On identification and nonconstructivity

Iļja Kucevalovs

Faculty of Computing University of Latvia

This research

 Applying <u>nonconstructive</u> computation methods to <u>identification</u>

– Identification in the limit: Gold, 1967

- -<u>Nonconstructive</u> computation: Freivalds, 2009
- Definition on the most general level
- Both function and language learning are studied

Identification

- Also known as:
 - Identification in the limit
 - [Computational, machine] inductive inference
 - Algorithmic learning
 - ...et cetera
- Introduced by E.Mark Gold in 1967 as a model for human first language acquisition

Identification as the model for human language acquisition

- A newborn child does not speak any language
- So (s)he cannot be taught the language in terms of another language
- But eventually, (s)he learns some words
- Then some more
- Then some more...

Nonconstructive computation

- Computation with additional information
- Defined so that trivial help is not allowed
- Based on Freivalds' observation of nonconstructive proofs

Nonconstructive identification

- Why?
 - Many classes are not identifiable
 - R: Class of all the total recursive functions
 - (from function graph)
 - Class of languages that contains all the finite and one infinite cardinality languages
 - (from positive data)

Inductive inference (general case)

• Generating hypotheses about some rule from examples

Computational inductive inference

- All we work with is natural numbers
 - Information presentation is numbers
 - Objects are numbered
 - IIM is supposed to guess a number
- Time is quantized
- IIM may work for an infinitely long time

Computational inductive inference: Topics of study

- Objects of inference
 - Typically: (Formal) languages or (recursive) functions
- Types of information presentation
 - Typically: Positive or complete
 - Addittionaal niftion at attion
- Successiful inference eracitieria
 - BC, EX, FIN and their variations
- IIM (inductive inference machines)
 Deterministic, probabilistic, quantum
- Inferatole chasses

Criterion: BC ("Behaviourally correct")

• Inference is successful, iff there is an infinite number of hypotheses and only a finite number of them is incorrect

Criterion: EX ("Identification in the limit")

• Inference is successful, iff there is only a finite number of hypotheses and the last of them is correct

Criterion: FIN ("Finite identification")

• Inference is successful, iff there is only one hypothesis, which is correct

BC, EX, FIN versions

- Xⁿ ≡ "X except on at most n anomalous inputs"
- $X_n \equiv "X$ with at most *n* mindchanges"
- *MinX* (converges to the minimal possible number)
- ...et cetera.

Nonconstructive inductive inference (general case)

• An IIM is allowed to get some additional ("help") information about the object being identified

Nonconstructive inductive inference: situations to avoid (1)

Nonconstructive inductive inference: situations to avoid (2)

• If we don't put any restrictions on nonconstructive information...

Restriction #1: *K***-nonconstructivity**

- Kolmogorov complexity of help information must differ more than by a constant from the correct answer
- I.e. for any $c \in \mathbb{N}$: $(\exists u \in U) [\exists p_0 \in p(u): \forall n \in \{i \in \mathbb{N} \mid \varphi_i = u\} C(p_0) < C(n) - c]$
- Or (which is equivalent) $(\exists u \in U) [\exists p_0 \in p(u): C(p_0) < \min \{ C(n) \mid \varphi_n = u, n \in \mathbb{N} \} - c]$

Note on C(x)

- We consider <u>plain</u> Kolmogorov complexity of <u>natural numbers</u>
- C: $\mathbb{N} \to \mathbb{N}$
- C(x) is the length of the minimal program that outputs x

Why K-nonconstructivity?

- Consider a language numbering $\varphi_0, \varphi_1, \varphi_2, \dots$
- $g: \mathbb{N} \to \mathbb{N}, h: \mathbb{N} \to \mathbb{N}$
- $(\forall n \in \mathbb{N}) [(g(2n) = 2n + 1) \land (g(2n + 1) = 2n)]$
- Class $U = \{ L \mid (\forall x \in \mathbb{N}) [x \in L \Leftrightarrow g(x) \notin L] \}$
- $(\forall i \in \mathbb{N}) [\varphi_{h(i)} = \{ x \mid g(x) \in \varphi_i \}]$
- $p(L) = p_0 p_1 p_2 \dots$: $[(\lim_{i \to \infty} p_i = j) \land (\varphi_j = \{ x \in \mathbb{N} \mid x \notin L \})]$
- Then for every language $\varphi_i \in U$ we have $C(i) \leq C(h(p_{\infty})) \leq C(p_{\infty}) + C(h)$ where $p_{\infty} = \lim_{i \to \infty} p_i$

A simple lemma on K

- If the help information $p: U \to 2^{\mathbb{N}}$ is such that some $p_0 \in p(u)$ for infinitely many $u \in U$, then p is a K-help for U identification
- If some $p_0 \in p(u)$ for infinitely many $u \in U$, then these *u* have infinitely many indices
- Then min{ $C(n) \mid \varphi_n = u \in U, n \in \mathbb{N}$ } is not limited from above
- Then for any c we have $(\exists u \in U) [\exists p_0 \in p(u): C(p_0) < \min\{C(n) \mid \varphi_n = u, n \in \mathbb{N}\} - c]$

But...

- Define a class U in $\varphi_0, \varphi_1, \varphi_2, ...$: $(\forall f \in U) [\exists m, n \in \mathbb{N}: \varphi_n = f, \varphi_n(m) = n]$
- $p_u(f) = \{ m \in \mathbb{N} \mid \varphi_n(m) = n, \varphi_n = f \}]$
- This is a K-help (from the previous lemma)
- *R* (total recursive function class) is *K*-identifiable with nonconstructivity amount $\lceil \log_2 n \rceil + 1$
- $p(f) = \text{If } (f \in U \cap R, p_u(f), i: \varphi_i = f)$

So...

- *R* is trivially *K*-identifiable
- We need something stronger

Restriction #2: S-nonconstructivity

- Kolmogorov complexity of help information must differ more than by a constant from the correct answer for infinitely many objects
- I.e. for any $c \in \mathbb{N}$: $(\forall^{\infty} u \in U) [\exists p_0 \in p(u): C(p_0) < \min \{ C(n) \mid \varphi_n = u, n \in \mathbb{N} \} - c]$
- Any S-help is a K-help
- Any S-identifiable class is K-identifiable

Theorem on constant S-nonconstructivity

- A class *U* is *S*-nonconstructively *X*identifiable from presentation *I* with nonconstructivity *n*, iff *U* is a union $U = U_0 \cup U_1 \cup \ldots \cup U_{k-1}$
- Moreover, $k \le 2^{n+1-2}$ and each U_i is constructively X-identifiable
- X may be any constructive criterion
- *U* must have an infinite cardinality

S-nonconstructivity: Application #1

- There exist two classes such that each of them is identifiable, but their union is not
- (Independently discovered by Jānis Bārzdiņš and Lenore & Manuel Blum in the 1970s)

S-nonconstructivity: Application #2

- For any natural n ≥ 2 there exist infinitely many language classes that are not K-BCidentifiable with nonconstructivity less than n, but are S-EX-identifiable with nonconstructivity n
- (Discovered by I.Kucevalovs in 2010, inspired by a '1988 paper by Mark Fulk)

Restriction #3: *F*-nonconstructivity

- Has appeared in literature before
- A <u>nonconstructivity amount</u> function d(n) is defined
- Any help word of a length d(n) must work for any input object having index n or less
- Essentially S.Jain and A.Sharma's generalized "learning with the knowledge on the program upper bound"

Identification in the k-limit

- An IIM outputs not a sequence, but a kdimensional array of hypotheses
 - Always assumed to be infinite
 - Recall *EX* and *FIN*: we can always build IIMs which output infinite sequences

Identification in the k-limit (ctd.)

- Criteria are written in the form $(X_0 \times X_1 \times \ldots \times X_k)$
- E.g. (*BC* × *EX*)

Basic lemma on the k-limit

- A class U is (BC × X₀ × ... × X_k)-identifiable from presentation I in a numbering φ, iff there exists an infinite recursive sequence of *IIM M* s.t. for every u ∈ U: ∀[∞]i ∈ ℕ: M_i(I(u)) ∈ (X₀ × ... × X_k)(u, φ)
- Analogously for $(EX \times X_0 \times ... \times X_k)$
- In the case of recursive functions, it means that U is F-nonconstructively X_kidentifiable

Reliable and refutable identification (I) Non-reliable identification

Reliable and refutable identification (II) Reliable identification

Reliable and refutable identification (III) Refutable identification

R-NK-identification models

Reliability of identification

The given object
1) must be a member of the class in question
2) can be a non-member
Reliability of nonconstructivity

The given help

- a) must be correct
- b) can be incorrect

	1)	2)
a)	NK-X	NK-R-X
b)	R-NK-X	R-NK-R-X

Big question (R-NK-X)

- Can it be?
 - Some class is not constructively identifiable
 - But if we get some help, it is identifiable
 - Even if the help is incorrect

The answer

- Yes, with certain restrictions on the error
- The error, however, may grow to infinity

The construction (part 1)

- Consider the following functions: h(0) = C(1024) $h(x) = \min\{ n \mid n > h(x-1) \land C(n) > C(x-1) \}$ $m(x) = \min\{ C(n) \mid n \ge x \}$
- Both do exist
- Neither is computable

The construction (part 2)

- *p*₀,*p*₁,... is a growing sequence of primes starting from 3
- For every natural k, define $f_k(x) \equiv h((p_k)^{x+1})$
- Define the numbering $w_i = f_k$ for such $j \ge k$ that $f_k(n) = i$ for some nin $h(j) \pm \lfloor m(j)/2 \rfloor$

The construction (idea)

k x	$f_k(0)$	$f_{k}(1)$	$f_k(2)$	<i>f_k</i> (3)	$f_k(4)$	
f_0	3	9	27	81	243	
f_1	5	25	125	625	3125	
f_2	7	49	343	2401	16807	
f_3	11	121	1331	14641	161051	

The construction (idea, ctd)

k x	 n	<i>n</i> +1	<i>n</i> +2	<i>n</i> +3	<i>n</i> +4	<i>n</i> +5	<i>n</i> +6	
f_0	 p_0^{n+1}	<i>p</i> ₀ ^{<i>n</i>+2}	<i>p</i> ₀ ^{<i>n</i>+3}	p_0^{n+4}	<i>p</i> ₀ ^{<i>n</i>+5}	<i>p</i> ₀ ^{<i>n</i>+6}	p_0^{n+7}	••••
f_1	 <i>p</i> ₁ ^{<i>n</i>+1}	<i>p</i> ₁ ^{<i>n</i>+2}	<i>p</i> ₁ ^{<i>n</i>+3}	<i>p</i> ₁ ^{<i>n</i>+4}	<i>p</i> 1 ^{<i>n</i>+5}	<i>p</i> 1 ^{<i>n</i>+6}	<i>p</i> ₁ ^{<i>n</i>+7}	
f_2	 <i>p</i> ₂ ^{<i>n</i>+1}	<i>p</i> ₂ ^{<i>n</i>+2}	<i>p</i> ₂ ^{<i>n</i>+3}	<i>p</i> ₂ ^{<i>n</i>+4}	<i>p</i> ₂ ^{<i>n</i>+5}	<i>p</i> ₂ ^{<i>n</i>+6}	<i>p</i> ₂ ^{<i>n</i>+7}	
f_3	 <i>p</i> ₃ ^{<i>n</i>+1}	<i>p</i> ₃ ^{<i>n</i>+2}	<i>p</i> ₃ ^{<i>n</i>+3}	<i>p</i> ₃ ^{<i>n</i>+4}	<i>p</i> ₃ <i>n</i> +5	<i>p</i> ₃ ^{<i>n</i>+6}	<i>p</i> ₃ <i>n</i> +7	
f_4	 <i>p</i> ₄ ^{<i>n</i>+1}	<i>p</i> ₄ ^{<i>n</i>+2}	<i>p</i> ₄ ^{<i>n</i>+3}	<i>p</i> ₄ ^{<i>n</i>+4}	<i>p</i> ₄ ^{<i>n</i>+5}	<i>p</i> ₄ ^{<i>n</i>+6}	<i>p</i> ₄ ^{<i>n</i>+7}	
f_5	 <i>p</i> ₅ ^{<i>n</i>+1}	<i>p</i> ₅ ^{<i>n</i>+2}	<i>p</i> ₅ ^{<i>n</i>+3}	<i>p</i> ₅ ^{<i>n</i>+4}	<i>p</i> ₅ ^{<i>n</i>+5}	<i>p</i> ₅ ^{<i>n</i>+6}	<i>p</i> ₅ <i>n</i> +7	
f_6	 <i>p</i> ₆ ^{<i>n</i>+1}	<i>p</i> ₆ ^{<i>n</i>+2}	<i>p</i> ₆ ^{<i>n</i>+3}	<i>p</i> ₆ ^{<i>n</i>+4}	<i>p</i> ₆ ^{<i>n</i>+5}	<i>p</i> ₆ ^{<i>n</i>+6}	<i>p</i> ₆ ^{<i>n</i>+7}	
<i>f</i> ₇	 <i>p</i> ₇ ^{<i>n</i>+1}	<i>p</i> ₇ ^{<i>n</i>+2}	<i>p</i> ₇ ^{<i>n</i>+3}	<i>p</i> ₇ ^{<i>n</i>+4}	<i>p</i> ₇ ^{<i>n</i>+5}	<i>p</i> ₇ ^{<i>n</i>+6}	<i>p</i> ₇ ^{<i>n</i>+7}	
	 	•••	•••	•••	•••	•••	•••	40

if these are some <i>h</i> values									
		•							
k x		n	<i>n</i> +1	<i>n</i> +2	<i>n</i> +3	<i>n</i> +4	<i>n</i> +5	<i>n</i> +6	
f_0		<i>p</i> ₀ ^{<i>n</i>+1}	<i>p</i> ₀ ^{<i>n</i>+2}	<i>p</i> ₀ ^{<i>n</i>+3}	<i>p</i> ₀ ^{<i>n</i>+4}	<i>p</i> ₀ ^{<i>n</i>+5}	<i>p</i> 0 ^{<i>n</i>+6}	<i>p</i> ₀ ^{<i>n</i>+7}	
f_1		<i>p</i> ₁ ^{<i>n</i>+1}	<i>p</i> ₁ ^{<i>n</i>+2}	<i>p</i> 1 ^{<i>n</i>+3}	<i>p</i> ₁ ^{<i>n</i>+4}	<i>p</i> 1 ^{<i>n</i>+5}	<i>p</i> 1 ^{<i>n</i>+6}	<i>p</i> ₁ ^{<i>n</i>+7}	
f_2		<i>p</i> ₂ ^{<i>n</i>+1}	<i>p</i> ₂ ^{<i>n</i>+2}	<i>p</i> ₂ ^{<i>n</i>+3}	<i>p</i> ₂ ^{<i>n</i>+4}	<i>p</i> ₂ ^{<i>n</i>+5}	<i>p</i> ₂ ^{<i>n</i>+6}	<i>p</i> ₂ ^{<i>n</i>+7}	
f_3		<i>p</i> ₃ ^{<i>n</i>+1}	<i>p</i> ₃ ^{<i>n</i>+2}	<i>p</i> ₃ ^{<i>n</i>+3}	<i>p</i> ₃ ^{<i>n</i>+4}	<i>p</i> ₃ ^{<i>n</i>+5}	<i>p</i> ₃ ^{<i>n</i>+6}	<i>p</i> ₃ ^{<i>n</i>+7}	
f_4		<i>p</i> ₄ ^{<i>n</i>+1}	<i>p</i> ₄ ^{<i>n</i>+2}	<i>p</i> ₄ ^{<i>n</i>+3}	<i>p</i> ₄ ^{<i>n</i>+4}	<i>p</i> ₄ ^{<i>n</i>+5}	<i>p</i> ₄ ^{<i>n</i>+6}	<i>p</i> ₄ ^{<i>n</i>+7}	
<i>f</i> ₅		<i>p</i> ₅ ^{<i>n</i>+1}	<i>p</i> ₅ ^{<i>n</i>+2}	<i>p</i> ₅ ^{<i>n</i>+3}	<i>p</i> ₅ ^{<i>n</i>+4}	<i>p</i> ₅ ^{<i>n</i>+5}	<i>p</i> ₅ ^{<i>n</i>+6}	<i>p</i> ₅ ^{<i>n</i>+7}	
f_6		<i>p</i> ₆ ^{<i>n</i>+1}	<i>p</i> ₆ ^{<i>n</i>+2}	<i>p</i> ₆ ^{<i>n</i>+3}	<i>p</i> ₆ ^{<i>n</i>+4}	<i>p</i> ₆ ^{<i>n</i>+5}	<i>p</i> ₆ ^{<i>n</i>+6}	<i>p</i> ₆ ^{<i>n</i>+7}	
<i>f</i> ₇		<i>p</i> ₇ ^{<i>n</i>+1}	<i>p</i> ₇ ^{<i>n</i>+2}	<i>p</i> ₇ ^{<i>n</i>+3}	<i>p</i> ₇ ^{<i>n</i>+4}	<i>p</i> ₇ ^{<i>n</i>+5}	<i>p</i> ₇ ^{<i>n</i>+6}	<i>p</i> ₇ ^{<i>n</i>+7}	
		•••						•••	41

The construction (idea, final)

- Now, take the help equal to h
- We get *F*-nonconstructive *FIN*-identifiability
- If we take function values from the argument equal not to a single value of *h*, but to a interval bounded by *m*, we can allow an error
- Moreover, this error grows to infinity
- ...but incomputably slowly

Literature

- I.Kucevalovs. "Nekonstruktivitātes daudzums induktīvajā izvedumā", master thesis, University of Latvia, 2010
- I.Kucevalovs. "Randomization vs. Amount of nonconstructivity in learning of recursive functions", "Randomized and Quantum Computation", MFCS+CSL, 2010.
- I.Kucevalovs. "On reliability and refutability in nonconstructive identification", to appear in Proceedings of MEMICS 2010 (holds in Mikulov, CZ on 2010.10.22-24)

Thank you for your attention