New developments in quantum algorithms

Andris Ambainis
University of Latvia

Probabilistic computation

0.1
2

- Probabilistic system with finite state space.
- Current state: probabilities p_{i} to be in state i.

$$
\sum_{i} p_{i}=1
$$

Quantum computation

$$
\text { (1) } 0.4+0.3 \mathrm{i}
$$

- Current state: amplitudes α_{i} to be in state i .

$$
\text { (2) } 3^{0.4-0.1 i} \quad \sum_{i}\left|\alpha_{i}\right|^{2}=1
$$

(4) 0.3

For most purposes, real (but negative) amplitudes suffice.

Quantum computation

- Amplitude vector $\left(\alpha_{1}, \ldots, \alpha_{M}\right), \quad \cdot \sum_{i}\left|\alpha_{i}\right|^{2}=1$
- Transitions:

Allowed transitions

$$
\left(\begin{array}{c}
\alpha_{1}^{\prime} \\
\ldots \\
\alpha_{M}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
u_{11} & \ldots & u_{1 M} \\
\ldots & \ldots & \ldots \\
u_{M 1} & \ldots & u_{M M}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\ldots \\
\alpha_{M}
\end{array}\right)
$$

- U - unitary:
- If $\sum_{i}\left|\alpha_{i}\right|^{2}=1$, then $\sum_{i}\left|\alpha_{i}^{\prime}\right|^{2}=1$.

Equivalent to $\mathrm{UU}^{+}=\mathrm{I}$.

Measurement

Quantum state:

$$
\alpha_{1}|1\rangle+\alpha_{2}|2\rangle+\ldots+\alpha_{M}|M\rangle
$$

prob. $\left|\alpha_{1}\right|^{2} \quad\left|\alpha_{2}\right|^{2} \quad\left|\alpha_{M}\right|^{2}$

Quantum computing vs. nature

Quantum computing

- Unitary transformations U.
- Transformation U performed in one step.
- No intermediate states.

Quantum physics

- Physical evolution continuous time.
- Forces acting on a physical system - Hamiltonian H.

Evolution for time t :

$$
U=e^{-i H t}
$$

Part 1

Quantum algorithms up to 2005

Shor's algorithm

- Factoring: given $\mathrm{N}=\mathrm{pq}$, find p and q .
- Best algorithm - $2^{\mathrm{O}\left(\mathrm{n}^{1 / 3}\right)}, \mathrm{n}$ - number of digits.
- Quantum algorithm - O(n³) [Shor, 94].
- Cryptosystems based on hardness of factoring/discrete log become insecure.

Grover's search

- Find i such that $\mathrm{x}_{\mathrm{i}}=1$.
- Queries: ask i, get x_{i}.
- Classically, N queries required.
- Quantum: $\mathrm{O}(\sqrt{ } \mathrm{N})$ queries [Grover, 96].
- Speeds up any search problem.

NP-complete problems

- Does this graph have a Hamiltonian cycle?
- Hamiltonian cycles are:
- Easy to verify;
- Hard to find (too many possibilities).

Quantum algorithm

0	1	0	\cdots	0
x_{1}	x_{2}	x_{3}		
x_{N}				

- Let N - number of possible Hamiltonian cycles.
- Black box = algorithm that verifies if the $i^{\text {th }}$ candidate - Hamiltonian cycle.
- Quantum algorithm with $\mathrm{O}(\sqrt{ } \mathrm{N})$ steps.

Applicable to any search problem

Pell's equation

- Given d, find the smallest solution (x, y) to x^{2} $d y^{2}=1$.
- Probably harder than factoring and discrete logarithm.
- Besz@lassitičl algorithms:
- for factoring;
- $2^{\mathrm{O}(\sqrt{ } \mathrm{N})}$ for Pell's equation.

Hallgren, 2001: Quantum algorithm for Pell's equation.

Element distinctness [A, 2004]

\[

\]

- Numbers $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}$.
- Determine if two of them are equal.
- Classically: N queries.
- Quantum: $\mathrm{O}\left(\mathrm{N}^{2 / 3}\right)$.

Formula evaluation

AND-OR tree

Evaluating AND-OR trees

- Variables x_{i} accessed by
 queries to a black box:
- Input i;
- Black box outputs x_{i}.
- Quantum case: $\sum_{i} a_{i}|i\rangle \rightarrow \sum_{i} a_{i}(-1)^{x_{i}}|i\rangle$
- Evaluate T with the smallest number of queries.

Motivation

- Vertices = chess positions;
- Leaves = final positions;
- $\mathrm{x}_{\mathrm{i}}=1$ if the 1 st player wins;
- At internal vertices, AND/OR evaluates whether the player who makes the move can win.

How well can we play chess if we only know the position tree?

Results (up to 2007)

- Full binary tree of depth d.

- $\mathrm{N}=2^{\mathrm{d}}$ leaves.
- Deterministic: $\Omega(\mathrm{N})$.
- Randomized [SW,S]: $\Theta\left(\mathrm{N}^{\mathrm{o} .753 \cdots} \cdot \mathrm{C}\right.$.
- Quantum?
- Easy q. lower bound: $\Omega(\sqrt{ } \mathrm{N})$.

New results

- [Farhi, Gutman, Goldstone, 2007]:O $(\sqrt{ } \mathrm{N})$ time algorithm for evaluating full binary trees in Hamiltonian query model.
- [A, Childs, Reichardt, Spalek, Zhang, 2007]: O($\mathrm{N}^{\left.1 / 2+()^{(1)}\right)}$ time algorithm for evaluating any formulas in the usual query model.

Augmented tree

Finite "tail" in one direction

Finite tail algorithm

Starting state:

What happens?

- If $\mathrm{T}=\mathrm{o}$, the state stays almost unchanged.
- If $T=1$, the state "scatters" into the tree.

Run for $\mathrm{O}(\sqrt{ } \mathrm{N})$ time, check if the state $|\Psi\rangle$ is close to the starting state $\left|\Psi_{\text {start }}\right\rangle$.

When is the state unchanged?

- H - forces acting on the system.
- (State $|\Psi\rangle$ unchanged) $\leftrightarrow \mathrm{H}|\Psi\rangle=0$.

$$
\mathrm{e}^{-\mathrm{iHt}}|\Psi\rangle=|\Psi\rangle \Leftrightarrow \mathrm{H}|\Psi\rangle=0 .
$$

What does $\mathrm{H}|\Psi\rangle=0$ mean?

H - adjacency matrix

$$
|\Psi\rangle=\sum_{i} a_{i}|i\rangle
$$

$$
H|\Psi\rangle=\left(b_{i}\right),
$$

$$
b_{i}=\sum_{(i, j)-e d_{g e}} a_{j}
$$

$\mathrm{H}|\Psi\rangle=\mathrm{o} \leftrightarrow$ for each $\mathrm{i}: \sum a_{j}=0$
(i, j)-edge

T = 0 example

$|\Psi\rangle$ remains unchanged by H .

T=1 case

No $|\Psi\rangle$ with $H|\Psi\rangle=0$.

Cannot place non-zero value here

Summary

- [Farhi, Gutman, Goldstone, 2007] Hamiltonian algorithm;
- [A, Childs, et al., 2007] Discrete time algorithm.
- $\mathrm{O}(\sqrt{ } \mathrm{N})$ time for full binary tree;
- $\mathrm{O}(\sqrt{ } \mathrm{Nd})$ for any formula of depth d ;
- $\mathrm{O}\left(\mathrm{N}^{1 / 2+o(1)}\right)$ for any formula.
- Improved to $\mathrm{O}(\sqrt{ } \mathrm{N} \log \mathrm{N})$ by [Reichardt, 2010].

Span programs [Karchmer, Wigderson, 1993]

- Target vector v .
- Input $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}} \rightarrow$ vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{M}}$.
- Output $\mathrm{F}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right)=1$ if there exist $\mathrm{v}_{\mathrm{i} 1}, \mathrm{v}_{\mathrm{i} 2}, \ldots, \mathrm{v}_{\mathrm{ik}}$:

$$
\mathrm{v}=\mathrm{v}_{\mathrm{i} 1}+\mathrm{v}_{\mathrm{i} 2}+\ldots+\mathrm{v}_{\mathrm{ik}} .
$$

Span program example

$$
\binom{0}{1}
$$

Target

$$
\binom{1}{1}
$$

$\mathrm{X}_{1}=1$
$\mathrm{X}_{2}=1$
$x_{3}=1$

Span program example

$$
\mathrm{x} 1=1, \mathrm{x} 2=1, \mathrm{x} 3=0
$$

$\binom{0}{1}$
Target

$$
\binom{1}{1} \quad\binom{1}{\alpha}
$$

$\mathrm{X}_{1}=1$
$\mathrm{X}_{2}=1$
$\mathrm{x}_{3}=1$

Output $=1$.

Span program example

$$
\mathrm{x} 1=1, \mathrm{x} 2=0, \mathrm{x} 3=0
$$

$\binom{0}{1}$
Target

$X_{1}=1$
$X_{2}=1$
$x_{3}=1$

Output $=0$.

Span program example

$$
\binom{0}{1} \quad\binom{1}{1}\binom{1}{\alpha}\binom{1}{\beta}
$$

Target

$$
x_{1}=1 \quad x_{2}=1 \quad x_{3}=1
$$

Output $=$ "yes" if \geq_{2} of $x_{i}=1$.

Composing span programs

- Span program S_{1} with target t_{1}.
- Span program S_{2} with target t_{2}.

Span program $S_{1} \cup S_{2}$ with target $t_{1}+t_{2}$.

Answers 1 if both S_{1} and S_{2} answer 1 .

$$
\mathrm{F}_{1}, \mathrm{~F}_{2} \rightarrow \mathrm{~F}_{1} \text { AND } \mathrm{F}_{2}
$$

Span programs [Reichardt, Špalek, 2008]

Logic formula of size T

Span program with witness size T
$\mathrm{O}(\sqrt{ } \mathrm{T})$ query quantum algorithm
Far-reaching generalization of formula evaluation

Example

- $\operatorname{MAJ}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=1$ if at least $2 \mathrm{x}_{\mathrm{i}}$ are equal to 1 .
- Formula size: 8.
- Span program: 6.

Iterated thresholds

d levels - formula of size 8^{d}, span program $6{ }^{d}$.
$\mathrm{O}\left(\sqrt{ } 6^{\mathrm{d}}\right)$ quantum algorithm

Span programs [Reichardt, 2009]

Span program with witness size T
III
$\mathrm{O}(\sqrt{ } \mathrm{T})$ query quantum algorithm

Adversary bound [A, 2001, Hoyer, Lee,

 Špalek, 2007]- Boolean function $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right)$;
- Inputs $\mathrm{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right)$;
- Matrix A: $A[x, y] \neq 0$ only if $f(x) \neq f(y)$
- Theorem Computing f requires

quantum queries

Span programs [Reichardt, 2009]

Optimal adversary bound

Semidefinite program (SDP)

Optimal span program

Span programs [Reichardt, 2009]

Span program with witness size T
III
$\mathrm{O}(\sqrt{ } \mathrm{T})$ query quantum algorithm

Summary

- Span programs = optimal quantum algorithms.
- Open problem: how to design good span programs?
- Quantum algorithm for perfect matchings?

Part 3

Solving systems of linear equations

The problem

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 N} x_{N}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 N} x_{N}=b_{2} \\
\ldots \\
a_{N 1} x_{1}+a_{N 2} x_{2}+\ldots+a_{N N} x_{N}=b_{N}
\end{gathered}
$$

- Given a_{ij} and b_{i}, find x_{i}.
- Best classical algorithm: $\mathrm{O}\left(\mathrm{N}^{2.37 \cdots}\right)$.

Obstacles to quantum algorithm

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 N} x_{N}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 N} x_{N}=b_{2} \\
\ldots \\
a_{N 1} x_{1}+a_{N 2} x_{2}+\ldots+a_{N N} x_{N}=b_{N}
\end{gathered}
$$

- Obstacle 1: takes time $\mathrm{O}\left(\mathrm{N}^{2}\right)$ to read all a_{ij}.
- Solution: query access to a_{ij}.
- Grover: search N items with $O(\sqrt{ } N)$ quantum queries.
- Obstacle 2: takes time $\mathrm{O}(\mathrm{N})$ to output all x_{i}.

Harrow, Hassidim, Lloyd, 2008

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 N} x_{N}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 N} x_{N}=b_{2} \\
\ldots \\
a_{N 1} x_{1}+a_{N 2} x_{2}+\ldots+a_{N N} x_{N}=b_{N} \\
\text { Output }=\sum_{i=1}^{N} x_{i}|i\rangle
\end{array}
$$

- Measurement $\rightarrow \mathrm{i}$ with probability $\mathrm{x}_{\mathrm{i}}{ }^{2}$.
- Estimating $\mathrm{c}_{1} \mathrm{X}_{1}+\mathrm{c}_{2} \mathrm{X}_{2}+\ldots+\mathrm{c}_{\mathrm{N}} \mathrm{x}_{\mathrm{N}}$.

Seems to be difficult classically.

Harrow, Hassidim, Lloyd, 2008

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 N} x_{N}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 N} x_{N}=b_{2} \\
\ldots \\
a_{N 1} x_{1}+a_{N 2} x_{2}+\ldots+a_{N N} x_{N}=b_{N}
\end{gathered}
$$

- Running time for producing $\sum_{i=1}^{N} x_{i}|i\rangle: \mathrm{O}\left(\log ^{\mathrm{c}} \mathrm{N}\right)$, but with dependence on two other parameters.
- Exponential speedup, if the other parameters are good.

The main ideas

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 N} x_{N}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 N} x_{N}=b_{2} \\
\ldots \\
a_{N 1} x_{1}+a_{N 2} x_{2}+\ldots+a_{N N} x_{N}=b_{N} \\
\sum_{i=1}^{N} b_{i}|i\rangle \longrightarrow \sum_{i=1}^{N} x_{i}|i\rangle \\
\text { Easy-to-prepare } \quad \text { Solution }
\end{array}
$$

The main ideas

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 N} \\
a_{21} & a_{22} & \ldots & a_{2 N} \\
\ldots & \ldots & \ldots & \ldots \\
a_{N 1} & a_{N 2} & \ldots & a_{N N}
\end{array}\right) \quad x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\ldots \\
x_{N}
\end{array}\right) \quad b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
\ldots \\
b_{N}
\end{array}\right) \quad A x=b \\
\sum_{i=1}^{N} b_{i}|i\rangle \xrightarrow[i=1]{ } \sum_{i}^{N} x_{i}|i\rangle \\
x=A^{-1} b
\end{gathered}
$$

How do we apply A^{-1} ?

The main ideas

$$
\sum_{i=1}^{N} b_{i}|i\rangle \xrightarrow{x=A^{-1} b} \sum_{i=1}^{N} x_{i}|i\rangle
$$

- We can build a physical system with Hamiltonian A.
- Unitary e ${ }^{\mathrm{iA}}$.
- $\mathrm{e}^{\mathrm{iA}} \rightarrow \mathrm{A}^{-1}$ via eigenvalue estimation.

Running time

1. Size of system $N \rightarrow O\left(\log ^{c} N\right)$.
2. Time to implement $\mathrm{A}-\mathrm{O}(1)$ for sparse matrices A , $\mathrm{O}(\mathrm{N})$ generally.
3. Condition number of A .

$$
\begin{gathered}
k=\frac{\mu_{\max }}{\mu_{\min }} \quad \begin{array}{l}
\mu_{\max } \text { and } \mu_{\min }-\text { biggest } \\
\text { and smallest } \\
\text { eigenvalues of } \mathrm{A}
\end{array} \\
\text { Time }-O\left(\kappa^{2} \log ^{c} N\right)
\end{gathered}
$$

Dependence on condition number

- Classical algorithms for sparse A: $\mathrm{O}(\mathrm{N} \sqrt{ } \mathrm{k})$.
- [Harrow, Hassidim, Llyod, 2008]: O($\left.\mathrm{k}^{2} \log ^{\mathrm{c}} \mathrm{N}\right)$.
- [A, 2010]: $\mathrm{O}\left(\mathrm{k}^{1+o(1)} \log ^{\mathrm{c}} \mathrm{N}\right)$, via improved version of eigenvalue estimation.
- [HHL, 2008]: $\Omega\left(\mathrm{k}^{1-0(1)}\right)$, unless BQP=PSPACE.

Open problem

- What problems can we reduce to systems of linear equations (with $\sum_{i} x_{i}|i\rangle$ as the answer)?
- Examples:
- Search;
- Perfect matchings in a graph;
- Graph bipartiteness.

Biggest issue: condition number.

