic) automaton we mean a quintuple A :=

(X, Y, Z, δ, λ), where
¦ X is the set of inputs,
¦ Y is the set of outputs,
¦ Z is the set of states,
¦ δ is the next-state function X × Z → P0(Z),
¦ λ is the output function X × Z → P0(Y ),

all without any finiteness assumptions.
(P0(M) stands for the set of non-empty subsets of M)

8



1. ND-AUTOMATA

Definition

By a (non-deterministic) automaton we mean a quintuple A :=

(X, Y, Z, δ, λ), where
¦ X is the set of inputs,
¦ Y is the set of outputs,
¦ Z is the set of states,
¦ δ is the next-state function X × Z → P0(Z),
¦ λ is the output function X × Z → P0(Y ),

all without any finiteness assumptions.
(P0(M) stands for the set of non-empty subsets of M)

We keep sets X and Y fixed.
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Some notation

¦ X∗ :=
⋃
(Xn: n ≥ 0) is the set of all input strings,

¦ Y ∗ :=
⋃
(Y n: n ≥ 0) is the set of all output sytrings,

¦ o is the empty string,
¦ |α| is the length of a string α ∈ X∗ ∪ Y ∗,
¦ α @ β: the string α is an initial segment of β.
¦ α u β: the greatest common initial segment of α and β.
¦ Yα := Y |α| for α ∈ X∗.

If α, β ∈ X∗, |α| ≤ |β| and L ⊆ Yβ, then
¦ the restriction of L to |α| is

L|α := {γ ∈ Yα: γ @ δ for some δ ∈ K},
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ND-operators and generalized states

A (sequential) ND-operator is a mapping f : X∗ → P(Y ∗) such

that
¦ if α ∈ X∗, then f(α) ⊆ Yα,
¦ if α @ β ∈ X∗, then f(α) = f(β)|α.
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that
¦ if α ∈ X∗, then f(α) ⊆ Yα,
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ND operators, if considered as sets of ordered pairs, are ordered

by inclusion:
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ND-operators and generalized states

A (sequential) ND-operator is a mapping f : X∗ → P(Y ∗) such

that
¦ if α ∈ X∗, then f(α) ⊆ Yα,
¦ if α @ β ∈ X∗, then f(α) = f(β)|α.

ND operators, if considered as sets of ordered pairs, are ordered
by inclusion:

f ⊆ g iff f(α) ⊆ g(α) for all α ∈ X∗.

We can associate with any ND-automaton A an ND-operator T

as follows: for every α ∈ X∗,®

­

©

ª
T (α) := the set of all possible responses to α.
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More generally, every macrostate Z0 ⊆ Z induces an ND-operator

TZ0
as follows:

¾

½

»

¼

(y1y2 · · · yn) ∈ TZ0
(x1x2 · · ·xm) iff

n = m and yi ∈ λ(xi, zi) with z1 ∈ Z0 and zi+1 ∈ δ(xi, zi).

In particular, TZ = T , and T∅ = ∅.
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More generally, every macrostate Z0 ⊆ Z induces an ND-operator

TZ0
as follows:

¾

½

»

¼

(y1y2 · · · yn) ∈ TZ0
(x1x2 · · ·xm) iff

n = m and yi ∈ λ(xi, zi) with z1 ∈ Z0 and zi+1 ∈ δ(xi, zi).

In particular, TZ = T , and T∅ = ∅.

By a generalized state of A we mean any ND-operator f such

that f ⊆ T .
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More generally, every macrostate Z0 ⊆ Z induces an ND-operator

TZ0
as follows:

¾

½

»

¼

(y1y2 · · · yn) ∈ TZ0
(x1x2 · · ·xm) iff

n = m and yi ∈ λ(xi, zi) with z1 ∈ Z0 and zi+1 ∈ δ(xi, zi).

In particular, TZ = T , and T∅ = ∅.

By a generalized state of A we mean any ND-operator f such

that f ⊆ T .

The poset of all generalized states is closed under arbitrary

nonempty unions and forms a complete lattice with top T and

bottom ∅.
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Experiments and observables

A simple experiment on an automaton A consists of applying

an input string to A in an arbitrary (unknown!) initial state and

registering the response string produced by the automaton (the

outcome).

(An adaptive experiment is determined by a partial function Y ∗ → X.)
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(An adaptive experiment is determined by a partial function Y ∗ → X.)

¾

½

»

¼

We identify a simple experiment with the corresponding

input string.
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Experiments and observables

A simple experiment on an automaton A consists of applying

an input string to A in an arbitrary (unknown!) initial state and

registering the response string produced by the automaton (the

outcome).

(An adaptive experiment is determined by a partial function Y ∗ → X.)

¾

½

»

¼

We identify a simple experiment with the corresponding

input string.

An observable of A associated with an experiment α is any func-

tion φ whose domain is T (α).

The observable is measured first fulfilling the experiment α and then calcu-

lating the value of φ on the registered outcome.
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2. LOGIC OF AN ND-AUTOMATON
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2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.
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2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

Statements

An (experimental) statement about A is a pair (α, K) with

α ∈ X∗ and K ⊆ T (α) interpreted as an assertion
®

­

©

ªthe outcome of α lies in K .
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2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

Statements

An (experimental) statement about A is a pair (α, K) with

α ∈ X∗ and K ⊆ T (α) interpreted as an assertion
®

­

©

ªthe outcome of α lies in K .

(α, K) is true in state z : Tz(α) ⊆ K.

(α, K) is false in state z : K ∩ Tz(α) = ∅.

(α, K) is true of A if it is true in all states z.

(α, K) is possible in A if it is true in some state z.
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2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

Statements

An (experimental) statement about A is a pair (α, K) with
α ∈ X∗ and K ⊆ T (α) interpreted as an assertion

®

­

©

ªthe outcome of α lies in K .

(α, K) is true in state z : Tz(α) ⊆ K.

(α, K) is false in state z : K ∩ Tz(α) = ∅.

(α, K) is true of A if it is true in all states z.

(α, K) is possible in A if it is true in some state z.

Let E stand for the set of all statements.
24



Entailment

(α, K) entails (β, L) (in symbols, (α, K) ¹ (β, L)):

informally:
any possible outcome of β compatible with the proviso that the statement
(α, K) is true must belong to L

formally:

for all δ ∈ T (β), if δ|(α u β) ∈ K|(α u β), then δ ∈ L.
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Entailment

(α, K) entails (β, L) (in symbols, (α, K) ¹ (β, L)):

informally:
any possible outcome of β compatible with the proviso that the statement
(α, K) is true must belong to L

formally:

for all δ ∈ T (β), if δ|(α u β) ∈ K|(α u β), then δ ∈ L.

Proposition

The relation ¹ is a preorder on E,

(α, K) ¹ (α, L) iff K ⊆ L,

(α,∅) ¹ (β, L),

(α, K) ¹ (β, T (β)),

if (α, K) ¹ (β, L), then (β,−L) ¹ (α,−K).
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Equivalent statements

In the classical propositional logic equivalent formulas present the same propo-

sition, and all propositions form a Boolean algebra.
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Equivalent statements

In the classical propositional logic equivalent formulas present the same propo-

sition, and all propositions form a Boolean algebra.

(α, K) and (β, L) are equivalent (in symbols, (α, K) ' (β, L))

if they entail each other:

(α, K) ¹ (β, L) and (β, L) ¹ (α, K).
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Equivalent statements

In the classical propositional logic equivalent formulas present the same propo-

sition, and all propositions form a Boolean algebra.

(α, K) and (β, L) are equivalent (in symbols, (α, K) ' (β, L))

if they entail each other:

(α, K) ¹ (β, L) and (β, L) ¹ (α, K).

¾

½

»

¼

The equivalence classes [(α, K)] of ' are considered as experi-

mental propositions about A.
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The logic

The logic of A is defined to be the set L := E/' of all propo-

sitions. The preorder ¹ induces, in a standard way, an order

relation ≤ on L:

[(α, K)] ≤ [(β, L)] iff (α, K) ¹ (β, L) .
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The logic

The logic of A is defined to be the set L := E/' of all propo-

sitions. The preorder ¹ induces, in a standard way, an order

relation ≤ on L:

[(α, K)] ≤ [(β, L)] iff (α, K) ¹ (β, L) .

We may consider the logic as an algebraic system (L,≤,⊥ ,0,1),

where the elements 0,1 of L and an operation ⊥ on L are

defined as follows:®

­

©

ª
0 := [(α,∅)] ,

®

­

©

ª
1 := [(α, T (α))] ,

²

±

¯

°
[(α, K)]⊥ := [(α,−K)] .
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Proposition

The logic L is an orthoposet, i.e., for all p, q ∈ L

¦ 0 ≤ p ≤ 1,

¦ p⊥⊥ = p,

¦ if p ≤ q, then q⊥ ≤ p⊥,

¦ p ∧ p⊥ = 0 and p ∨ p⊥ = 1.
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Proposition

The logic L is an orthoposet, i.e., for all p, q ∈ L

¦ 0 ≤ p ≤ 1,

¦ p⊥⊥ = p,

¦ if p ≤ q, then q⊥ ≤ p⊥,

¦ p ∧ p⊥ = 0 and p ∨ p⊥ = 1.

Normally, joins and meets in L are partial operations.
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Proposition

The logic L is an orthoposet, i.e., for all p, q ∈ L

¦ 0 ≤ p ≤ 1,

¦ p⊥⊥ = p,

¦ if p ≤ q, then q⊥ ≤ p⊥,

¦ p ∧ p⊥ = 0 and p ∨ p⊥ = 1.

In an orthoposet, De Morgan laws hold in the following form:

if one side in the subsequent equalities is defined, then the

other also is, and both are equal:
¦ (p ∨ q)⊥ = p⊥ ∧ q⊥,
¦ (p ∧ q)⊥ = p⊥ ∨ q⊥.
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For every α ∈ X∗, let

Lα := {[(α, K)]: K ⊆ T (α)}
be the set of all propositions decidable by the experiment α.
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For every α ∈ X∗, let

Lα := {[(α, K)]: K ⊆ T (α)}
be the set of all propositions decidable by the experiment α.

We say that two or more propositions are coherent if they all

belong to the same component Lα.

We write p |◦ q to mean that p and q are coherent.
¾

½

»

¼

Only coherent propositions can be (experimentally) decided

simultaneously.
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For every α ∈ X∗, let

Lα := {[(α, K)]: K ⊆ T (α)}
be the set of all propositions decidable by the experiment α.

We say that two or more propositions are coherent if they all

belong to the same component Lα.

We write p |◦ q to mean that p and q are coherent.
¾

½

»

¼

Only coherent propositions can be (experimentally) decided

simultaneously.

Theorem
Each subset Lα contains 0,1 and is closed under operations

∨,∧,⊥. Moreover, it forms a complete atomistic Boolean sub-

algebra of L.
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3. STATES AND OBSERVABLES ON A LOGIC
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3. STATES AND OBSERVABLES ON A LOGIC

Let L be the logic of an ND-automaton A.
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STATES AND OBSERVABLES ON A LOGIC

Let L be the logic of an ND-automaton A.

Filters and states

A filter of L is a subset F such that
¦ 1 ∈ F ,
¦ if p ∈ F , q ∈ L and p ≤ q, then q ∈ F ,
¦ if p, q ∈ F and p |◦ q, then p ∧ q ∈ F .

A filter F is said to be complete if it is closed under arbitrary

coherent meets.

For example, {1} and L itself are examples of complete filters.
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STATES AND OBSERVABLES ON A LOGIC

Let L be the logic of an ND-automaton A.

Filters and states

A filter of L is a subset F such that
¦ 1 ∈ F ,
¦ if p ∈ F , q ∈ L and p ≤ q, then q ∈ F ,
¦ if p, q ∈ F and p |◦ q, then p ∧ q ∈ F .

A filter F is said to be complete if it is closed under arbitrary

coherent meets.

Filters of L may be interpreted as truth sets in L.
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Theorem

(a) if f is a generalized state of A, then the subset

f† := {[(α, K)] ∈ L: f(α) ⊆ K}
is a complete filter.

(b) If F is a complete filter of L, then the mapping

F ‡ := α 7→ ⋂
(K: [(α, K)] ∈ F )

is a generalized state of A.

(c) The transformations † and ‡ are mutually inverse and es-

tablish an anti-isomorphism between the lattices of generalized

states and complete filters.
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Theorem

(a) if f is a generalized state of A, then the subset

f† := {[(α, K)] ∈ L: f(α) ⊆ K}
is a complete filter.

(b) If F is a complete filter of L, then the mapping

F ‡ := α 7→ ⋂
(K: [(α, K)] ∈ F )

is a generalized state of A.

(c) The transformations † and ‡ are mutually inverse and es-

tablish an anti-isomorphism between the lattices of generalized

states and complete filters.

f † is the set of propositions true in the generalized state f

F ‡ is a generalized state in which just propositions from F are true.
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Blocks and observables

Two elements p and q of L are said to be orthogonal (in symbols,

p ⊥ q), if p ≤ q⊥ or, equivalently, q ≤ p⊥.

A subset of L is orthogonal if it is empty or its elements are

mutually orthogonal.

A block in L is a maximal orthogonal subset every subset of

which has a join.
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Blocks and observables

Two elements p and q of L are said to be orthogonal (in symbols,

p ⊥ q), if p ≤ q⊥ or, equivalently, q ≤ p⊥.

A subset of L is orthogonal if it is empty or its elements are

mutually orthogonal.

A block in L is a maximal orthogonal subset every subset of

which has a join.

¾

½

»

¼

In the rest, we assume that Y (hence, also every T (α)) is

finite, and deal only with finite maximal orthogonal subsets.
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Blocks and observables

Two elements p and q of L are said to be orthogonal (in symbols,

p ⊥ q), if p ≤ q⊥ or, equivalently, q ≤ p⊥.

A subset of L is orthogonal if it is empty or its elements are

mutually orthogonal.

A block in L is a maximal orthogonal subset every subset of

which has a join.

¾

½

»

¼

In the rest, we assume that Y (hence, also every T (α)) is

finite, and deal only with finite maximal orthogonal subsets.

A maximal orthogonal subset B of L is a block if and only if

it is coherent.
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Lemma

(a) If α ∈ X∗, then the set

Bα := {[α, β)]: β ∈ T (α)}
is a block, and the transfer α 7→ Bα is injective.

(b) More generally, if Q is a partition of T (α), then the set

{[(α, K)]: K ∈ Q}
is a block.

(c) In particular, every observable φ associated with α induces

a partition of T (α) and, hence, a block Bφ.

(d) Every block of L arises as in (c).
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An observable for L is a function Φ whose domain is a block.
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An observable for L is a function Φ whose domain is a block.

If
¦ φ is an observable associated with an experiment α,
¦ Qα is the corresponding partition of T (α),

then, setting for every K ∈ Qα,²

±

¯

°
φ†([(α, K)]) := φ(β), where β is any element of K ,

we obtain a function φ† defined elsewhere on the blok Bφ, i.e.,

an observable for L,
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An observable for L is a function Φ whose domain is a block.

If
¦ φ is an observable associated with an experiment α,
¦ Qα is the corresponding partition of T (α),

then, setting for every K ∈ Qα,²

±

¯

°
φ†([(α, K)]) := φ(β), where β is any element of K ,

we obtain a function φ† defined elsewhere on the blok Bφ, i.e.,

an observable for L,

Every observable Φ for L can be obtained in this way from an

appropriate (and unique) observable Φ‡ of A.
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More formally:

Theorem

(a) If φ is an observable of A associated with an experiment

α, then the function φ† on Bφ defined by

φ†([(α, K)]) := φ(β) where β ∈ K

is an observable for L.

(b) If Φ is an observable for L with domain B ⊆ Lα for some

α ∈ X∗, then the function Φ‡ on T (α) defined by

Φ‡(β) := Φ([(α, K)]) where K 3 β

is an observable of A.

(c) The transformations † and ‡ are mutually inverse and es-

tablish a bijective correspondence between observables of A

and observables for L.
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