On identification and nonconstructivity

I! ja Kucevalovs

Faculty of Computing
University of Latvia

This research

- Applying nonconstructive computation methods to identification
- Identification in the limit: Gold, 1967
- Nonconstructive computation: Freivalds, 2009
- Definition on the most general level
- Both function and language learning are studied

Identification

- Also known as:
- Identification in the limit
- [Computational, machine] inductive inference
- Algorithmic learning
...et cetera
- Introduced by E.Mark Gold in 1967 as a model for human first language acquisition

Identification as the model for human language acquisition

- A newborn child does not speak any language
- So (s)he cannot be taught the language in terms of another language
- But eventually, (s)he learns some words
- Then some more
- Then some more...

Nonconstructive computation

- Computation with additional information
- Defined so that trivial help is not allowed
- Based on Freivalds' observation of nonconstructive proofs

Nonconstructive identification

- Why?
- Many classes are not identifiable
- R: Class of all the total recursive functions
- (from function graph)
- Class of languages that contains all the finite and one infinite cardinality languages
- (from positive data)

Inductive inference (general case)

- Generating hypotheses about some rule from examples

Computational inductive inference

- All we work with is natural numbers
- Information presentation is numbers
- Objects are numbered
- IIM is supposed to guess a number
- Time is quantized
- IIM may work for an infinitely long time

Computational inductive inference: Topics of study

- Objects of inference
- Typically: (Formal) languages or (recursive) functions
- Types of information presentation
- Typically: Positive or complete
- Addilticoradilifufionnatation
- Succersoffulinffenecreerdeitieria
- BC, EX, FIN and their variations
- IIM (inductive inference machines)
- Deterministic, probabilistic, quantum
- Inferajbleectdasses

Criterion: BC ("Behaviourally correct")

- Inference is successful, iff there is an infinite number of hypotheses and only a finite number of them is incorrect

Criterion: EX ("Identification in the limit")

- Inference is successful, iff there is only a finite number of hypotheses and the last of them is correct

Criterion: FIN ("Finite identification")

- Inference is successful, iff there is only one hypothesis, which is correct

Step 1
x data (1)

BC, EX, FIN versions

- $X^{n} \equiv$ " X except on at most n anomalous inputs"
- $X_{n} \equiv$ " X with at most n mindchanges"
- MinX (converges to the minimal possible number)
- ...et cetera.

Nonconstructive

inductive inference (general case)

- An IIM is allowed to get some additional ("help") information about the object being identified

Nonconstructive inductive inference: situations to avoid (1)

Nonconstructive inductive inference: situations to avoid (2)

- If we don't put any restrictions on nonconstructive information...

Restriction \#1: K-nonconstructivity

- Kolmogorov complexity of help information must differ more than by a constant from the correct answer
- l.e. for any $c \in \mathbb{N}$:
$(\exists u \in U)\left[\exists p_{0} \in p(u): \forall n \in\left\{i \in \mathbb{N} \mid \varphi_{i}=u\right\} \mathrm{C}\left(p_{0}\right)<\mathrm{C}(n)-c\right]$
- Or (which is equivalent)
$(\exists u \in U)\left[\exists p_{0} \in p(u): C\left(p_{0}\right)<\min \left\{C(n) \mid \varphi_{n}=u, n \in \mathbb{N}\right\}-c\right]$

Note on $C(x)$

- We consider plain Kolmogorov complexity of natural numbers
- $C: \mathbb{N} \rightarrow \mathbb{N}$
- $C(x)$ is the length of the minimal program that outputs x

Why K-nonconstructivity?

- Consider a language numbering $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$
- $g: \mathbb{N} \rightarrow \mathbb{N}, h: \mathbb{N} \rightarrow \mathbb{N}$
- $(\forall n \in \mathbb{N})[(g(2 n)=2 n+1) \wedge(g(2 n+1)=2 n)]$
- Class $U=\{L \mid(\forall x \in \mathbb{N})[x \in L \Leftrightarrow g(x) \notin L]\}$
- $(\forall i \in \mathbb{N})\left[\varphi_{h(i)}=\left\{x \mid g(x) \in \varphi_{i}\right\}\right]$
- $p(L)=p_{0} p_{1} p_{2} \ldots$:

$$
\left[\left(\lim _{i \rightarrow \infty} p_{i}=J\right) \wedge\left(\varphi_{j}=\{x \in \mathbb{N} \mid x \notin L\}\right)\right]
$$

- Then for every language $\varphi_{i} \in U$ we have

$$
\mathrm{C}(i) \leq \mathrm{C}\left(h\left(p_{\infty}\right)\right) \leq C\left(p_{\infty}\right)+C(h)
$$

where $p_{\infty}=\lim _{i \rightarrow \infty} p_{i}$

A simple lemma on K

- If the help information $p: U \rightarrow 2^{\mathrm{N}}$ is such that some $p_{0} \in p(u)$ for infinitely many $u \in U$, then p is a K-help for U identification
- If some $p_{0} \in p(u)$ for infinitely many $u \in U$, then these u have infinitely many indices
- Then $\min \left\{C(n) \mid \varphi_{n}=u \in U, n \in \mathbb{N}\right\}$ is not limited from above
- Then for any c we have $\left(\exists u \in U\left[\exists p_{0} \in p(u): C\left(p_{0}\right)<\min \left\{C(n) \mid \varphi_{n}=u, n \in \mathbb{N}\right\}-c\right]\right.$

But...

- Define a class U in $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$: $(\forall f \in U)\left[\exists m, n \in \mathbb{N}: \varphi_{n}=f, \varphi_{n}(m)=n\right]$
- $\left.p_{u}(f)=\left\{m \in \mathbb{N} \mid \varphi_{n}(m)=n, \varphi_{n}=f\right\}\right]$
- This is a K-help (from the previous lemma)
- R (total recursive function class) is K identifiable with nonconstructivity amount $\left\lceil\log _{2} n\right\rceil+1$
- $p(f)=$ If $\left(f \in U \cap R, p_{u}(f), i: \varphi_{i}=f\right)$

So...

- R is trivially K-identifiable
- We need something stronger

Restriction \#2: S-nonconstructivity

- Kolmogorov complexity of help information must differ more than by a constant from the correct answer for infinitely many objects
- l.e. for any $c \in \mathbb{N}$:
$\left(\forall^{\star} u \in U\left[\exists p_{0} \in p(u): C\left(p_{0}\right)<\min \left\{C(n) \mid \varphi_{n}=u, n \in \mathbb{N}\right\}-c\right]\right.$
- Any S-help is a K-help
- Any S-identifiable class is K-identifiable

Theorem on constant S-nonconstructivity

- A class U is S-nonconstructively X identifiable from presentation / with nonconstructivity n, iff U is a union

$$
U=U_{0} \cup U_{1} \cup \ldots \cup U_{k-1}
$$

- Moreover, $k \leq 2^{n+1-2}$ and each U_{i} is constructively X-identifiable
- X may be any constructive criterion
- U must have an infinite cardinality

S-nonconstructivity: Application \#1

- There exist two classes such that each of them is identifiable, but their union is not
- (Independently discovered by Jānis Bārzdiņš and Lenore \& Manuel Blum in the 1970s)

S-nonconstructivity: Application \#2

- For any natural $n \geq 2$ there exist infinitely many language classes that are not $K-B C$ identifiable with nonconstructivity less than n, but are S - $E X$-identifiable with nonconstructivity n
- (Discovered by I.Kucevalovs in 2010, inspired by a '1988 paper by Mark Fulk)

Restriction \#3: F-nonconstructivity

- Has appeared in literature before
- A nonconstructivity amount function $d(n)$ is defined
- Any help word of a length $d(n)$ must work for any input object having index n or less
- Essentially S.Jain and A.Sharma's generalized "learning with the knowledge on the program upper bound"

Identification in the \boldsymbol{k}-limit

- An IIM outputs not a sequence, but a k dimensional array of hypotheses
- Always assumed to be infinite
- Recall EX and FIN: we can always build IIMs which output infinite sequences

Identification in the k-limit (ctd.)

- Criteria are written in the form $\left(X_{0} \times X_{1} \times \ldots \times X_{k}\right)$
- E.g. $(B C \times E X)$

Basic lemma on the k-limit

- A class U is $\left(B C \times X_{0} \times \ldots \times X_{k}\right)$-identifiable from presentation I in a numbering φ, iff there exists an infinite recursive sequence of IIM M s.t. for every $u \in U$:

$$
\forall^{\infty} i \in \mathbb{N}: M_{i}(I(u)) \in\left(X_{0} \times \ldots \times X_{k}\right)(u, \varphi)
$$

- Analogously for $\left(E X \times X_{0} \times \ldots \times X_{k}\right)$
- In the case of recursive functions, it means that U is F-nonconstructively X_{k} identifiable

Reliable and refutable identification (I) Non-reliable identification

Reliable and refutable identification (II) Reliable identification

Reliable and refutable identification (III) Refutable identification

R-NK-identification models

Reliability of

 identificationThe given object

1) must be a member of the class in question
2) can be a non-member Reliability of nonconstructivity

	$1)$	$2)$
a)	NK-X	NK-R-X
b)	R-NK-X	$\boldsymbol{R}-\mathbf{N K}-\boldsymbol{R}-\boldsymbol{X}$

The given help
a) must be correct
b) can be incorrect

Big question (R-NK-X)

- Can it be?
- Some class is not constructively identifiable
- But if we get some help, it is identifiable
- Even if the help is incorrect

The answer

- Yes, with certain restrictions on the error
- The error, however, may grow to infinity

The construction (part 1)

- Consider the following functions:

$$
\begin{aligned}
& h(0)=C(1024) \\
& h(x)=\min \left\{n \mid n>h(x-1)^{\wedge} C(n)>C(x-1)\right\} \\
& m(x)=\min \{C(n) \mid n \geq x\}
\end{aligned}
$$

- Both do exist
- Neither is computable

The construction (part 2)

- p_{0}, p_{1}, \ldots is a growing sequence of primes starting from 3
- For every natural k, define $f_{k}(x) \equiv h\left(\left(p_{k}\right)^{x+1}\right)$
- Define the numbering
$w_{i}=f_{k}$ for such $j \geq k$ that $f_{k}(n)=i$ for some n in $h(j) \pm\lfloor m(j) / 2\rfloor$

The construction (idea)

k	x	$f_{k}(0)$	$f_{k}(1)$	$f_{k}(2)$	$f_{k}(3)$	$f_{k}(4)$
f_{0}	3	9	27	81	243	\ldots
f_{1}	5	25	125	625	3125	\ldots
f_{2}	7	49	343	2401	16807	\ldots
f_{3}	11	121	1331	14641	161051	\ldots
\ldots						

The construction (idea, ctd)

	...	n	$n+1$	$n+2$	$n+3$	$n+4$	$n+5$	$n+6$	\ldots
f_{0}	\ldots	$p_{0}{ }^{n+1}$	$p_{0}{ }^{n+2}$	$p_{0}{ }^{n+3}$	$p_{0}{ }^{n+4}$	$p_{0}{ }^{n+5}$	$p_{0}{ }^{n+6}$	$p_{0}{ }^{n+7}$...
f_{1}	\ldots	$p_{1}{ }^{n+1}$	$p_{1}{ }^{n+2}$	$p_{1}{ }^{n+3}$	$p_{1}{ }^{n+4}$	$p_{1}{ }^{n+5}$	$p_{1}{ }^{n+6}$	$p_{1}{ }^{n+7}$	\ldots
f_{2}	\ldots	$p_{2}{ }^{n+1}$	$p_{2}{ }^{n+2}$	$p_{2}{ }^{n+3}$	$p_{2}{ }^{n+4}$	$p_{2}{ }^{n+5}$	$p_{2}{ }^{n+6}$	$p_{2}{ }^{n+7}$	\ldots
f_{3}	...	$p_{3}{ }^{n+1}$	$p_{3}{ }^{n+2}$	$p_{3}{ }^{n+3}$	$p_{3}{ }^{n+4}$	$p_{3}{ }^{n+5}$	$p_{3}{ }^{n+6}$	$p_{3}{ }^{n+7}$	\ldots
f_{4}	\ldots	$p_{4}{ }^{n+1}$	$p_{4}{ }^{n+2}$	$p_{4}{ }^{n+3}$	p_{4}^{n+4}	$p_{4}{ }^{n+5}$	p_{4}^{n+6}	$p_{4}{ }^{n+7}$	\ldots
f_{5}	\ldots	$p_{5}{ }^{n+1}$	$p_{5}{ }^{n+2}$	$p_{5}{ }^{n+3}$	$p_{5}{ }^{n+4}$	$p_{5}{ }^{n+5}$	$p_{5}{ }^{n+6}$	$p_{5}{ }^{n+7}$	\ldots
f_{6}	\ldots	$p_{6}{ }^{n+1}$	$p_{6}{ }^{n+2}$	$p_{6}{ }^{n+3}$	$p_{6}{ }^{n+4}$	$p_{6}{ }^{n+5}$	$p_{6}{ }^{n+6}$	$p_{6}{ }^{n+7}$	\ldots
f_{7}	\ldots	$p_{7}{ }^{n+1}$	$p_{7}{ }^{n+2}$	$p_{7}{ }^{n+3}$	$p_{7}{ }^{n+4}$	$p_{7}{ }^{n+5}$	$p_{7}{ }^{n+6}$	$p_{7}{ }^{n+7}$	\ldots
\ldots	$\ldots{ }^{40}$								

if these are some h values

${ }^{1} \times$...	n	$n+1$	n+2	$n+3$	$n+4$	n+5	$n+6$	
f_{0}	\ldots	$p_{0}{ }^{n}$	$p_{0}{ }^{n+2}$	$p_{0}{ }^{n}$	$p_{0}{ }^{\text {n+4 }}$	$p_{0}{ }^{n+5}$	$p_{0}{ }^{n+6}$	$p_{0}{ }^{n+7}$	
t_{1}	...	$p_{1}{ }^{n+1}$	$p_{1}{ }^{n+2}$	$p_{1}{ }^{n}$	$p_{1}{ }^{n+4}$	$p_{1}{ }^{n+5}$	$p_{1}{ }^{n+6}$	$p_{1}{ }^{n+7}$	\ldots
f_{2}		$p_{2}{ }^{n+1}$	$p_{2}{ }^{n+2}$	$p_{2}{ }^{n+3}$	$p_{2}{ }^{n+4}$	$p_{2}{ }^{n+5}$	$p_{2}{ }^{n+6}$	$p_{2}{ }^{n+7}$	
f_{3}		$p_{3}{ }^{n+1}$	$p_{3}{ }^{n+2}$	$p_{3}{ }^{n+3}$	$p_{3}{ }^{n+4}$	$p_{3}{ }^{n+5}$	$p_{3}{ }^{n+6}$	$p_{3}{ }^{n+7}$	
f_{4}		$p_{4}{ }^{n+1}$	$p_{4}{ }^{n+2}$	$p_{4}{ }^{\text {n+3 }}$	$p_{4}{ }^{n+4}$	$p_{4}{ }^{n+5}$	$p_{4}{ }^{n+6}$	$p_{4}{ }^{n+7}$	
f_{5}	\ldots	$p_{5}{ }^{n+1}$	$p_{5}{ }^{n+2}$	$p_{5}{ }^{n+3}$	$p_{5}{ }^{n+4}$	$p_{5}{ }^{n+5}$	$p_{5}{ }^{n+6}$	$p_{5}{ }^{n+7}$	
f_{6}	\ldots	$p_{6}{ }^{n+1}$	$p_{6}{ }^{n+2}$	$p_{6}{ }^{n+3}$	$p_{6}{ }^{n+4}$	$p_{6}{ }^{n+5}$	$p_{6}{ }^{n+6}$	$p_{6}{ }^{n+7}$	
f_{7}		$p_{7}{ }^{n+1}$	$p_{7}{ }^{n+2}$	$p_{7}{ }^{n+3}$	$p_{7}{ }^{n+4}$	$p_{7}{ }^{n+5}$	$p_{7}{ }^{n+6}$	$p_{7}{ }^{n+7}$	
	...	\ldots	\ldots	...	\ldots	...	\ldots ${ }^{41}$

The construction (idea, final)

- Now, take the help equal to h
- We get F-nonconstructive $F I N$ identifiability
- If we take function values from the argument equal not to a single value of h, but to a interval bounded by m, we can allow an error
- Moreover, this error grows to infinity
- ...but incomputably slowly

Literature

- I.Kucevalovs. "Nekonstruktivitātes daudzums indukt̄̄vajā izvedumä’, master thesis, University of Latvia, 2010
- I.Kucevalovs. "Randomization vs. Amount of nonconstructivity in learning of recursive functions", "Randomized and Quantum Computation", MFCS+CSL, 2010.
- I.Kucevalovs. "On reliability and refutability in nonconstructive identification", to appear in Proceedings of MEMICS 2010 (holds in Mikulov, CZ on 2010.10.22-24)

Thank you for your attention

