Implementing Cryptographic Primitives in the Symbolic Model

Peeter Laud
Cybernetica AS \& Tartu University
http://www.cs.ut.ee/~peeter_I

Applied pi calculus

Processes

$P, Q::=$
do nothing
$\bar{c}\langle M\rangle . P \quad$ Send M on c, then do P

$$
c(x) . P
$$

$$
\text { Receive a message on } c, \text { bind it to } x \text { in } P
$$

$$
\text { "generate a new" name } n \text {, then do } P
$$

$$
\text { Run } P \text { and } Q \text { in parallel }
$$

$$
\text { same as } P \|!P
$$

$$
[M=N] ? P: Q
$$

Messages (terms)

$$
M, N \quad::=n \quad \text { name }
$$

$$
\begin{array}{l|l|}
x & \text { variable }
\end{array}
$$

$$
\quad f\left(M_{1}, \ldots, M_{k}\right) \quad \text { function symbol application }
$$

Applied pi calculus

Processes

$P, Q \quad::=0$

Communication:

$$
\begin{array}{|ll}
\mid & \bar{c}\langle M\rangle \cdot P \\
\mid & \text { Send } M c c\langle M\rangle \cdot P|c(x) \cdot Q \rightarrow P| Q[x \leftarrow M] \\
\mid & c(x) . P \\
\mid & \text { Receive a message on } c, \text { bind it to } x \text { in } P \\
\mid & P \mid Q \\
\mid & \text { "generate a new" name } n \text {, then do } P \\
\mid P & \text { Run } P \text { and } Q \text { in parallel } \\
\mid & {[M=N] ? P: Q}
\end{array}
$$

Messages (terms)

$$
\begin{aligned}
M, N & ::= \\
& n=\text { name } \\
& x>\text { variable } \\
& f\left(M_{1}, \ldots, M_{k}\right) \quad \text { function symbol application }
\end{aligned}
$$

Applied pi calculus

Processes

$P, Q \quad::=0$

Communication:

$$
\begin{array}{lll}
|c| c|c| & \bar{c}\langle M\rangle . P & \text { Send } M c c\langle M\rangle . P|c(x) \cdot Q \rightarrow P| Q[x \leftarrow M] \\
\mid & c(x) \cdot P & \text { Receive a message on } c, \text { binc } f \in \Sigma-\mathrm{a} \text { signature } \\
\mid & \nu n . P & \text { "generate a new" name } n \text {, the signature }- \text { a finite set of } \\
\text { function symbols with } \\
\text { associated arities } \\
& P \mid Q & \text { Run } P \text { and } Q \text { in parallel } \\
\mid & !P & \text { same as } P I!P \\
\mid & {[M=N] ? P: Q}
\end{array}
$$

Messages (terms)

$$
M, N \quad::=n
$$

name

$$
x \quad \text { variable }
$$

$$
f\left(M_{1}, \ldots, M_{k}\right) \quad \text { function symbol application }
$$

Applied pi calculus

Processes

$P, Q \quad::=0$

Communication:

$$
\begin{array}{l|l}
\bar{c}\langle M\rangle . P & \text { Send } M c c\langle M\rangle . P|c(x) \cdot Q \rightarrow P| Q[x \leftarrow M] \\
c(x) . P & \text { Receive a message on } c, \text { binc } f \in \Sigma-\text { a signature }
\end{array}
$$

$\nu n . P$ Associated equational theory
re - a finite set of 1 symbols with $P \mid Q \quad E-$ a set of pairs of terms ited arities

Messages (terms)
$M, N \quad::=n$
x variable

$$
\quad f\left(M_{1}, \ldots, M_{k}\right) \quad \text { function symbol application }
$$

Applied pi calculus

Processes

$P, Q \quad::=0$

Communication:

$$
\begin{array}{l|l}
\bar{c}\langle M\rangle . P & \text { Send } M c \\
c & M\rangle \cdot P|c(x) \cdot Q \rightarrow P| Q[x \leftarrow M] \\
c(x) \cdot P & \text { Receive a message on } c \text {, binc } f \in \Sigma-\mathrm{a} \text { signature }
\end{array}
$$

$\nu n . P$ Associated equational theory
$P \mid Q \quad E$ - a set of pairs of terms
$!P \quad(M, N) \in E$ implies that we judge
[$M=M \sigma=N \sigma$ for all substitutions σ that ground M and N

Messages (terms)
$M, N \quad::=n \quad$ For example

$$
\begin{aligned}
\operatorname{stt}((x, y)) & =x \\
\operatorname{snd}((x, y)) & =y
\end{aligned}
$$

x variable

$$
f\left(M_{1}, \ldots, M_{k}\right) \text { function symbol application }
$$

- aline set or 1 symbols with Ited arities

Cryptography with applied pi calculus

- Signature - cryptographic and other operations
- Equational theory captures cryptographic identities
- lack of equations captures security
- E.g. symmetric randomized encryption:
- enc/3, dec/2 (need more later)
- $\operatorname{dec}(k, e n c(r, k, x))=x$
- A very useful abstraction of the computational model
- (sometimes unsound)

Primitives

- Cryptography in computational model is all about building primitives
- Start from base primitives with certain security properties
- one-way functions, trapdoor one-way functions
- Combine them into more complex primitives
- reduce their security to security of simpler primitives
- Use them to build your system
- In symbolic model, the set of primitives is given by the signature Σ

Our motivation

- We have obtained certain results for a certain set of primitives Σ
- We want to generalize those results to a larger set of primitives Σ^{\prime}
- This would be straightforward if we could implement the primitives in Σ^{\prime} using the primitives in Σ
- What does "implement" mean?

Motivating example

Consider the following primitives

$$
\begin{array}{cc}
\text { tuples } & (, \ldots,) / n \\
\pi_{i}^{n} / 1 \\
\pi_{i}^{n}\left(\left(x_{1}, \ldots, x_{n}\right)\right)=x_{i}
\end{array}
$$

hashing
 $H / 1$

$H\left(x_{1}, \ldots, x_{k}\right)$ is syntactic sugar for $H\left(\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right)$
how to implement

$$
\begin{gathered}
\text { S.R.Enc } \begin{array}{c}
e n c / 3 \\
d e c / 2
\end{array} \\
\operatorname{dec}(k, e n c(r, k, x))=x
\end{gathered}
$$

with them?

$$
\begin{aligned}
& x \oplus y=y \oplus x \\
& (x \oplus y) \oplus z=x \oplus(y \oplus z) \\
& x \oplus x=0 \quad x \oplus 0=x
\end{aligned}
$$

What is an implementation?

for each symbol f of arity k in the primitive, a term f^{i} with free variables x_{1}, \ldots, x_{k}

- Must be compatible with the equational theory
- Induces a mapping tr on terms
- (second-order substitution)
- Replaces each occurrence of f with f^{i}
- tr is straightforwardly extended to processes
- Replace each M with $\operatorname{tr}(M)$
- Secure implementation: no P can be told apart from $\operatorname{tr}(P)$

Observational equivalence

is the largest relation \approx on closed processes, such that $P \approx Q$ implies

- P and Q have the same barbs
- P has barb c if P can evolve to output on channel c
- If P can evolve to P^{\prime} then Q can evolve to Q^{\prime}, such that $P^{\prime} \approx Q^{\prime}$
- and vice versa
- For any closing evaluation context $C, C[P] \approx C[Q]$
- evaluation context is a process with a hole "in the front" - not preceded by l/O or conditionals

Secure implementation: $P \approx \operatorname{tr}(P)$ for all P ???

Implementing Symm. Rand. Enc.

- Available operations: hashing and XOR
- Hashing looks like (pseudo)random function
- $H(k, x)$ - keyed pseudorandom function
- From comp. model: to encrypt x with key k,
- generate a random r
- use H to expand it to random bit-string of length $|x|$
- XOR it with x
- $(r, H(k, r) \oplus x)$ - might this be $\mathrm{enc}_{\left[{ }_{[k, k]}^{\mathrm{i}}\right]}$?
- dec $_{[k \mid]}^{i}$ would then be $H\left(k, \pi_{1}^{2}(y)\right) \oplus \pi_{2}^{2}(y)$

Obs. equiv. is unsuitable

- Consider the following process P
- construct a ciphertext
M is a pair if
- check whether it is a pair
- depending on outcome, do observably different things
- $P \approx \operatorname{tr}(P)$ cannot hold for such P
- Note: the test could be performed by either P or the context C
- Our solution: P and C do not use the function symbols used for implementation
- these symbols are "implementation details"

Obs. equiv. is unsuitable

- Copcinar tho fnllnisinn nrnnoce D P and C do not use pairings???
- cl We assume, there are separate, "tagged" versions:
- d
$\overline{(} x, y), \bar{\pi}_{1}(x), \bar{\pi}_{2}(x), \bar{H}(x)$
th and these are used only in the implementation
- $P \approx \operatorname{tr}(P)$ cannot hold for such P
- Note: the test could be performed by either P or the context C
- Our solution: P and C do not use the function symbols used for implementation
- these symbols are "implementation details"

Secure implementation: intuition

A can use tagged operations. P, S, C cannot
$\forall P \forall A \exists S \forall C$: the two processes have the same barbs

Simplification

A can use tagged operations. S,C cannot
$\forall A \exists S \forall C$: the two processes have the same barbs

Obs. equiv. modulo implementation

is the largest relation $\approx_{t r}$ on closed processes, such that $P \approx_{t r} Q$ implies

- P and Q have the same barbs
- If P can evolve to P^{\prime} then Q can evolve to Q^{\prime}, such that $P^{\prime} \approx_{t r} Q^{\prime}$
- and vice versa
- For any closing evaluation context C not using tagged symbols, $C[P] \approx_{t r} \operatorname{tr}(C)[Q]$

Secure implementation: $\forall A \exists S: S \approx_{t r} A$ where S does not use tagged symbols

Proving security of implementation

Decompose any A to

private channel

Find S, such that $S \approx_{t r} V M$
Then $\nu c\left(A_{\mathrm{C}} \mid S\right) \approx_{t r} \nu c\left(A_{\mathrm{C}} \mid V M\right) \approx A$
independent of A

Back to encryption...

$$
\begin{array}{cc}
\text { tuples } & (, \ldots,) / n \\
\pi_{i}^{n} / 1 \\
\pi_{i}^{n}\left(\left(x_{1}, \ldots, x_{n}\right)\right)=x_{i}
\end{array}
$$

hashing
 H/1

XOR
 $\oplus / 2$
 0/0

$x \oplus y=y \oplus x$
$(x \oplus y) \oplus z=x \oplus(y \oplus z)$
$x \oplus x=0 \quad x \oplus 0=x$

S.R.Enc enc/3

 dec/2with them?

$$
\operatorname{dec}(k, \operatorname{enc}(r, k, x))=x
$$

$$
\text { Does }\left\{\begin{array}{c}
e n c_{[r, k, x]}^{\mathrm{i}}=\overline{(} r, \bar{H}(k, r) \oplus x \overline{)} \\
d e c_{[k, y]}^{\mathrm{i}}=\bar{H}\left(k, \bar{\pi}_{1}(y)\right) \oplus \bar{\pi}_{2}(y)
\end{array}\right\} \text { work? }
$$

No, it does not work

A can transform

$$
\begin{aligned}
& \overline{(} r, \bar{H}(k, r) \oplus x), x^{\prime} \\
& \left.\overline{(} r, \bar{H}(k, r) \oplus x \oplus x^{\prime}\right)
\end{aligned}
$$

No S can transform $\operatorname{enc}(r, k, x), x^{\prime}$
to
$e n c\left(r, k, x \oplus x^{\prime}\right)$

Symbolic encryption also provides integrity

Integrity

- Message authentication codes (MACs) are used in the computational model to provide integrity in symmetric settings
- Theorem (comp. model): random function is a good MAC
- H models a random function

Integrity

- Message authentication codes (MACs) are used in the computational model to provide integrity in symmetric settings
- Theorem (comp. model): random function is a good MAC
- H models a random function
- How about: enc ${ }_{[r, k, x]}^{\mathrm{j}}=\overline{(r, \bar{H}}(k, r) \oplus x, \bar{H}(k, x) \overline{)}$

$$
d e c_{[k, y]}^{\dot{i}}=\bar{H}\left(k, \bar{H}\left(k, \bar{\pi}_{1}(y)\right) \oplus \bar{\pi}_{2}(y)\right) \stackrel{?}{=} \bar{\pi}_{3}(y) \triangleright \bar{H}\left(k, \bar{\pi}_{1}(y)\right) \oplus \bar{\pi}_{2}(y)
$$

where $\stackrel{?}{=} \triangleright$ is a ternary function symbol and

$$
x \stackrel{?}{=} x \triangleright y=y
$$

Still needs improvement

Given $\quad \overline{(} r, \bar{H}(k, r) \oplus x, \bar{H}(k, x) \overline{)}$

$$
\overline{(} r^{\prime}, \bar{H}\left(k, r^{\prime}\right) \oplus x^{\prime}, \bar{H}\left(k, x^{\prime}\right) \overline{)}
$$

A can tell whether $x=x^{\prime}$

Given $\operatorname{enc}(r, k, x) \operatorname{enc}\left(r^{\prime}, k, x^{\prime}\right)$
No S can tell whether $x=x^{\prime}$

Still needs improvement

Given $\quad \overline{(} r, \bar{H}(k, r) \oplus x, \bar{H}(k, x) \overline{)}$

$$
\overline{(} r^{\prime}, \bar{H}\left(k, r^{\prime}\right) \oplus x^{\prime}, \bar{H}\left(k, x^{\prime}\right) \overline{)}
$$

A can tell whether $x=x^{\prime}$

Given enc $(r, k, x) \quad e n c\left(r^{\prime}, k, x^{\prime}\right)$ No S can tell whether $x=x^{\prime}$

Randomize the MAC

$$
e n c_{[r, k, x]}^{\mathrm{i}}=\overline{(r}, \bar{H}(k, r) \oplus x, \bar{H}(k, r, x) \overline{)}
$$

Still needs improvement

This can be seen as the encrypt-thenMAC construction

It has good properties in the computational model

Is it secure?

Randomize the MAC

$$
e n c_{[r, k, x]}^{\bar{i}}=\overline{(r, \bar{H}}(k, r) \oplus x, \bar{H}(k, r, x) \overline{)}
$$

Securing the implementation

Given

$$
\begin{aligned}
& \overline{(} r, \bar{H}(k, r) \oplus x, \bar{H}(k, r, x) \overline{)} \\
& \overline{\left(r, \bar{H}(k, r) \oplus x^{\prime}, \bar{H}\left(k, r, x^{\prime}\right) \overline{)}\right.}
\end{aligned}
$$

A can compute $x \oplus x^{\prime}$
Given enc($r, k, x) \quad \operatorname{enc}\left(r, k, x^{\prime}\right)$
No S can compute $x \oplus x^{\prime}$

Securing the implementation

Given $\overline{(} r, \bar{H}(k, r) \oplus x, \bar{H}(k, r, x) \overline{)}$

$$
\overline{(r}, \bar{H}(k, r) \oplus x^{\prime}, \bar{H}\left(k, r, x^{\prime}\right) \overline{)}
$$

A can compute $x \oplus x^{\prime}$
Given enc(r, $k, x) \quad \operatorname{enc}\left(r, k, x^{\prime}\right)$
No S can compute $x \oplus x^{\prime}$
Make the randomness depend on k and x

$$
e n c_{[r, k, x]}^{1}=\overline{(} r, \bar{H}(k, \bar{H}(k, r, x)) \oplus x, \bar{H}(k, r, x) \overline{)}
$$

$$
\operatorname{dec}_{[k, y]}^{\mathrm{i}}=\bar{H}\left(k, \bar{\pi}_{1}(y), \bar{H}\left(k, \bar{\pi}_{3}(y)\right) \oplus \bar{\pi}_{2}(y)\right) \stackrel{?}{=} \bar{\pi}_{3}(y) \triangleright \bar{H}\left(k, \bar{\pi}_{3}(y)\right) \oplus \bar{\pi}_{2}(y)
$$

This is secure implementation

Simulating $V M$

- Simulator S must respond to storing, retrieving, comparing, computing queries
- Including tagged operations
- Simulator may not use tagged operations
- Simulator must be indistinguishable from VM
- Stronger property:

At no time can one find terms M and N over $V M$'s / S 's database, such that
$\operatorname{tr}(M)[V M]=\operatorname{tr}(N)[V M]$ XOR $M[S]=N[S]$

Tables of $V M$'s and S^{\prime} s databases

The primitive needs more operations

- The implementation of enc reveals the used random coins
- this is acceptable and natural
- The simulator needs to recognize ciphertexts
- $\overline{\pi_{1}}(v), \bar{\pi}_{2}(v), \bar{\pi}_{3}(v) \overline{)}$ must equal v iff v is ciphertext

```
S.R.Enc enc/3 rnd/1
    dec/2 ct?/1
    true/0
dec(k,enc(r,k,x))=x
    rnd(enc(r,k,x))=r
    ct?(enc(r,k,x))=true
```


The primitive needs more operations

- The
ran

$$
r n d_{[y]}^{\mathrm{i}}=\bar{\pi}_{1}(y)
$$

- tt $\left.c t ?{ }_{[y]}^{\dot{i}}=\overline{(} \bar{\pi}_{1}(y), \bar{\pi}_{2}(y), \bar{\pi}_{3}(y)\right) \stackrel{?}{=} y \triangleright$ true
- The simulator needs to re
- $\overline{(} \bar{\pi}_{1}(v), \bar{\pi}_{2}(v), \bar{\pi}_{3}(v) \overline{)}$ must equa
ciphertexts
v is ciphertext

$$
\begin{aligned}
& \text { S.R.Enc } \quad e n c / 3 \quad r n d / 1 \\
& \text { dec/2 ct?/1 } \\
& \text { true/0 } \\
& \operatorname{dec}(k, \operatorname{enc}(r, k, x))=x \\
& \operatorname{rnd}(\operatorname{enc}(r, k, x))=r \\
& c t ?(\operatorname{enc}(r, k, x))=t r u e
\end{aligned}
$$

Simulation

- Store, retrieve, compare, apply "normal" symbols - as VM
- Whenever a ciphertext appears - update ct table
- Check with ct?
- Whenever a key/plaintext is learned - update table
- k is correct key for y if $\operatorname{enc}(r n d(y), k, \operatorname{dec}(k, y))=y$
- Tagged operations - first look in the ct table
- Also update the ct table as much as possible
- Repeat query - repeat answer

Simulation

- $\bar{H}(x, y, z)$: key, plaintext, randomness known insert whole row into ct table
- $\bar{H}(x, y)$: if y is not a tagged hash of a triple, then this invocation cannot be part of a ciphertext
- tagged triple - must return a ciphertext
- If no suitable row in ct table - return random c-text
- $\bar{\pi}_{1}$ is the same as $r n d$
- Other projections - see ct table
- If ct table lookup fails - generate random name

Conclusions

- "Implementation" changes the signatures
- we've proposed a suitable equivalence in this case
- ... and a proof method
- ... and did an example
- Finding secure implementations is trickier than expected
- Randomness is treated differently in symbolic and computational models
- The simulations might yield new, interesting proofs in the computational model

