R-trivial idempotent languages recognized by quantum finite automata

Marats Golovkins Joint work with Maksims Kravcevs, Vasilijs Kravcevs
October 3, 2010

Automata models

	"Classical" word acceptance	"Decide-and-halt" word acceptance
Deterministic Reversible Automata	Group Automata (GA) Class: Variety of group languages	Reversible Finite Automata (RFA) [Ambainis and Freivalds]
Quantum Finite Automata with pure states	Measure-Once Quantum Finite Automata (MO-QFA) [Moore et al] Class: Variety of group languages	Measure-Many Quantum Finite Automata (MM-QFA) [Kondacs and Watrous]
Probabilistic Reversible Automata	"Classical" Probabilistic Reversible Automata (C-PRA) [Golovkins and Kravtsev] Class: Variety of BG (block group) languages	"Decide-and-halt" Probabilistic Reversible Automata (DH-PRA) [Golovkins and Kravtsev]
Quantum Finite Automata with mixed states	Latvian Quantum Finite Automata (LQFA) [Ambainis et al, Golovkins and Kravtsev] Class: Variety of BG (block group) languages	Enhanced Quantum Finite Automata (EQFA) [Nayak]

Language variety

A class of recognizable languages is a function \mathbf{C} that which associates with each alphabet A a set $A^{*} \mathbf{C}$ of recognizable languages of A^{*}.

A language variety is a class of languages \mathbf{C}, which is
a) closed under union, intersection and complement,
that is, for all languages $L, L_{1}, L_{2} \in A^{*} C$:
$L^{`} \in A^{*} C, L_{1} \cup L_{2} \in A^{*} C^{2}, L_{1} \cap L_{2} \in A^{*} \mathbf{C} ;$
b) closed under quotient operations,
that is, for all languages $L \in A^{*} C$ and for all $a \in A$:
$a^{-1} L \in A^{*} \mathbf{C}, L a^{-1} \in A^{*} C$
c) closed under inverse morphisms,
that is, if φ is a morphism $A^{*} \rightarrow B^{*}$, then for all languages $L \in B^{*} C$: $L \varphi^{-1} \in A^{*} C$

- An intersection of two language varieties also is a language variety.
- We say that a class of languages \boldsymbol{C} generates a variety \boldsymbol{V}, if \boldsymbol{V} is the smallest variety, which contains \boldsymbol{C}.

Operations on languages: quotient

L - a language in an alphabet $A, a \in A$

$$
\begin{aligned}
& a^{-1} L=\left\{v \in A^{*} \mid a v \in L\right\} \\
& L^{-1}=\left\{v \in A^{*} \mid v a \in L\right\}
\end{aligned}
$$

Operations on languages: morphisms

L_{1} - a language in alphabet A, L_{2} - a language in alphabet B
Morphism:
A function $\varphi: A^{*} \rightarrow B^{*}$, such that for all $x, y \in A^{*}$

$$
(x y) \varphi=(x \varphi)(y \varphi)
$$

Therefore,

$$
\mathrm{L}_{1} \varphi=\left\{\mathrm{v} \in \mathrm{~B}^{*} \mid \exists \mathrm{w} \in \mathrm{~L}_{1}: \mathrm{w} \varphi=\mathrm{v}\right\}
$$

Inverse morphism:

$$
L_{2} \varphi^{-1}=\left\{w \in A^{*} \mid w \varphi \in L_{2}\right\}
$$

Language varieties: examples

- Variety of groups G: min. det. automaton doesn't have the following construction:
Deterministic Reversible Automata,
Measure-Once Quantum Finite Automata
- Variety R (R-trivial languages): min. det. automaton doesn't have the following construction:

- Variety \mathbf{R}^{*} G: min. det. automaton doesn't have the following construction:

Language varieties: examples

- Variety L*G: min. det. automaton doesn't have the following construction:

- Variety $\mathbf{R}^{*} \mathbf{G}$: min. det. automaton doesn't have the following construction:

- Variety $\mathbf{B G}=\mathbf{R}^{*} \mathbf{G} \cap \mathbf{L}^{*} \mathbf{G}$

Classical Probabilistic Reversible Automata,
Latvian Quantum Finite Automata

Language varieties: examples

- Variety \mathbf{R}_{1} (R-trivial idempotent
 languages): min. det. automaton doesn't have this construction.
- Variety $\mathbf{R}_{1}{ }^{*} \mathbf{G}$: min. det. automaton doesn't have this construction.

Decide-and-halt automata: RFA

- An RFA recognizes L iff the respective min. det. automaton doesn't have the following construction: [Ambainis, Freivalds 98]:

- The Boolean closure of RFA languages forms the language variety $\mathbf{R}_{\mathbf{1}}{ }^{*} \mathbf{G}$ (RFA generates $\mathbf{R}_{\mathbf{1}}{ }^{*} \mathbf{G}$).

$1 \neq 2$

Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

- Languages don't have the following forbidden construction (the forbidden construction of the first type):

$$
x, y \in A^{*}, 1 \neq 2
$$

Hence they are contained in $\mathbf{R}^{*} \mathbf{G}$.

Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

- Don't have a whole string of different forbidden constructions (thereafter - forbidden constructions of the second type), of whom the simplest one is the following:
[Ambainis et al., Golovkins et. al., Mercer]
In this case it's not essential whether the deterministic automaton having a forbidden construction and recognizing a language is minimal or not.

Decide-and-halt automata: forbidden constructions

Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

Hypothesis. MM-QFA = DH-PRA = EQFA.

Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

Research guidelines:

- Identify all the \mathbf{R}_{1} languages that may be recognized by decide-and-halt automata.
- Identify all the R-trivial languages and $\mathbf{R}_{\mathbf{1}}{ }^{*} \mathbf{G}$ languages, that may be recognized by decide-and-halt automata.
- Identify all the R*G languages that may be recognized by decide-and-halt automata.

R-trivial idempotent languages (R_{1} languages)

- Languages, that doesn't contain the following forbidden construction:

- Any R-trivial idempotent language in an alphabet of size n is a disjoint union of the following languages:

$$
a_{0} a_{0} * a_{1}\left(a_{0}, a_{1}\right)^{*} \ldots a_{m-1}\left(a_{0}, a_{1}, \ldots, a_{m-1}\right)^{*}, \text { where } m \leq n \text { and } i \neq j \rightarrow a_{i} \neq a_{j}
$$

R-trivial idempotent languages

- Any R-trivial idempotent language in alphabet A is a Boolean closure of the following languages:
$B^{*} a_{i} A^{*}$, where $B \subseteq A$ and $a_{i} \in A$.

R-trivial idempotent languages

- Exists a deterministic finite automaton that can recognize any $\mathbf{R}_{\mathbf{1}}$ language in a given alphabet.

R-trivial idempotent languages

R-trivial idempotent languages

- For any R_{1} language L, one may construct a linear system of inequalities with the following properties:
a) The system has a solution if and only if the language L is recognizable by PRA-DH.
b) The same system has a solution if and only if the language L is recognizable by QFA.
c) If the system has a solution, one may use the solution to construct a PRA-DH and a QFA that recognize the respective language.

1/3

R-trivial idempotent languages

- Theorem 1. For any \mathbf{R}_{1} language L , it is decidable whether L can be recognized by PRA-DH or by QFA.
- Theorem 2. PRA-DH and QFA recognize the same set of R-trivial idempotent languages.

R-trivial idempotent languages:

The relation between forbidden constructions and system of inequalities

- If an R_{1} language has a forbidden construction of Ambainis et.al., then the related system of linear inequalities is inconsistent.

Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

Research guidelines:

- Identify all the \mathbf{R}_{1} languages that may be recognized by decide-and-halt automata.
- Identify all the R-trivial languages and $\mathrm{R}_{1}{ }^{*} \mathrm{G}$ languages, that may be recognized by decide-and-halt automata.
- Identify all the R*G languages that may be recognized by decide-and-halt automata.

R-trivial languages

- Languages that don't have the forbidden construction:

$$
x, y \in A^{*}, 1 \neq 2
$$

- Any R-trivial language is a disjoint union of the following languages:

Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

- Theorem 3. The Boolean closure of MM-QFA languages contains any R-trivial language. Similarly, DH-PRA un EQFA also generate any R-trivial language.

Results

- PRA-DH and MM-QFA recognize the same class of Rtrivial idempotent languages.
- It is decidable whether MM-QFA recognize a given R_{1} language.
- For any recognizable R_{1} language, it is possible to construct the corresponding PRA-DH and MM-QFA by solving a system of linear inequalities.
- MM-QFA, PRA-DH, EQFA generate any R-trivial language;

Thank you!

