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Probabilistic computation
� Probabilistic system with 

finite state space.

� Current state: 
probabilities pi to be in 
state i.
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Quantum computation
� Current state: amplitudes 

αi to be in state i.
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For most purposes, real 
(but negative) amplitudes 
suffice.



Quantum computation
� Amplitude vector  (α1, …, αM), .

� Transitions:
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Allowed transitions

� U – unitary:

� If , then .
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Equivalent to UU+=I.



Quantum state:

α1 |1〉 + α2 |2〉 + … + αM |M〉
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Quantum computing vs. nature
Quantum computing Quantum physics

� Unitary transformations  U.

� Transformation U performed 
in one step.

� No intermediate states.

� Physical evolution –
continuous time.

� Forces acting on a physical 
system – Hamiltonian H.

iHteU −=
Evolution for time t:



Quantum algorithms up to 2005



Shor’s algorithm

� Factoring: given N=pq, find p and q.

� Best algorithm - 2O(n1/3), n – number of digits.

� Quantum algorithm - O(n3) [Shor, 94].

� Cryptosystems based on hardness of 
factoring/discrete log become insecure.



Grover's search

� Find i such that xi=1. 

� Queries: ask i, get xi.

� Classically, N queries required.

� Quantum: O(√N) queries [Grover, 96].

� Speeds up any search problem.
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NP-complete problems
� Does this graph have a 

Hamiltonian cycle?

� Hamiltonian cycles 
are:

� Easy to verify;

� Hard to find (too 
many possibilities).



Quantum algorithm

� Let N – number of possible Hamiltonian cycles.

� Black box = algorithm that verifies if the ith

candidate – Hamiltonian cycle.

� Quantum algorithm with O(√N) steps.
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Applicable to any search problem



Pell’s equation
� Given d, find the smallest solution (x, y) to x2-

dy2=1.

� Probably harder than factoring and discrete 
logarithm.

� Best classical algorithms:

� for factoring;

�2O(√N) for Pell’s equation.
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Hallgren, 2001: Quantum algorithm for Pell’s equation.



Element distinctness [A, 2004]

� Numbers x1, x2, ..., xN.

� Determine if two of them are equal.

� Classically: N queries.

� Quantum: O(N2/3).
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Formula evaluation



AND-OR tree
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Evaluating AND-OR trees
� Variables xi accessed by 

queries to a black box:
� Input i;

� Black box outputs xi.

� Quantum case:

� Evaluate T with the smallest 
number of queries. 
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Motivation
� Vertices = chess positions;

� Leaves = final positions;

� xi=1 if the 1st player wins;

� At internal vertices, AND/OR 
evaluates whether the player who 
makes the move can win.

OR

x11 x22

How well can we play chess if we only 
know the position tree?



Results (up to 2007)

� Full binary tree of depth d.

� N=2d leaves.

� Deterministic: Ω(N).

� Randomized [SW,S]: 
Θ(N0.753…).

� Quantum?

� Easy q. lower bound: Ω(√N).
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New results
� [Farhi, Gutman, Goldstone, 2007]:O(√N) time 

algorithm for evaluating full binary trees in 
Hamiltonian query model.

� [A, Childs, Reichardt, Spalek, Zhang, 2007]: O(N1/2+o(1)) 
time algorithm for evaluating any formulas in the 
usual query model.
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What happens?
� If T=0, the state stays almost unchanged.

� If T=1, the state “scatters” into the tree.

Run for O(√N) time, check if the state |Ψ〉
is close to the starting state |Ψstart〉.



When is the state unchanged?
�H – forces acting on the system.

�(State |Ψ〉 unchanged) ↔ H|Ψ〉=0.

e-iHt |Ψ〉 = |Ψ〉 ⇔ H |Ψ〉 = 0.
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H – adjacency matrix
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T = 0 example

…
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T=1 case
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Summary
� [Farhi, Gutman, Goldstone, 2007] Hamiltonian 

algorithm;

� [A, Childs, et al., 2007] Discrete time algorithm.

� O(√N) time for full binary tree;

� O(√Nd) for any formula of depth d;

� O(N1/2+o(1)) for any formula.

� Improved to O(√N log N) by [Reichardt, 2010]. 



Span programs [Karchmer, Wigderson, 
1993]

�Target vector v.

� Input x1, ..., xN → vectors v1, ..., vM.

�Output F(x1, ..., xN) = 1 if there ėxist        
vi1,vi2, ..., vik: 

v=vi1+vi2+...+vik.



Span program example
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Span program example
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Span program example
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Span program example










1

1









α
1










β
1

x1=1 x2=1 x3=1










1

0

Target 

Output = “yes” if ≥2 of xi=1.



Composing span programs 
� Span program S1 with target t1.

� Span program S2 with target t2.

Span program S1∪S2 with target t1+t2.

Answers 1 if both S1 and S2 answer 1.

F1, F2 � F1 AND F2



Span programs [Reichardt, Špalek, 2008]

Span program with witness size TSpan program with witness size T

O(O(√√T) query quantum algorithmT) query quantum algorithm

Logic formula of size TLogic formula of size T

Far-reaching generalization of 
formula evaluation



Example
� MAJ(x1, x2, x3 , x4)=1 if at least 2 xi are equal to 1.

� Formula size: 8.

� Span program: 6.



Iterated thresholds

MAJ

x11 x22 x33 x44

MAJ

x55 x66 x77 x88

MAJ MAJ

... ...

MAJ

d levels – formula of size 8d, span program 6d.

O(√6d) quantum algorithm



Span programs [Reichardt, 2009]

Span program with witness size TSpan program with witness size T

O(O(√√T) query quantum algorithmT) query quantum algorithm

≡



Adversary bound [A, 2001, Hoyer, Lee, 
Špalek, 2007]

� Boolean function f(x1, ..., xN);

� Inputs x = (x1, ..., xN);

� Matrix A: A[x, y]≠0 only if f(x) ≠ f(y)

� Theorem Computing f requires

quantum queries 
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Span programs [Reichardt, 2009]

Optimal adversary boundOptimal adversary bound

Semidefinite program (SDP)Semidefinite program (SDP)

Dual SDPDual SDP

Optimal span programOptimal span program



Span programs [Reichardt, 2009]

Span program with witness size TSpan program with witness size T

O(O(√√T) query quantum algorithmT) query quantum algorithm

≡



Summary 
�Span programs = optimal quantum 

algorithms.

�Open problem: how to design good span 
programs?

�Quantum algorithm for perfect matchings?



Solving systems of linear equations



The problem

� Given aij and bi, find xi.

� Best classical algorithm: O(N2.37...).
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Obstacles to quantum algorithm

� Obstacle 1: takes time O(N2) to read all aij.
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� Solution: query access to aij.

� Grover: search N items with O(√N) quantum queries.

� Obstacle 2: takes time O(N) to output all xi.



Harrow, Hassidim, Lloyd, 2008

Output = 
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� Measurement → i with probability xi
2.

� Estimating c1x1+c2x2+...+cNxN.

Seems to be difficult classically.



Harrow, Hassidim, Lloyd, 2008

� Running time for producing            : O(logc N), but 
with dependence on two other parameters.

� Exponential speedup, if the other parameters are 
good.
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The main ideas
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Easy-to-prepare Solution
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The main ideas
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How do we apply A-1?



The main ideas
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� We can build a physical system with Hamiltonian A.

� Unitary eiA.

� eiA → A-1 via eigenvalue estimation.



Running time
1. Size of system N → O(logc N).

2. Time to implement A – O(1) for sparse matrices A, 
O(N) generally.

3. Condition number of A.

min

max

µ
µ=k µmax and µmin – biggest 

and smallest 
eigenvalues of A

( )NOTime clog2κ−



Dependence on condition number
� Classical algorithms for sparse A:  O(N√k).

� [Harrow, Hassidim, Llyod, 2008]: O(k2 logc N).

� [A, 2010]: O(k1+o(1) logc N), via improved version of 
eigenvalue estimation.

� [HHL, 2008]: Ω(k1-o(1)), unless BQP=PSPACE.



Open problem
� What problems can we reduce to systems of linear 

equations (with as the answer)?∑
i

i ix

� Examples:

� Search;

� Perfect matchings in a graph;

� Graph bipartiteness.

Biggest issue: condition number.


