ON CRYPTOGRAPHIC PROTOCOLS FOR NORWEGIAN INTERNET VOTING

Helger Lipmaa Cybernetica AS and Tallinn University, Estonia

WHAT IS CRYPTOGRAPHY?

- (Mathematical) study of secure communication
- ${\scriptstyle \odot}$ Goals: confidentiality, authenticity, ...
- History?
 - "Writing was invented to conceal information, not to disseminate it"
- Any communication/computation can be performed in a secure way - in theory
- Split in (huuuuge) community
 - Practicians
 - Theoreticians

ESTONIAN CRYPTOGRAPHY

- WW2 some Estonians worked in Finland, helped to break Soviet codes
- 1960+ Rein Turn in Rand Corporation
- 1992 IOC founds department of data security
- 1996 grant application by Buldas, me, Willemson
- 1998 first major paper


ESTONIAN CRYPTOGRAPHY

- Currently:
 - Dr Prof Buldas, Dr Prof Laud, Dr Prof Lipmaa, Dr Prof XXX, Dr Willemson, Dr Laur, Dr Tsahhirov, Dr Jürgenson, Dr Gonzalez, (Dr Elkind)
 - Most people working at Cybernetica AS + some university
 - Soon to doctor: Niitsoo, Bogdanov, Zhang (Tartu), Käsper (Leuven)
- MSc programs in security (Nordsecmob), cyber defense
- NATO Center of Excellence in Cyber Defense

VOTING FOR DUMMIES

- Voting: one of the cornerstones of democracy
- A number of voters v who vote for a number of candidates c.
- Every candidate v has some preference list $c_{v1} ≥_v c_{v2} ≥_v ... ≥_v c_{vn}$
- Voting mechanism: allows every voter v to cast some (ordered) list $(c'_1, ..., c'_m)$ of votes. Given all such lists, computes winners of the election.
- In practice, voting stations/ballot boxes, postal voting, ...

E-VOTING FOR DUMMIES

- "Booth voting" has known weaknesses
 - Accessibility
 - Cost
 - Security
- Postal voting
- Accessibility++
- Security/cost?
- E-voting / Internet voting Accessibility++

- Cost++ (?)
 Security relies (not only) on cryptography

NORWEGIAN (E-)VOTING: IN A NUTSHELL

• Universal suffrage:

- 18+; women's suffrage from 1913 - Foreigners (3+y) vote in local
- elections
- Cost/accessibility:
 - Large distances, small population Huge expat community
- Solution: e-voting

NORWEGIAN (E-)VOTING: **IN A NUTSHELL**

- Organization started in 2009-
- 2011: first local Internet elections (11 municipalities)
- 2017: full parliamentary Internet election

OUR INVOLVEMENT, 1/2

- 2009: tender for organizing Norwegian Internet elections
- Norwegian government: security is paramount
 - Against malicious voting servers: • "we don't want people to blame us"
 - "we want to be able to prove we did not cheat"
 - Against malicious voter PCs

OUR INVOLVEMENT

- Our consortium (Cybernetica AS + 3 more
 companies) proposed a new setting and
 - cryptographic protocol
 - [HLV10] Heiberg, Lipmaa, Van Laenen, ESORICS 2010 Showed that this setting (code-verification) can be efficiently implemented
- What is used in Norway?
- Our setting
- Protocol by Scytl and Kristian Gjøsteen
 More efficient but less secure than [HLV10]
- New protocol [Lipmaa '10] (unpublished)
- As efficient as the Scytl protocol but considerably more secure

THE MEAT OF THIS TALK

• "Code-verification" setting

Protocols

- [Heiberg, Lipmaa, Van Laenen '10] • Esorics 2010 and http://eprint.iacr.org/2010/195
- Scytl protocol
- http://eprint.iacr.org/2010/380
- Lipmaa '10 protocol under submission

CURIOSITY

- [HLV10] was submitted to Eurocrypt but rejected
- One of the reviewers stated:

• "This paper is too practical for Eurocrypt, I recommend to resubmit it to ACM CCS/Esorics"

0

SECURITY CONSIDERATIONS

- All parties can be attacked/be malicious • Voter PC, Internet, different voting servers, ...
- Goal: security against any party
 - Internet: encrypt/sign votes (... DDOS)
 - Voting servers:
 - 0 • large amount of cryptographic research since 1981
- Subject of this paper:
 - Security against malicious voter PC
 - Without sacrificing usability

SECURITY GOALS

- Privacy:
 - nobody knows how anybody else voted
- Correctness:
 - All votes are included correctly, and only once Individual verifiability: voter is able to verify his/her vote was counter for
 - Universal verifiability: final tally includes votes
- of all legit voters exactly once Coercion/vote-buying:

 - No forced (or family) voting Impossibility to sell votes
- All important but somewhat contradictory

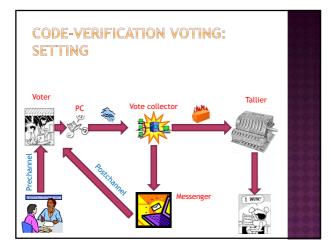
MALICIOUS PC: PRIVACY?

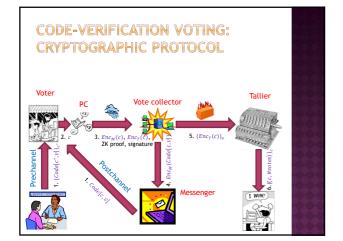
- Privacy: how?
 - CAPTCHAs
 - Long random codes Code sheets/PIN-calculators
 - IQ tests
- All known methods limit accessibility
- Example: code voting
 - For every *c*, *v* obtains two codes. He inputs first to PC, and obtains second back as check code

Just to prove you are a burnan, please amover the following math challenge

Q Calculate $\frac{\partial}{\partial x} \left[4 \cdot \sin \left(7 \cdot x - \frac{\pi}{2} \right) \right] \Big|_{x=0}$

- Too complicated for many users
- Code sheet lost => can't vote


MALICIOUS PC: VERIFIABILITY!

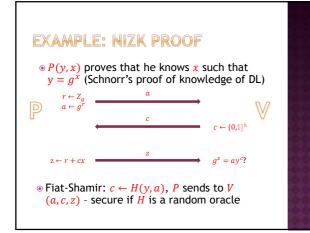

- Verifiability against malicious PC: this presentation
 - NB: accessibility, usability
- "Code-verification" voting:
 - Voters receive check codes, showing that their vote was (in)correctly received by server
 - Voting consists of inputting the name/number of candidate by any preferred GUI
 - If code sheet is lost, can still vote -
 - -- but can't verify

REST OF DESIDERATA

- Privacy against voting servers Except the tally
- Correctness against voting servers
- Individual verifiability
- ${\scriptstyle \odot}$ Some coercion-resistance
 - Implemented as in Estonia:
 - People can revote several times, lastly on paper
 Later vote revokes earlier vote
 - Adds complications to protocols

HEIBERG-LIPMAA-VAN LAENEN PROTOCOL

- Codes *Code*[*c*, *v*] are randomly generated, and also sent to the vote collector (unordered)
- Based on Elgamal encryption
- Non-interactive zero-knowledge proof:
- $e_1 = Enc_M(c) \& e_2 = Enc_T(c) \& c \in [0, #cands 1]$ • Requires $\theta(\log #cands)$ exponentiations
- VC maps $Enc_M(c) \rightarrow Enc_M(Code[c, v])$
 - Without knowing key or c
 - Our solution: proxy oblivious transfer


REMINDER: ELGAMAL ENCRYPTION

- Solution Set in the set of the set
- Bob encrypts a message $m \in \langle g \rangle$: • $r \leftarrow Z_q$, $Enc_{pk}(m; r) \coloneqq (m \cdot pk^r, g^r)$
- Alice decrypts $Enc_{pk}(m; r) = (c, d)$ as $m' \leftarrow c/d^{sk}$
- Check: $m pk^r (g^r)^{-sk} = m \cdot pk^r \cdot pk^{-r} = m$ • Elgamal is
 - very efficient, especially over elliptic curves
 - Standard & well-known (1984, relies on DDH)
- Available in some Hardware Security Modules

REMINDER: ZERO-KNOWLEDGE

- ◎ (Interactive) protocol between prover P(x, w)and verifier V(x) that $x \in L$.
- Correctness: $x \in L$ iff verifier accepts
- Ø ZK: verifier only gets to know that x ∈ L

 Exists simulator that can reproduce V's view, without knowning the witness
- *Σ*-protocol: 3 round protocol with certain properties
- \odot Non-interactive ZK proofs constructed from Σ -protocols by applying Fiat-Shamir heuristic

REMINDER: SECURE PROTOCOLS

- Assume $(P_1, V_1, ..., P_r, V_r)$ is secure in semihonest model
- All parties follow protocol but "listen in"
 How to make it secure in malicious model?
- Parties can do arbitrary stuff
- Generic transformation:
 - With every message, add a ZK proof that this message was computed correctly

HLV10: ZERO-KNOWLEDGE PROOF

```
● e_1 = Enc_M(c) \& e_2 = Enc_T(c) \& c \in [0, #cands - 1]
```

- For Σ-protocol of P(x) & Q(x) or P(x) | Q(x):
 Construct Σ-protocols for P(x) and Q(x) separately, then use a "standard trick" to
 - separately, then use a "standard trick" to conjugate/disjungate
- Σ -protocol for $e_i = Enc_*(c)$: variant of Schnorr's protocol

HLV10: ZERO-KNOWLEDGE PROOF

- $e_1 = Enc_M(c) \& c \in [0, #cands 1]:$
- From [Lipmaa Asokan Niemi 2002]: $c \in [0, H]$ iff $c = \sum_{i=0}^{\lfloor \log H \rfloor} \lfloor (H + 2^i)/2^{i+1} \rfloor \cdot c_i \& c_i \in [0, 1]$
- Full protocol has complexity $\Theta(\log H)$

PROXY OBLIVIOUS TRANSFER

• Functionality:

- Chooser has input x, sender has input f = (f₀,..., f_{n-1}), receiver has no input
 Receiver obtains f_x
- Privacy:
 - Chooser and sender obtain no information
 - Receiver obtains f_x and nothing more
 - Strong POT: receiver obtains no other information even when knowing $\{f_0, ..., f_{n-1}\}$
- E-voting:
 - PC = chooser (x = c)
 - VC = sender $(f = Code[\cdot, v]),$
- messenger = receiver obtains Code[c, v]

PROXY OBLIVIOUS TRANSFER

- We proposed a new POT protocol with complexity Θ(#cands), based on Elgamal
 New POT protocol looks simple...
 - ... but it is the single most computationally expensive part of HLV10 e-voting protocol
 - (See paper)

SECURITY OF HLV10 PROTOCOL

- Malicious PC/correctness:
 - Can be verified from integrity check code
- Malicious VC:
 - Privacy guaranteed by protocol (under DDH)Correctness --- can be guaranteed by additional
 - protocol
- Malicious messenger:
 - Privacy guaranteed by protocol (under DDH)
 - Correctness --- by check code

PROS/CONS OF HLV10

Pros:

- Provable security
- (Correctness against VC can be added) Uses standard crypto (DDH)

• Cons:

- Computational complexity O(#cands)
- Ok in US presidential elections
- Bad in Norway (max 80 candidates)

SCYTL PROTOCOL

- Idea: codes *Code*[*c*, *v*] are **pseudorandom**
- Computed as $Code[c, v] = h(gv^{f(c)})$
 - *f* is secret function computed by PCs
 - $gv = g^{tv}$ is secret voter-dependent function computed by VC
- *h* is secret function computed by messenger
 Messenger and VC share tallier's secret key,

 $sk_M + sk_{VC} = sk_T$

SCYTL PROTOCOL

• Voter encrypts vote once, $a = Enc_T(g^{f(c)})$ • VC

"semidecrypts"

- $a = (g^{f(c)}g^{sk_{T}r}, g^{r}) = (g^{f(c)}g^{(sk_{VC}+sk_{M})r}, g^{r}),$ obtaining $b = Enc_{M}(g^{f(c)})$
- computes $b'' = Enc_M(gv^{f(c)}) = b^{tv}$.
- Sends it with NIZK proof of correct decryption to messenger
- Messenger decrypts, and computes $Code[c, v] = h(gv^{f(c)})$, and sends it to voter

SCYTL PROTOCOL: PROS

- Very efficient, only a few exponentiations
- ${\scriptstyle \odot}$ Easier to implement than HLV10
- Provably secure against malicious PC (only privacy), VC, messenger

SCYTL PROTOCOL: CONS

- Online servers share secret key of offline server
- Easier to attack + tallier can be distributed
- Even without sharing the key, online servers can together breach voter privacy
- Need setup phase:
 - Codes need to be computed before voting starts by trusted servers who know all secrets of PC, VC and messenger
- Christian Bull, Swiss e-voting workshop 2010:
 VC & M will be strongly separated (600 km + different organizations + ...)

LIPMAA2010 - NEW PROTOCOL

• Desiderata:

- As efficient as Scytl protocol but more secure
 VC+M do not share tallier's secret key
- VC+M do not share tallier's secret key
 VC+M coalition is not able to breach voter
- privacy
- \odot Still has the setup phase \otimes

L10 PROTOCOL

{Details omitted from web-published version of the slides}

L10 - SECURITY

• Same as in Scytl protocol

 Privacy against malicious PC, security against VC, messenger

In addition:

- VC+M do not share tallier's key
- L10/1: VC+M can breach voter privacy (as Scytl)
- L10/2: VC+M can't breach

EFFICIENCY	COMPARISON
-------------------	------------

Prot.	Voter PC	Vote collector	Messeng er	Setup phase?	VC+M Pr. B.
HLV10	(7g + 10)e + 1s	(2G + 6g + 8)e + 1v + 1s	Ge + 1v	No	Yes
Scytl	3e + 1s	8e + 1v + 1s	10e + 1v	yes	Yes
L10/1	12e + 1s	9e + 1v + 1s	10e + 2v	yes	Yes
L10/2	16e + 1s	17e + 1v + 1s	18e + 2v	yes	No
		indidates, $g = \log G$), in US presidential	$G \leq 5$		

_

EFFICIENCY COMPARISON

HLV10	(7g + 10)e	(2G + 6g + 8)e			
	+ 1s	(2b + 6y + 6)e + 1v + 1s	Ge + 1v	No	Yes
Scytl	3e + 1s	8e + 1v + 1s	10e + 1v	yes	Yes
_10/1	12e + 1s	9e + 1v + 1s	10e + 2v	yes	Yes
L10/2	16e + 1s	17e + 1v + 1s	18e + 2v	yes	No

QUESTIONS?

 ${\scriptstyle \odot}$ Happy elections for Latvian colleagues ${\scriptstyle \bigcirc}$