University of Latvia
Faculty of Physics and Matematics

THE PROBLEM OF FINITE GENERATED BI-IDEALS EQUALITY AND PERIODICITY

Author: Raivis Bēts

Theory days,
Rakari, 30.09-03.10.

Basic definitions

Definition. A finite set $A=\left\{a_{0}, \ldots, a_{n}\right\}$ is called the alphabet. Definition. An element $a_{i} \in A$ of a finite set $A=\left\{a_{0}, \ldots, a_{n}\right\}$, where $i=0 . . . n$, is called a letter.
Definition. Element cortege $\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ of a set A is called finite word and is denoted $u=u_{0} u_{1} \ldots u_{n}$.
Word u could be empty and it is denoted as λ.

Basic definitions

Definition. Number $n+1$ is called the length of finite word $u=u_{0} u_{1} \ldots u_{n}$ and is denoted $|u|=n+1$.
Definition. Everywhere defined representation $x: N \rightarrow A$
is called infinite word or ω-word. A set of all infinite words is denoted A^{ω}.
Definition. Word concatenation (\#) is the operation of joining two words end to end.
Example: $u=u_{1} u_{2} \ldots u_{n}$ and $v=v_{1} v_{2} \ldots v_{m}$, then $u \# v=u_{1} u_{2} \ldots u_{n} v_{1} v_{2} \ldots v_{m}$.
$w=u[i, j]$, where $0 \leq i \leq j \leq|u|$
is called a word w input in word u.

Definitions

Definiton. Infinite word u is called periodic, if it is on the form $u=v_{0} v_{1} \ldots v_{k} v_{0} v_{1} \ldots v_{k} \ldots v_{0} v_{1} \ldots v_{k} \ldots=v^{\omega}$,
where $v=v_{0} v_{1} \ldots v_{k}$.
Definition. The limit of the sequence $\lim _{i \rightarrow \infty} v_{i}$ is called bi-ideal, if we defined sequence of words $\left\{v_{i}\right\}_{i \in N}$ inductive this way:
$v_{0}=u_{0}$
$v_{i+1}=v_{i} u_{i+1} v_{i}$,
where $\left\{u_{i}\right\}_{i \in N}$ is infinite sequence of finite words and $u_{0} \neq \lambda$
Words $\left\{u_{i}\right\}_{i \in N}$ we called as bi-ideal generating words.

Definitions

Definition. Bi-ideal $x=\lim _{i \rightarrow \infty} v_{i}$ is called finite generated bi-ideal, if sequence $\left\{u_{i}\right\}_{i \in N}$ is periodic.

Definition. Suppose bi-ideal x is finite generated by cortege $\left\langle u_{0}, \ldots, u_{m-1}\right\rangle$ and bi-ideal y is finite generated by cortege $\left\langle u_{0}^{\prime}, \ldots, u_{n-1}^{\prime}\right\rangle$. If $\left|u_{i}\right|=a \forall i \in 0 . . m-1$ and $\left|u_{j}^{\prime}\right|=b \quad \forall j \in 0 . . n-1$, then this pair of bi-ideals (x, y) is called an $(a-b)$ bi-ideal pair.

Main task

The main work was to view following bi-ideals:

$$
v_{0}=u_{0} ; v_{1}=v_{0} u_{1} v_{0} ; \ldots ; v_{n-1}=v_{n-2} u_{n-1} v_{n-2} ; v_{n}=v_{n-1} u_{0} v_{n-1} ; v_{n+1}=v_{n} u_{1} v_{n} ; \ldots
$$

and
$v_{0}^{\prime}=u_{0}^{\prime} ; v_{1}^{\prime}=v_{0}^{\prime} u_{1}^{\prime} v_{0}^{\prime} ; \ldots ; v_{m-1}=v_{m-2} u_{m-1} v_{m-2} ; v_{m}^{\prime}=v_{m-1}^{\prime} u_{0}^{\prime} v_{m-1}^{\prime} ; v_{m+1}^{\prime}=v_{m}^{\prime} u_{1}^{\prime} v_{m}^{\prime} ; \ldots$
These bi-ideals are made of generating words $u_{0}, u_{1}, \ldots, u_{n-1}$ and $u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{m-1}^{\prime}$.

The task was to analyze the problem of such finite generated bi-ideals equality and pericodicity .

Bi-ideals periodicity theorem

Theorem. Suppose cortege $\left\langle u_{0}, \ldots, u_{m-1}\right\rangle$ generates bi-ideal $x=\lim v_{i}$, but cortege $\left\langle u_{0}^{\prime}, \ldots, u_{n-1}^{\prime}\right\rangle$ generates bi-ideal $y=\lim _{i \rightarrow \infty} v_{i}^{\prime}$.

If bi-ideals x and y is $(a-b)$ bi-ideal pair, $x=y$ and $\operatorname{gcd}(m, n)=1$, then word x is periodic.

Used lemmas

1.Lemma. We can make every even number from linear combination of $2^{1}-1,2^{2}-1, \ldots, 2^{n}-1 ; \ldots$ numbers, and every single number can be used just one time (may be unused), and linear combination is in form:

$$
\begin{aligned}
& \left(2^{k_{1}}-1\right)-\left(2^{k_{2}}-1\right)+\left(2^{k_{3}}-1\right)-\left(2^{k_{4}}-1\right)+\ldots+\left(2^{k_{z z-1}}-1\right)-\left(2^{k_{z z}}-1\right), \text { where } \\
& k_{1}>k_{2}>\ldots>k_{2 z-1}>k_{2 z} .
\end{aligned}
$$

Used lemmas

2.Lemma. If even number z, where $\left|u_{i}\right|=a$, but $\left|u_{j}^{\prime}\right|=b$ can be put into such form:

$$
z=2 a b=b\left(2^{k_{1}}-2^{l_{1}}+\ldots+2^{p_{1}}-2^{r_{1}}\right)=a\left(2^{k_{2}}-2^{l_{2}}+\ldots+2^{p_{2}}-2^{r_{2}}\right),
$$

then $2 z$ for sure can be put into form:

$$
2 z=4 a b=b\left(2^{k_{1}+1}-2^{l_{1}+1}+\ldots+2^{p_{1}+1}-2^{r_{1}+1}\right)=a\left(2^{k_{2}+1}-2^{k_{2}+1}+\ldots+2^{p_{2}+1}-2^{k_{2}+1}\right) .
$$

3.Lemma. For a word v_{k}, where $\left|u_{i}\right|=a$, in position $b\left(2^{k}-2^{l}+\ldots+2^{p}-2^{r}\right)$ always will be $u_{r+1}[a]$ letter.

Achievement 1

$$
\begin{aligned}
& u_{r+1}[a]=u_{r^{\prime}+1}[b] \\
& u_{r+1}[a-1]=u_{r^{\prime}+1}[b-1]
\end{aligned}
$$

$$
u_{r+1}[a-(a-1)]=u_{r^{\prime}+1}[b-(a-1)]
$$

$$
u_{0}[a]=u_{r^{\prime}+1}[b-a]
$$

$$
u_{0}[a-1]=u_{r^{\prime}+1}[b-a-1]
$$

$$
\begin{aligned}
& u_{i}[a-b(\bmod a)+2]=u_{r^{\prime}+1}[2] \\
& u_{i}[a-b(\bmod a)+1]=u_{r^{\prime}+1}[1]
\end{aligned}
$$

Used theorems

Theorem. (from number theory). If $x_{1}, x_{2} \ldots x_{m}$ is a complete residue system by module m, and $\operatorname{gcd}(u, m)=1$ then $u x_{1}, u x_{2}, \ldots u x_{m}$ is a complete residue system by module m too.

Theorem. (Fine and Wilf theorem) Suppose that infinite word x is periodic with a period p and also with a period q. In this case, word x is periodic with a period $\operatorname{gcd}(p, q)$ as well.

Achievement 2

$$
\begin{array}{ll}
u_{0}=u_{01} u_{02} \ldots u_{0 a} & u_{0}^{\prime}=u_{0 a-b(\bmod a)+1} u_{0 a-b(\bmod a)+2} \ldots u_{0 a} u_{01} u_{02} \ldots u_{0 a} \\
u_{1}=u_{01} u_{02} \ldots u_{0 a} & u_{1}^{\prime}=u_{0 a-b(\bmod a)+1} u_{0 a-b(\bmod a)+2} \ldots u_{0 a} u_{01} u_{02} \ldots u_{0 a} \\
\bullet \bullet \bullet & \bullet \bullet \bullet \\
u_{m-1}=u_{01} u_{02} \ldots u_{0 a} & u_{n-1}^{\prime}=u_{0 a-b(\bmod a)+1} u_{0 a-b(\bmod a)+2} \ldots u_{0 a} u_{01} u_{02} \ldots u_{0 a}
\end{array}
$$

Achievement 3

According to Fine and Wilf theorem, follows that:

$$
x=u_{01} u_{02} \ldots u_{0 s} u_{01} u_{02} \ldots=y
$$

where $s=\operatorname{gcd}(a, b)$.

Conclusions

This theorem may be used very well in computer science, combinatorics on words or cryptography. It's possible, that it could have some use in microbiology.

My next task will be to consider and analyze general case, where the length of generating words $u_{0}, u_{1}, \ldots, u_{n}$ and $u_{0}, u_{1}, \ldots, u_{m}$ could be indefined at all.

Thank you for attention!

