Implementing Cryptographic Primitives in the Symbolic Model

Peeter Laud Cybernetica AS & Tartu University http://www.cs.ut.ee/~peeter_I

EST-LAT Theory Days, Rakari, 01.10.2010

Messages (terms) M, N ::= n name $\mid x$ variable $\mid f(M_1, \dots, M_k)$ function symbol application

Messages (terms) M, N ::= n name $\mid x$ variable $\mid f(M_1, \dots, M_k)$ function symbol application

Messages (terms) M, N ::=nname \mathcal{X} variable $f(M_1,\ldots,M_k)$ function symbol application

Cryptography with applied pi calculus

- Signature cryptographic and other operations
- Equational theory captures cryptographic identities
 - lack of equations captures security
- E.g. symmetric *randomized* encryption:
 - *enc*/3, *dec*/2 (need more later)
 - dec(k,enc(r,k,x)) = x
- A very useful abstraction of the computational model
 - (sometimes unsound)

Primitives

- Cryptography in computational model is all about building primitives
 - Start from base primitives with certain security properties
 - one-way functions, trapdoor one-way functions
 - Combine them into more complex primitives
 - reduce their security to security of simpler primitives
 - Use them to build your system
- In symbolic model, the set of primitives is given by the signature $\boldsymbol{\Sigma}$

Our motivation

- We have obtained certain results for a certain set of primitives $\boldsymbol{\Sigma}$
- We want to generalize those results to a larger set of primitives Σ'
- This would be straightforward if we could implement the primitives in Σ' using the primitives in Σ
- What does "implement" mean?

Motivating example

Consider the following primitives

tuples $(,\ldots,)/n$ $\pi_i^n/1$ $\pi_i^n((x_1,\ldots,x_n)) = x_i$

hashing

H/1

 $H(x_1,...,x_k)$ is syntactic sugar for $H((x_1,...,x_k))$

 $\begin{array}{ll} \mathsf{XOR} & \oplus/2 & 0/0 \\ x \oplus y = y \oplus x \\ (x \oplus y) \oplus z = x \oplus (y \oplus z) \\ x \oplus x = 0 & x \oplus 0 = x \end{array}$

how to implement

S.R.Enc enc/3dec/2dec(k, enc(r, k, x)) = x

with them?

What is an implementation?

for each symbol *f* of arity *k* in the primitive, a term f^i with free variables $x_1, ..., x_k$

- Must be compatible with the equational theory
- Induces a mapping *tr* on terms
 - (second-order substitution)
 - Replaces each occurrence of f with f^{i}
- *tr* is straightforwardly extended to processes
 - Replace each *M* with *tr*(*M*)
- Secure implementation: no P can be told apart from *tr*(P)

Observational equivalence

is the largest relation \approx on closed processes, such that $P \approx Q$ implies Alone, P and Q

look the same

- *P* and *Q* have the same barbs
 - P has barb c if P can evolve to output on channel c
- If P can evolve to P' then Q can evolve to Q', such that P'≈Q'
 - and vice versa
- For any closing evaluation context *C*, *C*[*P*]≈*C*[*Q*]
 - evaluation context is a process with a hole "in the front"
 - not preceded by I/O or conditionals

Secure implementation: *P*≈tr(*P*) for all *P*???

Implementing Symm. Rand. Enc.

- Available operations: hashing and XOR
- Hashing looks like (pseudo)random function
 - H(k,x) keyed pseudorandom function
- From comp. model: to encrypt x with key k,
 - generate a random *r*
 - use *H* to expand it to random bit-string of length |x|
 - XOR it with *x*
- $(r, H(k, r) \oplus x)$ might this be $enc_{[r,k,x]}^{i}$?
- $\operatorname{dec}^{\mathrm{i}}_{[k,y]}$ would then be $H(k,\pi_1^2(y))\oplus\pi_2^2(y)$

Obs. equiv. is unsuitable

- Consider the following process P
 - construct a ciphertext
 - check whether it is a pair

 $\begin{array}{c} \textbf{\textit{M} is a pair if} \\ (\pi_1^2(M),\pi_2^2(M)) = M \end{array}$

- depending on outcome, do observably different things
- $P \approx tr(P)$ cannot hold for such P
 - Note: the test could be performed by either P or the context C
- Our solution: *P* and *C* do not use the function symbols used for implementation
 - these symbols are "implementation details"

Obs. equiv. is unsuitable

- Consider the following process P
 P and C do not use pairings???
 Construction
 - Cl We assume, there are separate, "tagged" versions:

= M

- d $(x,y), \ \bar{\pi}_1(x), \ \bar{\pi}_2(x), \ \bar{H}(x)$
 - th and these are used only in the implementation
- *P*≈tr(*P*) cannot hold for such *P*
 - Note: the test could be performed by either P or the context C
- Our solution: *P* and *C* do not use the function symbols used for implementation
 - these symbols are "implementation details"

Secure implementation: intuition

A can use tagged operations. P,S,C cannot

$\forall P \forall A \exists S \forall C$: the two processes have the same barbs

Simplification

A can use tagged operations. S,C cannot

 $\forall A \exists S \forall C$: the two processes have the same barbs

Obs. equiv. modulo implementation

is the largest relation \approx_{tr} on closed processes, such that $P \approx_{tr} Q$ implies

- ${\cal P} \, {\rm and} \, {\cal Q}$ have the same barbs
- If P can evolve to P' then Q can evolve to Q', such that $P' \approx_{tr} Q'$
 - and vice versa
- For any closing evaluation context *C* not using tagged symbols, $C[P] \approx_{tr} tr(C)[Q]$

Secure implementation: $\forall A \exists S : S \approx_{tr} A$ where *S* does not use tagged symbols

Proving security of implementation

Decompose any A to

private channel

pendent

of A

Find *S*, such that $S \approx_{tr} VM$ Then $\nu c(A_{\mathsf{C}} \mid S) \approx_{tr} \nu c(A_{\mathsf{C}} \mid VM) \approx A$

Back to encryption...

tuples $(,\ldots,)$ π_i^n/r		XOR	$\oplus/2$	0/0
$\pi_i^n((x_1,\ldots,x_n)) = x_i$		$x \oplus y = y \oplus x$ $(x \oplus y) \oplus z = x \oplus (y \oplus z)$		
hashing	H/1	$x \oplus x = 0$		
how to implement	S.R.En $dec(k, e)$	$enc/3\ dec/2$ (k,x))=x		them?

$$\text{Does} \left\{ \begin{matrix} enc_{[r,k,x]}^{\mathbf{i}} = \overline{(r,\bar{H}(k,r) \oplus x)} \\ dec_{[k,y]}^{\mathbf{i}} = \overline{H}(k,\bar{\pi}_1(y)) \oplus \overline{\pi}_2(y) \end{matrix} \right\} \text{ work?}$$

No, it does not workA can transform $(r, \bar{H}(k, r) \oplus x)$, x'to $(r, \bar{H}(k, r) \oplus x \oplus x')$

No S can transform enc(r, k, x), x'to $enc(r, k, x \oplus x')$

Symbolic encryption also provides integrity

Integrity

- Message authentication codes (MACs) are used in the computational model to provide integrity in symmetric settings
- **Theorem** (comp. model): random function is a good MAC
- *H* models a random function

Integrity

- Message authentication codes (MACs) are used in the computational model to provide integrity in symmetric settings
- **Theorem** (comp. model): random function is a good MAC
- *H* models a random function
- How about: $enc_{[r,k,x]}^{i} = \overline{(r, \overline{H}(k,r) \oplus x, \overline{H}(k,x))}$

$$dec_{[k,y]}^{\mathbf{i}} = \bar{H}(k, \bar{H}(k, \bar{\pi}_1(y)) \oplus \bar{\pi}_2(y)) \stackrel{?}{=} \bar{\pi}_3(y) \triangleright \bar{H}(k, \bar{\pi}_1(y)) \oplus \bar{\pi}_2(y)$$

where $\stackrel{?}{=} \triangleright$ is a ternary function symbol and $x \stackrel{?}{=} x \triangleright y = y$

Still needs improvementGiven $(r, \bar{H}(k, r) \oplus x, \bar{H}(k, x))$ $(r', \bar{H}(k, r') \oplus x', \bar{H}(k, x'))$

A can tell whether x = x'

Given enc(r, k, x) enc(r', k, x')No *S* can tell whether x = x'

Still needs improvementGiven $(r, \bar{H}(k, r) \oplus x, \bar{H}(k, x))$ $(r', \bar{H}(k, r') \oplus x', \bar{H}(k, x'))$

A can tell whether x = x'

Given enc(r, k, x) enc(r', k, x')No *S* can tell whether x = x'

Randomize the MAC $enc_{[r,k,x]}^{i} = \overline{(r, \overline{H}(k,r) \oplus x, \overline{H}(k,r,x))}$

Still needs improvement

This can be seen as the encrypt-then-MAC construction

It has good properties in the computational model

Is it secure?

Randomize the MAC $enc_{[r,k,x]}^{i} = \overline{(r, \overline{H}(k, r) \oplus x, \overline{H}(k, r, x))}$

Securing the implementationGiven $(r, \bar{H}(k, r) \oplus x, \bar{H}(k, r, x))$ $(r, \bar{H}(k, r) \oplus x', \bar{H}(k, r, x'))$

A can compute $x \oplus x'$

Given enc(r, k, x) enc(r, k, x')No *S* can compute $x \oplus x'$

Securing the implementation Given $\overline{(r, \overline{H}(k, r) \oplus x, \overline{H}(k, r, x))}$ $\overline{(r, \overline{H}(k, r) \oplus x', \overline{H}(k, r, x'))}$

A can compute $x \oplus x'$

Given enc(r, k, x) enc(r, k, x')No *S* can compute $x \oplus x'$

Make the randomness depend on k and x $enc_{[r,k,x]}^{i} = \overline{(r, \overline{H}(k, \overline{H}(k, r, x)) \oplus x, \overline{H}(k, r, x))}$ $dec_{[k,y]}^{i} = \overline{H}(k, \overline{\pi}_{1}(y), \overline{H}(k, \overline{\pi}_{3}(y)) \oplus \overline{\pi}_{2}(y)) \stackrel{?}{=} \overline{\pi}_{3}(y) \triangleright \overline{H}(k, \overline{\pi}_{3}(y)) \oplus \overline{\pi}_{2}(y)$ This is secure implementation

Simulating VM

- Simulator *S* must respond to storing, retrieving, comparing, computing queries
 - Including tagged operations
- Simulator may not use tagged operations
- Simulator must be indistinguishable from $V\!M$
- Stronger property:

At no time can one find terms *M* and *N* over *VM*'s / *S*'s database, such that tr(M)[VM] = tr(N)[VM] XOR M[S] = N[S]

no tagged symbols in *M* and *N*

Tables of VM's and S's databases

The primitive needs more operations

- The implementation of *enc* reveals the used random coins
 - this is acceptable and natural
- The simulator needs to recognize ciphertexts
 - $(\bar{\pi}_1(v), \bar{\pi}_2(v), \bar{\pi}_3(v))$ must equal v iff v is ciphertext

The primitive needs more operations

Simulation

- Store, retrieve, compare, apply "normal" symbols – as VM
 - Whenever a ciphertext appears update ct table
 - Check with *ct*?
 - Whenever a key/plaintext is learned update table
 - k is correct key for y if enc(rnd(y),k,dec(k,y))=y
- Tagged operations first look in the ct table
 - Also update the ct table as much as possible
- Repeat query repeat answer

Simulation

- $\bar{H}(x, y, z)$: key, plaintext, randomness known insert whole row into ct table
- $\overline{H}(x, y)$: if y is not a tagged hash of a triple, then this invocation cannot be part of a ciphertext
- tagged triple **must** return a ciphertext
 - If no suitable row in ct table return random c-text
- $\bar{\pi}_1$ is the same as rnd
- Other projections see ct table
- If ct table lookup fails generate random name

Conclusions

- "Implementation" changes the signatures
 - we've proposed a suitable equivalence in this case
 - ... and a proof method
 - ... and did an example
- Finding secure implementations is trickier than expected
 - Randomness is treated differently in symbolic and computational models
- The simulations might yield new, interesting proofs in the computational model