Introduction	Causality	Causality in semantics	Consequences	Conclusions

Expressing Causality in Categorical Models of Functional Reactive Programming

Wolfgang Jeltsch

TTÜ Küberneetika Instituut Tallinn, Estonia

Joint Estonian-Latvian Theory Days at Medzābaki

29 September 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Eunctiona	l roactivo	rogramming		
0000	000	0000	00	
Introduction	Causality	Causality in semantics	Consequences	Conclusions

Functional reactive programming

- extension of functional programming
- supports description of temporal behavior
- two key concepts:
 - computing with time-varying values and events

- time-dependent type membership
- new type constructors:
 - □ time-varying values
 - ♦ events

- models are cartesian closed categories with coproducts (CCCCs)
- use of basic category structure:

• use of CCCC structure:

Introduction	Causality	Causality in semantics	Consequences	Conclusions	
00●0	000	0000	00	O	
Categorical models of FRP					

• ingredients:

totally ordered set (\mathcal{T},\leqslant) time scale CCCC $\mathcal B$ simple types and functions

 product category B^T models FRP types and operations with indices denoting inhabitation times:

Introduction	Causality	Causality in semantics	Consequences	Conclusions
0000	000		00	O
Meanings of	FRP type	constructors		

• general picture:

simple type constructors \longmapsto CCCC structure of $\mathcal{B}^{\mathcal{T}}$ type constructors \Box and $\diamond \longmapsto$ functors \Box and \diamond

- CCCC structure of B^T from CCCC structure of B with operations working pointwise
- functors \Box and \diamond defined as follows:

$$(\Box A)(t) = \prod_{t' \ge t} A(t')$$
$$(\Diamond A)(t) = \coprod_{t' \ge t} A(t')$$

- looks for the next key press up to a certain timeout
- emits a value of type ◊(Key + 1) when it starts: Case 1 key press before timeout:

Case 2 no key press before timeout:

hypothetical polymorphic operation *d* from ◊(τ₁ + τ₂) to ◊τ₁ + ◊τ₂:

$$\iota_1(x) @ t' \mapsto \iota_1(x @ t')$$
$$\iota_2(y) @ t' \mapsto \iota_2(y @ t')$$

 applying *d* to the output of the key press listener gives value of type ◇Key + ◇1:

key press before timeout $\iota_1(K @ t_k)$ no key press before timeout $\iota_2(tt @ t^*)$

- tells us immediately if the user will press a key before the timeout
- so d cannot exist

 polymorphic operations from ◊(τ₁ + τ₂) to ◊τ₁ + ◊τ₂ modeled by natural transformations τ with

$$\tau_{A,B}: \diamondsuit(A+B) \to \diamondsuit A + \diamondsuit B$$

• there is such a τ (which is even an isomorphism):

$$\prod_{t' \ge t} \left(A(t') + B(t') \right) \cong \prod_{t' \ge t} A(t') + \prod_{t' \ge t} B(t')$$

reason:

semantics do not deal with time-dependent knowledge about values

 \bullet replace category $\mathcal{B}^{\mathcal{T}}$ by category \mathcal{B}^{\prime} where

$$I = \{(t, t_o) \in T imes T \mid t \leqslant t_o\}$$

dealing with knowledge at t_o:

functors □ and ◇ defined as follows:

$$(\Box A)(t, t_{o}) = \prod_{t' \in [t, t_{o}]} A(t', t_{o})$$
$$(\Diamond A)(t, t_{o}) = \prod_{t' \in [t, t_{o}]} A(t', t_{o}) + 1$$

Compatibility of knowledge transformations

- knowledge transformations may be incompatible
- \bullet extend set ${\it I}$ to category ${\cal I}$ by adding morphisms

$$(t, t_{o}, t'_{o})$$
: $(t, t'_{o}) \rightarrow (t, t_{o})$

for $t \leqslant t_{\sf o} \leqslant t'_{\sf o}$

- replace product category \mathcal{B}^{\prime} by functor category $\mathcal{B}^{\mathcal{I}}$
- objects $A(t, t_o, t'_o)$ model knowledge reduction
- \bullet morphisms of $\mathcal{B}^\mathcal{I}$ are natural transformations
- means that knowledge transformations are compatible:

$$\begin{array}{c} A(t,t_{o}) \xleftarrow{A(t,t_{o},t_{o}')} & A(t,t_{o}') \\ f_{(t,t_{o})} \downarrow & & \downarrow f_{(t,t_{o}')} \\ B(t,t_{o}) \xleftarrow{B(t,t_{o},t_{o}')} & B(t,t_{o}') \end{array}$$

 \bullet definition of functor \diamondsuit allows for never occurring events:

$$(\diamond A)(t, t_{o}) = \prod_{t' \in [t, t_{o}]} A(t', t_{o}) + 1$$

- introduction of new functor $\diamond_{-} : \mathcal{T} \to (\mathcal{B}^{\mathcal{I}})^{\mathcal{B}^{\mathcal{I}}}$ where \mathcal{T} is the category of (\mathcal{T}, \leqslant)
- ◇_{t_b} models an event type constructor with upper bound t_b for occurrence times:

$$(\diamond_{t_{\mathrm{b}}}A)(t,t_{\mathrm{o}}) = egin{cases} 0 & ext{if } t_{\mathrm{b}} < t \ \coprod_{t' \in [t,t_{\mathrm{o}}]}A(t',t_{\mathrm{o}}) & ext{if } t \leqslant t_{\mathrm{b}} \leqslant t_{\mathrm{o}} \ \coprod_{t' \in [t,t_{\mathrm{o}}]}A(t',t_{\mathrm{o}}) + 1 & ext{it } t_{\mathrm{o}} < t_{\mathrm{b}} \end{cases}$$

• $\diamond_{(t_{\rm b},t_{\rm b}')}$ models type conversion

0000	000	0000	00	0		
Meaning of event type constructor						

• type constructor \diamond is the least upper bound of all \diamond_{th} -constructors

ъ

• functor \diamond must be a colimit of the functor \diamond_- :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

If (T, \leq) has a maximum t_{\max} , then $\diamond \cong \diamond_{t_{\max}}$.

Theorem

If (T, \leq) has no maximum, \diamond models an event type constructor that allows for never occurring events.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Caucality	ancurad			U
Introduction	Causality	Causality in semantics	Consequences	Conclusions

Theorem

There are categorical models that do not contain any natural transformation τ with

$$au_{A,B}: \diamondsuit(A+B) \to \diamondsuit A + \diamondsuit B$$

.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 0000	Causality 000	Causality in semantics	Consequences	Conclusions •
Conclusions				

- categorical models of FRP that express causality by reflecting time-dependancy of knowledge
- liveness not expressed under certain conditions
- ultimate goal is an axiomatic semantics with the following properties:
 - expresses causality
 - expresses liveness constraint of \diamondsuit
 - covers the categorical semantics of this talk as a special case
 - models process type constructors, which are a generalization of \square and \diamondsuit