New developments in quantum algorithms Andris Ambainis University of Latvia

Probabilistic computation

01

- Probabilistic system with finite state space.
- Current state: probabilities p_i to be in state i.

 $\sum p_i = 1$

Quantum computation

Amplitude vector (α₁, ..., α_M),
Transitions:

$$\begin{pmatrix} \boldsymbol{\alpha'}_{1} \\ \dots \\ \boldsymbol{\alpha'}_{M} \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & u_{1M} \\ \dots & \dots \\ u_{M1} & \dots & u_{MM} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha}_{1} \\ \dots \\ \boldsymbol{\alpha}_{M} \end{pmatrix}$$
transition matrix
after the transition
$$\begin{array}{c} \mathbf{\alpha}_{1} \\ \mathbf{\alpha}_{M} \\ \mathbf{\alpha}_{M} \\ \mathbf{\alpha}_{M} \end{array}$$
before the transition

 $\cdot \sum_{i} |\alpha_{i}|^{2} = 1$

Allowed transitions

$$\begin{pmatrix} \alpha'_1 \\ \dots \\ \alpha'_M \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & u_{1M} \\ \dots & \dots & \dots \\ u_{M1} & \dots & u_{MM} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_M \end{pmatrix}$$

• U – unitary: • If $\sum_{i} |\alpha_{i}|^{2} = 1$, then $\sum_{i} |\alpha'_{i}|^{2} = 1$. Equivalent to $UU^{+}=I$.

Quantum computing vs. nature

Quantum computing

- Unitary transformations U.
- Transformation U performed in one step.
- No intermediate states.

Quantum physics

- Physical evolution continuous time.
- Forces acting on a physical system – Hamiltonian H.

Evolution for time t: $U = e^{-iHt}$

Part 1

Quantum algorithms up to 2005

Shor's algorithm

- Factoring: given N=pq, find p and q.
- Best algorithm 2<sup>O(n^{1/3)}, n number of digits.
 </sup>
- Quantum algorithm O(n³) [Shor, 94].
- Cryptosystems based on hardness of factoring/discrete log become insecure.

Grover's search

- $\mathbf{X}_1 \ \mathbf{X}_2 \ \mathbf{X}_3 \qquad \mathbf{X}_N$
- Find i such that x_i=1.
- Queries: ask i, get x_i.
- Classically, N queries required.
- Quantum: $O(\sqrt{N})$ queries [Grover, 96].
- Speeds up any search problem.

NP-complete problems

• Does this graph have a Hamiltonian cycle?

- Hamiltonian cycles are:
 - Easy to verify;
 - Hard to find (too many possibilities).

• Let N – number of possible Hamiltonian cycles.

- Black box = algorithm that verifies if the ith candidate Hamiltonian cycle.
- Quantum algorithm with $O(\sqrt{N})$ steps.

Applicable to any search problem

Pell's equation

- Given d, find the smallest solution (x, y) to x²dy²=1.
- Probably harder than factoring and discrete logarithm.
- Best @lassical algorithms:
 for factoring;

• $2^{O(\sqrt{N})}$ for Pell's equation.

Hallgren, 2001: Quantum algorithm for Pell's equation.

Element distinctness [A, 2004]

- $\mathbf{X}_1 \ \mathbf{X}_2 \ \mathbf{X}_3 \qquad \mathbf{X}_N$
- Numbers $x_1, x_2, ..., x_{N.}$
- Determine if two of them are equal.
- Classically: N queries.
- Quantum: $O(N^{2/3})$.

Part 2

Formula evaluation

Evaluating AND-OR trees

- Variables x_i accessed by queries to a black box:
 - Input i;
 - Black box outputs x_i.
- Quantum case:
 - $\sum_{i} a_{i} |i\rangle \rightarrow \sum_{i} a_{i} (-1)^{x_{i}} |i\rangle$
- Evaluate T with the smallest number of queries.

Motivation

- Vertices = chess positions;
- Leaves = final positions;
- x_i=1 if the 1st player wins;
- At internal vertices, AND/OR evaluates whether the player who makes the move can win.

How well can we play chess if we only know the position tree?

Results (up to 2007)

- Full binary tree of depth d.
- N=2^d leaves.
- Deterministic: $\Omega(N)$.
- Randomized [SW,S]: $\Theta(N^{0.753...})$.
- Quantum?
- Easy q. lower bound: $\Omega(\sqrt{N})$.

New results

- [Farhi, Gutman, Goldstone, 2007]:O(√N) time algorithm for evaluating full binary trees in Hamiltonian query model.
- [A, Childs, Reichardt, Spalek, Zhang, 2007]: O(N^{1/2+0(1)}) time algorithm for evaluating any formulas in the usual query model.

What happens?

- If T=o, the state stays almost unchanged.
- If T=1, the state "scatters" into the tree.

Run for O(\sqrt{N}) time, check if the state $|\Psi\rangle$ is close to the starting state $|\Psi_{start}\rangle$.

When is the state unchanged?

- H forces acting on the system.
- (State $|\Psi\rangle$ unchanged) \leftrightarrow H $|\Psi\rangle$ =0.

 $e^{\text{-iHt}} \left| \Psi \right\rangle = \left| \Psi \right\rangle \Leftrightarrow H \left| \Psi \right\rangle = \text{0}.$

T = 0 example 0 0 **-a** -a AND AND OR a a 0 -a -a 0 $|\Psi\rangle$ remains unchanged by H.

Summary

- [Farhi, Gutman, Goldstone, 2007] Hamiltonian algorithm;
- [A, Childs, et al., 2007] Discrete time algorithm.
- $O(\sqrt{N})$ time for full binary tree;
- O(\sqrt{Nd}) for any formula of depth d;
- $O(N^{1/2+O(1)})$ for any formula.
- Improved to $O(\sqrt{N \log N})$ by [Reichardt, 2010].

Span programs [Karchmer, Wigderson, 1993]

- Target vector v.
- Input $x_1, ..., x_N \rightarrow$ vectors $v_1, ..., v_M$.
- Output $F(x_1, ..., x_N) = 1$ if there exist $V_{i1}, V_{i2}, ..., V_{ik}$:

 $V = V_{i1} + V_{i2} + \dots + V_{ik}$.

Composing span programs

- Span program S₁ with target t₁.
- Span program S₂ with target t₂.

Span program $S_1 \cup S_2$ with target $t_1 + t_2$.

Answers 1 if both S_1 and S_2 answer 1.

 $F_1, F_2 \rightarrow F_1 AND F_2$

Example

- MAJ $(x_1, x_2, x_3, x_4)=1$ if at least 2 x_i are equal to 1.
- Formula size: 8.
- Span program: 6.

Adversary bound [A, 2001, Hoyer, Lee, Špalek, 2007]

- Boolean function f(x₁, ..., x_N);
- Inputs $x = (x_1, ..., x_N);$
- Matrix A: A[x, y] \neq o only if f(x) \neq f(y)
- <u>Theorem</u> Computing f requires $\lambda(A)$

 $\max_{i} \quad \lambda(A \bullet D_{i})$ quantum queries

Summary

- Span programs = optimal quantum algorithms.
- Open problem: how to design good span programs?
- Quantum algorithm for perfect matchings?

Part 3

Solving systems of linear equations

The problem

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$$

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$$

- Given a_{ij} and b_i , find x_i .
- Best classical algorithm: O(N^{2.37...}).

Obstacles to quantum algorithm

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$$

- Obstacle 1: takes time O(N²) to read all a_{ii}.
- Solution: query access to a_{ii}.
- Grover: search N items with $O(\sqrt{N})$ quantum queries.
- Obstacle 2: takes time O(N) to output all x_i.

Harrow, Hassidim, Lloyd, 2008

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$$

$$a_{N1}x_{1} + a_{N2}x_{2} + \dots + a_{NN}x_{N} = b_{N}$$

Output =
$$\sum_{i=1}^{N} x_{i} |i\rangle$$

- Measurement \rightarrow i with probability x_i^2 .
- Estimating $c_1x_1+c_2x_2+\ldots+c_Nx_N$.

Seems to be difficult classically.

Harrow, Hassidim, Lloyd, 2008

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$$

- Running time for producing $\sum_{i=1}^{n} x_i |i\rangle$: O(log^c N), but with dependence on two other parameters.
- Exponential speedup, if the other parameters are good.

The main ideas

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$$

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$$

Easy-to-prepare

Solution

The main ideas

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \cdots & \cdots & \cdots & \cdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ x_N \end{pmatrix} b = \begin{pmatrix} b_1 \\ b_2 \\ \cdots \\ b_N \end{pmatrix} \qquad Ax = b$$
$$\sum_{i=1}^N b_i |i\rangle \longrightarrow \sum_{i=1}^N x_i |i\rangle$$
$$X = A^{-1}b$$
How do we apply A⁻¹?

- We can build a physical system with Hamiltonian A.
- Unitary e^{iA}.
- $e^{iA} \rightarrow A^{-1}$ via eigenvalue estimation.

Running time

- 1. Size of system $N \rightarrow O(\log^{c} N)$.
- Time to implement A O(1) for sparse matrices A, O(N) generally.
- 3. Condition number of A.

$$k = \frac{\mu_{\max}}{\mu_{\min}}$$

μ_{max} and μ_{min} – biggest and smallest eigenvalues of A

$$Time - O(\kappa^2 \log^c N)$$

Dependence on condition number

- Classical algorithms for sparse A: $O(N\sqrt{k})$.
- [Harrow, Hassidim, Llyod, 2008]: O(k² log^c N).
- [A, 2010]: O(k¹⁺⁰⁽¹⁾ log^c N), via improved version of eigenvalue estimation.
- [HHL, 2008]: $\Omega(k^{1-O(1)})$, unless BQP=PSPACE.

Open problem

- What problems can we reduce to systems of linear equations (with $\sum x_i |i\rangle$ as the answer)?
- Examples:
 - Search;
 - Perfect matchings in a graph;
 - Graph bipartiteness.

Biggest issue: condition number.