

Unravelling Unstructured Process Models

Marlon Dumas, Luciano García-Bañuelos University of Tartu, Estonia Artem Polyvyanyy HPI, University of Potsdam, Germany

Theory Days, 1 Oct. 2010

Background: Process Models

Poll: Which desk do you prefer?

Poll: Which model do you prefer?

Problem Statement

- Premise: Structured is "better"
 - Easier to understand
 - Easier to analyze
 - Easier to automatically layout
 - Easier to abstract (zoom-out)
- We know not all models can be structured...
- Which ones can, which ones can't?

Conclusion

- We can structure anything but:
 - Cycles with multiple exit points
 - Z-structures

• Try it out: <u>http://sep.cs.ut.ee/Main/bpstruct</u>

Behavioral Equivalence

Sequential simulation of a process model

Starting Point – Process Structure Tree

Taxonomy of Process Fragments

Trivials, polygons, and bonds are structured fragments
 Rigids are "unstructured"

Homogeneous XOR Rigid

Homogeneous AND Rigid

Block-structured version...

Homogeneous AND Rigid that cannot be structured

- Causal rules:
 - $\{A, B\} \xrightarrow{} \{C\}$
 - $\{ B \} \xrightarrow{\bullet} \{ D \}$
- Overlap on the left-hand side of the rules

Compare to this...

- Causal relations
 - $\{A, B\} \rightarrow \{C, D\}$

Heterogeneous Acyclic Rigid

Equivalent Structured Fragment

Complete Prefix Unfolding

 \bigcirc

e_{t,a} c_{t,a} e_a

 $e_{t,b}$

An unfolding is a representation of a net without "merge" points

e_{w,c} c

about the reachable states

В

Ordering Relations

Two transitions of an occurrence net are in one of the following relations:

- □ A and B are in *causal* relation (A>B), iff there exists a path from A to B
- A and B are in *conflict* (A#B), iff there are two transitions t1, t2 that share an input place and there is a path from t1 to A and a path from t2 to B
- A and B are in *concurrency* (A||B) relation iff A and B are neither in causal, nor in conflict relation

FCB and Ordering Relations

Two process models are FCB-equivalent ...

... if and only if, (complete prefix) unfoldings of both models expose same ordering relations

Structuring Process Models

Ordering Relations Graph

An ordering relations graph

Modular Decomposition Tree (MDT)

- A module is a set of edges with uniform
- A *linear* (L) module is a total order on a set of nodes of a graph
- A complete (C) module is a complete graph, or a clique
- A *primitive* (P) module is neither trivial, nor linear, nor complete
- The MDT is unique and can be computed in linear time

Structuring Acyclic Process Models

Let G be an ordering relations graph. The MDT of G has no primitive module, iff there exists a well-structured process model W such that G is the ordering relations graph of W.

Heterogeneous Cyclic Rigid

For further details...

- A. Polyvyanyy, L. García-Bañuelos, M. Dumas.
 "Structuring Acyclic Process Models". In *Proc. of the 8th Int. Conf. on Business Process Managament (BPM'2010)*, Hoboken, NJ, USA, September 2010, Springer LNCS.
- Tool available at: <u>http://sep.cs.ut.ee/Main/bpstruct</u>