

Implementing Cryptographic
Primitives

in the Symbolic Model

Peeter Laud
Cybernetica AS & Tartu University

http://www.cs.ut.ee/~peeter_l

EST-LAT Theory Days, Rakari, 01.10.2010

Applied pi calculus
Processes

P;Q ::= 0

j chMi:P
j c(x):P

j ºn:P

j P jQ
j !P

j [M = N] ? P :Q

Messages (terms)
M;N ::= n

j x

j f(M1; : : : ;Mk)

do nothing

Send M on c, then do P

Receive a message on c, bind it to x in P

“generate a new” name n, then do P

Run P and Q in parallel

same as P | !P

name

variable

function symbol application

Applied pi calculus
Processes

P;Q ::= 0

j chMi:P
j c(x):P

j ºn:P

j P jQ
j !P

j [M = N] ? P :Q

Messages (terms)
M;N ::= n

j x

j f(M1; : : : ;Mk)

do nothing

Send M on c, then do P

Receive a message on c, bind it to x in P

“generate a new” name n, then do P

Run P and Q in parallel

same as P | !P

name

variable

function symbol application

Communication:

chMi:P j c(x):Q ! P jQ[xÃM]

Applied pi calculus
Processes

P;Q ::= 0

j chMi:P
j c(x):P

j ºn:P

j P jQ
j !P

j [M = N] ? P :Q

Messages (terms)
M;N ::= n

j x

j f(M1; : : : ;Mk)

do nothing

Send M on c, then do P

Receive a message on c, bind it to x in P

“generate a new” name n, then do P

Run P and Q in parallel

same as P | !P

name

variable

function symbol application

Communication:

chMi:P j c(x):Q ! P jQ[xÃM]

f 2 § — a signature

signature – a finite set of
function symbols with
associated arities

Applied pi calculus
Processes

P;Q ::= 0

j chMi:P
j c(x):P

j ºn:P

j P jQ
j !P

j [M = N] ? P :Q

Messages (terms)
M;N ::= n

j x

j f(M1; : : : ;Mk)

do nothing

Send M on c, then do P

Receive a message on c, bind it to x in P

“generate a new” name n, then do P

Run P and Q in parallel

same as P | !P

name

variable

function symbol application

Communication:

chMi:P j c(x):Q ! P jQ[xÃM]

f 2 § — a signature

signature – a finite set of
function symbols with
associated arities

Associated equational theory

E – a set of pairs of terms

(M;N) 2 E implies that we judge

M¾ = N¾ for all substitutions σ
that ground M and N

Applied pi calculus
Processes

P;Q ::= 0

j chMi:P
j c(x):P

j ºn:P

j P jQ
j !P

j [M = N] ? P :Q

Messages (terms)
M;N ::= n

j x

j f(M1; : : : ;Mk)

do nothing

Send M on c, then do P

Receive a message on c, bind it to x in P

“generate a new” name n, then do P

Run P and Q in parallel

same as P | !P

name

variable

function symbol application

Communication:

chMi:P j c(x):Q ! P jQ[xÃM]

f 2 § — a signature

signature – a finite set of
function symbols with
associated arities

Associated equational theory

E – a set of pairs of terms

(M;N) 2 E implies that we judge

M¾ = N¾ for all substitutions σ
that ground M and N

For example
fst((x; y)) = x
snd((x; y)) = y

Cryptography with applied pi
calculus

● Signature – cryptographic and other operations
● Equational theory captures cryptographic

identities
● lack of equations captures security

● E.g. symmetric randomized encryption:
● enc/3, dec/2 (need more later)
● dec(k,enc(r,k,x)) = x

● A very useful abstraction of the computational
model
● (sometimes unsound)

● Cryptography in computational model is all
about building primitives
● Start from base primitives with certain security

properties
– one-way functions, trapdoor one-way functions

● Combine them into more complex primitives
– reduce their security to security of simpler primitives

● Use them to build your system

● In symbolic model, the set of primitives is given
by the signature Σ

Primitives

Our motivation

● We have obtained certain results for a certain
set of primitives Σ

● We want to generalize those results to a larger
set of primitives Σ'

● This would be straightforward if we could
implement the primitives in Σ' using the
primitives in Σ

● What does “implement” mean?

Motivating example
Consider the following primitives

tuples
(; : : : ;)=n

¼ni =1

¼ni ((x1; : : : ; xn)) = xi

hashing H=1

H(x
1
,...,x

k
) is syntactic sugar for

H((x
1
,...,x

k
))

XOR ©=2 0=0

x© y = y © x
(x© y)© z = x© (y © z)
x© x = 0 x© 0 = x

how to implement
S.R.Enc enc=3

dec=2

dec(k; enc(r; k; x)) = x

with them?

What is an implementation?

for each symbol f of arity k in the primitive,
a term f i with free variables x

1
,...,x

k

● Must be compatible with the equational theory
● Induces a mapping tr on terms

● (second-order substitution)
● Replaces each occurrence of f with f i

● tr is straightforwardly extended to processes
● Replace each M with tr(M)

● Secure implementation: no P can be told apart
from tr(P)

Observational equivalence

● P and Q have the same barbs
● P has barb c if P can evolve to output on channel c

● If P can evolve to P' then Q can evolve to Q', such that
P'≈Q'
● and vice versa

● For any closing evaluation context C, C[P]≈C[Q]
● evaluation context is a process with a hole “in the front”

– not preceded by I/O or conditionals

is the largest relation ≈ on closed processes, such
that P≈Q implies Alone, P and Q

look the same

Secure implementation: P≈tr(P) for all P ???

Implementing Symm. Rand. Enc.

● Available operations: hashing and XOR
● Hashing looks like (pseudo)random function

● H(k,x) – keyed pseudorandom function

● From comp. model: to encrypt x with key k,
● generate a random r
● use H to expand it to random bit-string of length |x|
● XOR it with x

● — might this be enc i
[r,k,x]

?

● dec i
[k,y]

 would then be

(r;H(k; r)© x)

H(k; ¼21(y))© ¼22(y)

Obs. equiv. is unsuitable

● Consider the following process P
● construct a ciphertext
● check whether it is a pair
● depending on outcome, do observably different

things

● P≈tr(P) cannot hold for such P
● Note: the test could be performed by either P or the

context C

● Our solution: P and C do not use the function
symbols used for implementation
● these symbols are “implementation details”

M is a pair if
(¼21(M); ¼

2
2(M)) =M

Obs. equiv. is unsuitable

● Consider the following process P
● construct a ciphertext
● check whether it is a pair
● depending on outcome, do observably different

things

● P≈tr(P) cannot hold for such P
● Note: the test could be performed by either P or the

context C

● Our solution: P and C do not use the function
symbols used for implementation
● these symbols are “implementation details”

M is a pair if
(¼21(M); ¼

2
2(M)) =M

P and C do not use pairings???

We assume, there are separate, “tagged” versions:
¹(x; y¹); ¹¼1(x); ¹¼2(x); ¹H(x)

and these are used only in the implementation

tr(C)

Secure implementation: intuition

P tr(P) AS

C

PASC: the two processes
have the same barbs

A can use tagged operations. P,S,C cannot

tr(C)

Simplification

AS

C

PASC: the two processes
have the same barbs

A can use tagged operations. P,S,C cannot

Obs. equiv. modulo implementation

● P and Q have the same barbs

● If P can evolve to P' then Q can evolve to Q',
such that
● and vice versa

● For any closing evaluation context C not using
tagged symbols,

is the largest relation on closed processes,
such that implies

Secure implementation:
where S does not use tagged symbols

¼tr

C[P] ¼tr tr(C)[Q]

P 0 ¼tr Q0

P ¼tr Q

8A9S : S ¼tr A

Proving security of implementation
Decompose any A to

C
o

n
tr

o
lle

r,
A

C

V
irt

u
al

 m
a

ch
in

e
(V
M

)

store (term)

new handle

retrieve (handle)

stored value

compute (f, handles to arguments)

new handle to f(corresp. values)

compare (two handles)

true/false

private channel

co
m

m
un

ic
at

io
n

w
i th

ot
h

er
 p

ar
tie

s

tr(AC) = AC
inde-
pendent
of A

Find S, such that S ¼tr VM
ºc(AC j S) ¼tr ºc(AC j VM) ¼ AThen

Back to encryption...

tuples
(; : : : ;)=n

¼ni =1

¼ni ((x1; : : : ; xn)) = xi

hashing H=1

XOR ©=2 0=0

x© y = y © x
(x© y)© z = x© (y © z)
x© x = 0 x© 0 = x

how to implement
S.R.Enc enc=3

dec=2

dec(k; enc(r; k; x)) = x

with them?

deci[k;y] =
¹H(k; ¹¼1(y))© ¹¼2(y)

enci[r;k;x] =
¹(r; ¹H(k; r)© x¹)

Does work?

No, it does not work

A can transform ¹(r; ¹H(k; r)© x¹) ; x0

¹(r; ¹H(k; r)© x© x0¹)to

No S can transform

to

enc(r; k; x) ; x0

enc(r; k; x© x0)

Symbolic encryption also provides
integrity

Integrity

● Message authentication codes (MACs) are
used in the computational model to provide
integrity in symmetric settings

● Theorem (comp. model): random function is a
good MAC

● H models a random function

Integrity

● Message authentication codes (MACs) are
used in the computational model to provide
integrity in symmetric settings

● Theorem (comp. model): random function is a
good MAC

● H models a random function
● How about: enci[r;k;x] = ¹(r; ¹H(k; r)© x; ¹H(k; x)¹)

deci[k;y] =
¹H(k; ¹H(k; ¹¼1(y))© ¹¼2(y)) ?

= ¹¼3(y) . ¹H(k; ¹¼1(y))© ¹¼2(y)

where
?
= . is a ternary function symbol and

x
?
= x . y = y

Still needs improvement
Given ¹(r; ¹H(k; r)© x; ¹H(k; x)¹)

¹(r0; ¹H(k; r0)© x0; ¹H(k; x0)¹)
A can tell whether x = x'

Given enc(r; k; x) enc(r0; k; x0)

No S can tell whether x = x'

Still needs improvement
Given ¹(r; ¹H(k; r)© x; ¹H(k; x)¹)

¹(r0; ¹H(k; r0)© x0; ¹H(k; x0)¹)
A can tell whether x = x'

Given enc(r; k; x) enc(r0; k; x0)

No S can tell whether x = x'

Randomize the MAC
enci[r;k;x] =

¹(r; ¹H(k; r)© x; ¹H(k; r; x)¹)

Still needs improvement
Given ¹(r; ¹H(k; r)© x; ¹H(k; x)¹)

¹(r0; ¹H(k; r0)© x0; ¹H(k; x0)¹)
A can tell whether x = x'

Given enc(r; k; x) enc(r0; k; x0)

No S can tell whether x = x'

Randomize the MAC
enci[r;k;x] =

¹(r; ¹H(k; r)© x; ¹H(k; r; x)¹)

This can be seen as the encrypt-then-
MAC construction

It has good properties in the
computational model

Is it secure?

Securing the implementation
¹(r; ¹H(k; r)© x; ¹H(k; r; x)¹)Given
¹(r; ¹H(k; r)© x0; ¹H(k; r; x0)¹)

A can compute x© x0

Given enc(r; k; x) enc(r; k; x0)

No S can compute x© x0

Securing the implementation
¹(r; ¹H(k; r)© x; ¹H(k; r; x)¹)Given
¹(r; ¹H(k; r)© x0; ¹H(k; r; x0)¹)

A can compute x© x0

Given enc(r; k; x) enc(r; k; x0)

No S can compute x© x0

Make the randomness depend on k and x
enci[r;k;x] =

¹(r; ¹H(k; ¹H(k; r; x))© x; ¹H(k; r; x)¹)
deci[k;y] =

¹H(k; ¹¼1(y); ¹H(k; ¹¼3(y))© ¹¼2(y)) ?
= ¹¼3(y) . ¹H(k; ¹¼3(y))© ¹¼2(y)

This is secure implementation

Simulating VM

● Simulator S must respond to storing, retrieving,
comparing, computing queries
● Including tagged operations

● Simulator may not use tagged operations
● Simulator must be indistinguishable from VM
● Stronger property:

At no time can one find terms M and N over
VM's / S's database, such that
tr(M)[VM] = tr(N)[VM] XOR M[S] = N[S]

no tagged symbols in M and N

Tables of VM's and S's databases
hnd v hnd v v'

ct snd thd k pt

ciphertext
we've seen or created

second part

third part

correct key
(if any)

plaintext

The primitive needs more operations

● The implementation of enc reveals the used
random coins
● this is acceptable and natural

● The simulator needs to recognize ciphertexts
● must equal v iff v is ciphertext¹(¹¼1(v); ¹¼2(v); ¹¼3(v)¹)

S.R.Enc enc=3
dec=2

dec(k; enc(r; k; x)) = x

rnd=1
ct?=1
true=0

rnd(enc(r; k; x)) = r
ct?(enc(r; k; x)) = true

The primitive needs more operations

● The implementation of enc reveals the used
random coins
● this is acceptable and natural

● The simulator needs to recognize ciphertexts
● must equal v iff v is ciphertext¹(¹¼1(v); ¹¼2(v); ¹¼3(v)¹)

S.R.Enc enc=3
dec=2

dec(k; enc(r; k; x)) = x

rnd=1
ct?=1
true=0

rnd(enc(r; k; x)) = r
ct?(enc(r; k; x)) = true

rndi[y] = ¹¼1(y)

ct?i[y] =
¹(¹¼1(y); ¹¼2(y); ¹¼3(y)¹)

?
= y . true

Simulation

● Store, retrieve, compare, apply “normal”
symbols – as VM
● Whenever a ciphertext appears – update ct table

– Check with ct?

● Whenever a key/plaintext is learned – update table
– k is correct key for y if enc(rnd(y),k,dec(k,y))=y

● Tagged operations – first look in the ct table
● Also update the ct table as much as possible

● Repeat query – repeat answer

Simulation

● : key, plaintext, randomness known –
insert whole row into ct table

● : if y is not a tagged hash of a triple, then
this invocation cannot be part of a ciphertext

● tagged triple – must return a ciphertext
● If no suitable row in ct table – return random c-text

● is the same as rnd
● Other projections – see ct table
● If ct table lookup fails – generate random name

¹H(x; y; z)

¹H(x; y)

¹¼1

Conclusions

● “Implementation” changes the signatures
● we've proposed a suitable equivalence in this case
● ... and a proof method
● ... and did an example

● Finding secure implementations is trickier than
expected
● Randomness is treated differently in symbolic and

computational models

● The simulations might yield new, interesting
proofs in the computational model

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

