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Applied pi calculus
Processes

P;Q ::= 0

j chMi:P
j c(x):P

j ºn:P

j P jQ
j !P

j [M = N ] ? P :Q

Messages (terms)
M;N ::= n

j x

j f(M1; : : : ;Mk)

do nothing

Send M on c, then do P

Receive a message on c, bind it to x in P

“generate a new” name n, then do P

Run P and Q in parallel

same as P | !P

name

variable

function symbol application
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Messages (terms)
M;N ::= n

j x

j f(M1; : : : ;Mk)

do nothing

Send M on c, then do P

Receive a message on c, bind it to x in P

“generate a new” name n, then do P

Run P and Q in parallel

same as P | !P

name

variable

function symbol application

Communication:

chMi:P j c(x):Q ! P jQ[xÃM ]

f 2 § — a signature

signature – a finite set of 
function symbols with 
associated arities

Associated equational theory

E – a set of pairs of terms

(M;N) 2 E implies that we judge

M¾ = N¾ for all substitutions σ
that ground M and N

For example
fst((x; y)) = x
snd((x; y)) = y



  

Cryptography with applied pi 
calculus

● Signature – cryptographic and other operations
● Equational theory captures cryptographic 

identities
● lack of equations captures security

● E.g. symmetric randomized encryption:
● enc/3, dec/2        (need more later)
● dec(k,enc(r,k,x)) = x

● A very useful abstraction of the computational 
model
● (sometimes unsound)



  

● Cryptography in computational model is all 
about building primitives
● Start from base primitives with certain security 

properties
– one-way functions, trapdoor one-way functions

● Combine them into more complex primitives
– reduce their security to security of simpler primitives

● Use them to build your system

● In symbolic model, the set of primitives is given 
by the signature Σ

Primitives



  

Our motivation

● We have obtained certain results for a certain 
set of primitives Σ

● We want to generalize those results to a larger 
set of primitives Σ'

● This would be straightforward if we could 
implement the primitives in Σ' using the 
primitives in Σ

● What does “implement” mean?



  

Motivating example
Consider the following primitives

tuples
(; : : : ; )=n

¼ni =1

¼ni ((x1; : : : ; xn)) = xi

hashing H=1

H(x
1
,...,x

k
) is syntactic sugar for

H((x
1
,...,x

k
))

XOR ©=2 0=0

x© y = y © x
(x© y)© z = x© (y © z)
x© x = 0 x© 0 = x

how to implement
S.R.Enc enc=3

dec=2

dec(k; enc(r; k; x)) = x

with them?



  

What is an implementation?

for each symbol f of arity k in the primitive, 
a term f i with free variables x

1
,...,x

k

● Must be compatible with the equational theory
● Induces a mapping tr on terms

● (second-order substitution)
● Replaces each occurrence of f with f  i

● tr is straightforwardly extended to processes
● Replace each M with tr(M)

● Secure implementation: no P can be told apart 
from tr(P)



  

Observational equivalence

● P and Q have the same barbs
● P has barb c if P can evolve to output on channel c

● If P can evolve to P' then Q can evolve to Q', such that 
P'≈Q'
● and vice versa

● For any closing evaluation context C, C[P]≈C[Q]
● evaluation context is a process with a hole “in the front”

– not preceded by I/O or conditionals

is the largest relation ≈ on closed processes, such 
that P≈Q implies Alone, P and Q

look the same

Secure implementation: P≈tr(P) for all P ???



  

Implementing Symm. Rand. Enc.

● Available operations: hashing and XOR
● Hashing looks like (pseudo)random function

● H(k,x) – keyed pseudorandom function

● From comp. model: to encrypt x with key k,
● generate a random r
● use H to expand it to random bit-string of length |x|
● XOR it with x

●                      — might this be enc i
[r,k,x]

?

● dec i
[k,y]

 would then be

(r;H(k; r)© x)

H(k; ¼21(y))© ¼22(y)



  

Obs. equiv. is unsuitable

● Consider the following process P
● construct a ciphertext
● check whether it is a pair
● depending on outcome, do observably different 

things

● P≈tr(P) cannot hold for such P
● Note: the test could be performed by either P or the 

context C

● Our solution: P and C do not use the function 
symbols used for implementation
● these symbols are “implementation details”

M is a pair if
(¼21(M); ¼

2
2(M)) =M



  

Obs. equiv. is unsuitable

● Consider the following process P
● construct a ciphertext
● check whether it is a pair
● depending on outcome, do observably different 

things

● P≈tr(P) cannot hold for such P
● Note: the test could be performed by either P or the 

context C

● Our solution: P and C do not use the function 
symbols used for implementation
● these symbols are “implementation details”

M is a pair if
(¼21(M); ¼

2
2(M)) =M

P and C do not use pairings???

We assume, there are separate, “tagged” versions:
¹(x; y¹); ¹¼1(x); ¹¼2(x); ¹H(x)

and these are used only in the implementation



  

tr(C)

Secure implementation: intuition

P tr(P) AS

C

PASC: the two processes 
have the same barbs

A can use tagged operations. P,S,C cannot



  

tr(C)

Simplification

AS

C

PASC: the two processes 
have the same barbs

A can use tagged operations. P,S,C cannot



  

Obs. equiv. modulo implementation

● P and Q have the same barbs

● If P can evolve to P' then Q can evolve to Q', 
such that 
● and vice versa

● For any closing evaluation context C not using 
tagged symbols,

is the largest relation      on closed processes, 
such that               implies

Secure implementation: 
where S does not use tagged symbols

¼tr

C[P ] ¼tr tr(C)[Q]

P 0 ¼tr Q0

P ¼tr Q

8A9S : S ¼tr A



  

Proving security of implementation
Decompose any A to

C
o

n
tr

o
lle

r, 
A

C

V
irt

u
al

 m
a

ch
in

e
(V
M

)

store (term)

new handle

retrieve (handle)

stored value

compute (f, handles to arguments)

new handle to f(corresp. values)

compare (two handles)

true/false

private channel

co
m

m
un

ic
at

io
n 

w
i th

ot
h

er
 p

ar
tie

s

tr(AC) = AC
inde-
pendent
of A

Find S, such that S ¼tr VM
ºc(AC j S) ¼tr ºc(AC j VM) ¼ AThen



  

Back to encryption...

tuples
(; : : : ; )=n

¼ni =1

¼ni ((x1; : : : ; xn)) = xi

hashing H=1

XOR ©=2 0=0

x© y = y © x
(x© y)© z = x© (y © z)
x© x = 0 x© 0 = x

how to implement
S.R.Enc enc=3

dec=2

dec(k; enc(r; k; x)) = x

with them?

deci[k;y] =
¹H(k; ¹¼1(y))© ¹¼2(y)

enci[r;k;x] =
¹(r; ¹H(k; r)© x¹)

Does work?



  

No, it does not work

A can transform ¹(r; ¹H(k; r)© x¹) ; x0

¹(r; ¹H(k; r)© x© x0¹)to

No S can transform

to

enc(r; k; x) ; x0

enc(r; k; x© x0)

Symbolic encryption also provides 
integrity



  

Integrity

● Message authentication codes (MACs) are 
used in the computational model to provide 
integrity in symmetric settings

● Theorem (comp. model): random function is a 
good MAC

● H models a random function



  

Integrity

● Message authentication codes (MACs) are 
used in the computational model to provide 
integrity in symmetric settings

● Theorem (comp. model): random function is a 
good MAC

● H models a random function
● How about: enci[r;k;x] = ¹(r; ¹H(k; r)© x; ¹H(k; x)¹)

deci[k;y] =
¹H(k; ¹H(k; ¹¼1(y))© ¹¼2(y)) ?

= ¹¼3(y) . ¹H(k; ¹¼1(y))© ¹¼2(y)

where
?
= . is a ternary function symbol and

x
?
= x . y = y



  

Still needs improvement
Given ¹(r; ¹H(k; r)© x; ¹H(k; x)¹)

¹(r0; ¹H(k; r0)© x0; ¹H(k; x0)¹)
A can tell whether x = x'

Given enc(r; k; x) enc(r0; k; x0)

No S can tell whether x = x'
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Still needs improvement
Given ¹(r; ¹H(k; r)© x; ¹H(k; x)¹)

¹(r0; ¹H(k; r0)© x0; ¹H(k; x0)¹)
A can tell whether x = x'

Given enc(r; k; x) enc(r0; k; x0)

No S can tell whether x = x'

Randomize the MAC
enci[r;k;x] =

¹(r; ¹H(k; r)© x; ¹H(k; r; x)¹)

This can be seen as the encrypt-then-
MAC construction

It has good properties in the 
computational model

Is it secure?



  

Securing the implementation
¹(r; ¹H(k; r)© x; ¹H(k; r; x)¹)Given
¹(r; ¹H(k; r)© x0; ¹H(k; r; x0)¹)

A can compute x© x0

Given enc(r; k; x) enc(r; k; x0)

No S can compute x© x0



  

Securing the implementation
¹(r; ¹H(k; r)© x; ¹H(k; r; x)¹)Given
¹(r; ¹H(k; r)© x0; ¹H(k; r; x0)¹)

A can compute x© x0

Given enc(r; k; x) enc(r; k; x0)

No S can compute x© x0

Make the randomness depend on k and x
enci[r;k;x] =

¹(r; ¹H(k; ¹H(k; r; x))© x; ¹H(k; r; x)¹)
deci[k;y] =

¹H(k; ¹¼1(y); ¹H(k; ¹¼3(y))© ¹¼2(y)) ?
= ¹¼3(y) . ¹H(k; ¹¼3(y))© ¹¼2(y)

This is secure implementation



  

Simulating VM

● Simulator S must respond to storing, retrieving, 
comparing, computing queries
● Including tagged operations

● Simulator may not use tagged operations
● Simulator must be indistinguishable from VM
● Stronger property:

At no time can one find terms M and N over 
VM's / S's database, such that
tr(M)[VM] = tr(N)[VM]  XOR  M[S] = N[S]

no tagged symbols in M and N



  

Tables of VM's and S's databases
hnd v hnd v v'

ct snd thd k pt

ciphertext
we've seen or created

second part

third part

correct key
(if any)

plaintext



  

The primitive needs more operations

● The implementation of enc reveals the used 
random coins
● this is acceptable and natural

● The simulator needs to recognize ciphertexts
●                                 must equal v iff v is ciphertext¹(¹¼1(v); ¹¼2(v); ¹¼3(v)¹)

S.R.Enc enc=3
dec=2

dec(k; enc(r; k; x)) = x

rnd=1
ct?=1
true=0

rnd(enc(r; k; x)) = r
ct?(enc(r; k; x)) = true



  

The primitive needs more operations

● The implementation of enc reveals the used 
random coins
● this is acceptable and natural

● The simulator needs to recognize ciphertexts
●                                 must equal v iff v is ciphertext¹(¹¼1(v); ¹¼2(v); ¹¼3(v)¹)

S.R.Enc enc=3
dec=2

dec(k; enc(r; k; x)) = x

rnd=1
ct?=1
true=0

rnd(enc(r; k; x)) = r
ct?(enc(r; k; x)) = true

rndi[y] = ¹¼1(y)

ct?i[y] =
¹(¹¼1(y); ¹¼2(y); ¹¼3(y)¹)

?
= y . true



  

Simulation

● Store, retrieve, compare, apply “normal” 
symbols – as VM
● Whenever a ciphertext appears – update ct table

– Check with ct?

● Whenever a key/plaintext is learned – update table
– k is correct key for y if enc(rnd(y),k,dec(k,y))=y

● Tagged operations – first look in the ct table
● Also update the ct table as much as possible

● Repeat query – repeat answer



  

Simulation

●             : key, plaintext, randomness known – 
insert whole row into ct table

●          : if y is not a tagged hash of a triple, then 
this invocation cannot be part of a ciphertext

● tagged triple – must return a ciphertext
● If no suitable row in ct table – return random c-text

●    is the same as rnd
● Other projections – see ct table
● If ct table lookup fails – generate random name

¹H(x; y; z)

¹H(x; y)

¹¼1



  

Conclusions

● “Implementation” changes the signatures
● we've proposed a suitable equivalence in this case
● ... and a proof method
● ... and did an example

● Finding secure implementations is trickier than 
expected
● Randomness is treated differently in symbolic and 

computational models

● The simulations might yield new, interesting 
proofs in the computational model
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