
Andris Ambainis

University of Latvia

Probabilistic computation
� Probabilistic system with

finite state space.

� Current state:
probabilities pi to be in
state i.

1

2 3

4

0.6

0.1
0.2

0.1
∑ =

i
ip 1

Quantum computation
� Current state: amplitudes

αi to be in state i.
1

2 3

4

0.4+0.3i

-0.7 0.4-0.1i

0.3

∑ =
i

i 1
2α

For most purposes, real
(but negative) amplitudes
suffice.

Quantum computation
� Amplitude vector (α1, …, αM), .

� Transitions:

before the transition

MMM

M

uu

uu

...

.........

...

1

111

transition matrix

=

M'

...

'1

α

α

after the transition

Mα

α
...

1

∑ =
i

i 1
2α

Allowed transitions

� U – unitary:

� If , then .

MMM

M

uu

uu

...

.........

...

1

111

=

M'

...

'1

α

α

Mα

α
...

1

∑ =
i

i 1
2α ∑ =

i
i 1'

2α

Equivalent to UU+=I.

Quantum state:

α1 |1〉 + α2 |2〉 + … + αM |M〉

|α1|
2

1
prob. |α2|

2

2
|αM|2

M…

Measurement

Quantum computing vs. nature
Quantum computing Quantum physics

� Unitary transformations U.

� Transformation U performed
in one step.

� No intermediate states.

� Physical evolution –
continuous time.

� Forces acting on a physical
system – Hamiltonian H.

iHteU −=
Evolution for time t:

Quantum algorithms up to 2005

Shor’s algorithm

� Factoring: given N=pq, find p and q.

� Best algorithm - 2O(n1/3), n – number of digits.

� Quantum algorithm - O(n3) [Shor, 94].

� Cryptosystems based on hardness of
factoring/discrete log become insecure.

Grover's search

� Find i such that xi=1.

� Queries: ask i, get xi.

� Classically, N queries required.

� Quantum: O(√N) queries [Grover, 96].

� Speeds up any search problem.

0 1 0 0...

x1 x2 xNx3

NP-complete problems
� Does this graph have a

Hamiltonian cycle?

� Hamiltonian cycles
are:

� Easy to verify;

� Hard to find (too
many possibilities).

Quantum algorithm

� Let N – number of possible Hamiltonian cycles.

� Black box = algorithm that verifies if the ith

candidate – Hamiltonian cycle.

� Quantum algorithm with O(√N) steps.

0 1 0 0...

x1 x2 xNx3

Applicable to any search problem

Pell’s equation
� Given d, find the smallest solution (x, y) to x2-

dy2=1.

� Probably harder than factoring and discrete
logarithm.

� Best classical algorithms:

� for factoring;

�2O(√N) for Pell’s equation.

)(3/1

2 NO

Hallgren, 2001: Quantum algorithm for Pell’s equation.

Element distinctness [A, 2004]

� Numbers x1, x2, ..., xN.

� Determine if two of them are equal.

� Classically: N queries.

� Quantum: O(N2/3).

7 9 2 1...

x1 x2 xNx3

Formula evaluation

AND-OR tree

AND

OR OR

x11
x22 x33 x44

OR OR

x55 x66 x77 x88

AND

OR

Evaluating AND-OR trees
� Variables xi accessed by

queries to a black box:
� Input i;

� Black box outputs xi.

� Quantum case:

� Evaluate T with the smallest
number of queries.

OR

AND AND

x11 x22 x33 x44

∑∑ −→
i

x
i

i
i iaia i)1(

Motivation
� Vertices = chess positions;

� Leaves = final positions;

� xi=1 if the 1st player wins;

� At internal vertices, AND/OR
evaluates whether the player who
makes the move can win.

OR

x11 x22

How well can we play chess if we only
know the position tree?

Results (up to 2007)

� Full binary tree of depth d.

� N=2d leaves.

� Deterministic: Ω(N).

� Randomized [SW,S]:
Θ(N0.753…).

� Quantum?

� Easy q. lower bound: Ω(√N).

OR

AND AND

x11 x22 x33 x44

New results
� [Farhi, Gutman, Goldstone, 2007]:O(√N) time

algorithm for evaluating full binary trees in
Hamiltonian query model.

� [A, Childs, Reichardt, Spalek, Zhang, 2007]: O(N1/2+o(1))
time algorithm for evaluating any formulas in the
usual query model.

0 1 1 0

Finite “tail” in one direction

…

…

a-a-aa

Starting state:

∑ −=Ψ
j

j
start ja 2)1(

Hamiltonian H,

H – adjacency matrix

0 0

0 0

... ...

What happens?
� If T=0, the state stays almost unchanged.

� If T=1, the state “scatters” into the tree.

Run for O(√N) time, check if the state |Ψ〉
is close to the starting state |Ψstart〉.

When is the state unchanged?
�H – forces acting on the system.

�(State |Ψ〉 unchanged) ↔ H|Ψ〉=0.

e-iHt |Ψ〉 = |Ψ〉 ⇔ H |Ψ〉 = 0.

…

H – adjacency matrix

a1 a2 a3

()
∑

−

=

=Ψ

edgeji
ji

i

ab

bH

),(

,

H|Ψ〉 = 0 ↔ for each i: 0
),(

=∑
−edgeji

ja

∑=Ψ
i

i ia

T = 0 example

…
a-a-aa 0 0

0

-a -a0

0

0

0

0

OR

ANDAND

1

00

11

00

|Ψ〉 remains unchanged by H.

T=1 case

…
a-a-aa 0 0

0

-a -a0

0

0

0

0

AND

OROR

11111

00

No |Ψ〉 with H|Ψ〉=0.

0

Cannot place non-zero value
here

Summary
� [Farhi, Gutman, Goldstone, 2007] Hamiltonian

algorithm;

� [A, Childs, et al., 2007] Discrete time algorithm.

� O(√N) time for full binary tree;

� O(√Nd) for any formula of depth d;

� O(N1/2+o(1)) for any formula.

� Improved to O(√N log N) by [Reichardt, 2010].

Span programs [Karchmer, Wigderson,
1993]

�Target vector v.

� Input x1, ..., xN → vectors v1, ..., vM.

�Output F(x1, ..., xN) = 1 if there ėxist
vi1,vi2, ..., vik:

v=vi1+vi2+...+vik.

Span program example

1

1

α
1

β
1

x1=1 x2=1 x3=1

1

0

Target

Span program example

1

1

α
1

β
1

x1=1 x2=1 x3=1

1

0

Target

Output = 1.

x1=1, x2=1, x3=0

Span program example

1

1

α
1

β
1

x1=1 x2=1 x3=1

1

0

Target

Output = 0.

x1=1, x2=0, x3=0

Span program example

1

1

α
1

β
1

x1=1 x2=1 x3=1

1

0

Target

Output = “yes” if ≥2 of xi=1.

Composing span programs
� Span program S1 with target t1.

� Span program S2 with target t2.

Span program S1∪S2 with target t1+t2.

Answers 1 if both S1 and S2 answer 1.

F1, F2 � F1 AND F2

Span programs [Reichardt, Špalek, 2008]

Span program with witness size TSpan program with witness size T

O(O(√√T) query quantum algorithmT) query quantum algorithm

Logic formula of size TLogic formula of size T

Far-reaching generalization of
formula evaluation

Example
� MAJ(x1, x2, x3 , x4)=1 if at least 2 xi are equal to 1.

� Formula size: 8.

� Span program: 6.

Iterated thresholds

MAJ

x11 x22 x33 x44

MAJ

x55 x66 x77 x88

MAJ MAJ

... ...

MAJ

d levels – formula of size 8d, span program 6d.

O(√6d) quantum algorithm

Span programs [Reichardt, 2009]

Span program with witness size TSpan program with witness size T

O(O(√√T) query quantum algorithmT) query quantum algorithm

≡

Adversary bound [A, 2001, Hoyer, Lee,
Špalek, 2007]

� Boolean function f(x1, ..., xN);

� Inputs x = (x1, ..., xN);

� Matrix A: A[x, y]≠0 only if f(x) ≠ f(y)

� Theorem Computing f requires

quantum queries

)(max

)(

iDA

A

•λ
λ

)(max

)(

ii DA

A

•λ
λ

Span programs [Reichardt, 2009]

Optimal adversary boundOptimal adversary bound

Semidefinite program (SDP)Semidefinite program (SDP)

Dual SDPDual SDP

Optimal span programOptimal span program

Span programs [Reichardt, 2009]

Span program with witness size TSpan program with witness size T

O(O(√√T) query quantum algorithmT) query quantum algorithm

≡

Summary
�Span programs = optimal quantum

algorithms.

�Open problem: how to design good span
programs?

�Quantum algorithm for perfect matchings?

Solving systems of linear equations

The problem

� Given aij and bi, find xi.

� Best classical algorithm: O(N2.37...).

NNNNNN

NN

NN

bxaxaxa

bxaxaxa

bxaxaxa

=+++

=+++
=+++

...

...

...

...

2211

22222121

11212111

Obstacles to quantum algorithm

� Obstacle 1: takes time O(N2) to read all aij.

NNNNNN

NN

NN

bxaxaxa

bxaxaxa

bxaxaxa

=+++

=+++
=+++

...

...

...

...

2211

22222121

11212111

� Solution: query access to aij.

� Grover: search N items with O(√N) quantum queries.

� Obstacle 2: takes time O(N) to output all xi.

Harrow, Hassidim, Lloyd, 2008

Output =

NNNNNN

NN

NN

bxaxaxa

bxaxaxa

bxaxaxa

=+++

=+++
=+++

...

...

...

...

2211

22222121

11212111

∑
=

N

i
i

ix
1

� Measurement → i with probability xi
2.

� Estimating c1x1+c2x2+...+cNxN.

Seems to be difficult classically.

Harrow, Hassidim, Lloyd, 2008

� Running time for producing : O(logc N), but
with dependence on two other parameters.

� Exponential speedup, if the other parameters are
good.

∑
=

N

i
i

ix
1

NNNNNN

NN

NN

bxaxaxa

bxaxaxa

bxaxaxa

=+++

=+++
=+++

...

...

...

...

2211

22222121

11212111

The main ideas

∑
=

N

i
i ib

1
∑

=

N

i
i ix

1

Easy-to-prepare Solution

NNNNNN

NN

NN

bxaxaxa

bxaxaxa

bxaxaxa

=+++

=+++
=+++

...

...

...

...

2211

22222121

11212111

The main ideas

=

NNNN

N

N

aaa

aaa

aaa

A

...

............

...

...

21

22221

11211

=

Nx

x

x

x
...

2

1

=

Nb

b

b

b
...

2

1

bAx =

bAx 1−=

∑
=

N

i
i ib

1
∑

=

N

i
i ix

1

How do we apply A-1?

The main ideas

bAx 1−=
∑

=

N

i
i ib

1
∑

=

N

i
i ix

1

� We can build a physical system with Hamiltonian A.

� Unitary eiA.

� eiA → A-1 via eigenvalue estimation.

Running time
1. Size of system N → O(logc N).

2. Time to implement A – O(1) for sparse matrices A,
O(N) generally.

3. Condition number of A.

min

max

µ
µ=k µmax and µmin – biggest

and smallest
eigenvalues of A

()NOTime clog2κ−

Dependence on condition number
� Classical algorithms for sparse A: O(N√k).

� [Harrow, Hassidim, Llyod, 2008]: O(k2 logc N).

� [A, 2010]: O(k1+o(1) logc N), via improved version of
eigenvalue estimation.

� [HHL, 2008]: Ω(k1-o(1)), unless BQP=PSPACE.

Open problem
� What problems can we reduce to systems of linear

equations (with as the answer)?∑
i

i ix

� Examples:

� Search;

� Perfect matchings in a graph;

� Graph bipartiteness.

Biggest issue: condition number.

