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Introduction

� The Grover’s algorithm is a quantum search algorithm 
solving the unstructured search problem in about O(√N) 
queries.

� The algorithm is known to be optimal. For any number of 
queries up to (π/4)√N it ensures a maximal possible 
probability of finding the desired element.



Introduction

� However, it is still possible to reduce the average 
number of steps required to find the desired element by 
ending the computation earlier and repeating the 
algorithm

� This fact is mentioned by Christof Zalka as a short 
remark on analysis of the Grover’s algorithm

� We give a detailed description of this simple fact



Unstructured search

� We have a function given as a black-box:

f : {0,1} n → {0,1}

The unstructured search problem is to find x ∈ {0,1} n

such that f(x) = 1, or to conclude that no such x exists.



Query model : classical case

� In classical case we do not have any limitation on the 

behavior of the function.

� The function takes an input and returns corresponding 
output

f
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Query model : quantum case

� In quantum case the function must be reversible.
Thus we can not use classical approach.

� To overcome the limitation we add an auxiliary input
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Query model : quantum case

� We can also make queries like

or even query a superposition all possible inputs
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Query model : quantum case

� There is a simple way to visualize a quantum query

1 2 x : f(x) = 1 N…
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Unstructured search

� We have a function given as a black-box:

f : {0,1} n → {0,1}

The unstructured search problem is to find x ∈ {0,1} n

such that f(x) = 1, or to conclude that no such x exists.

� How many times do we need to calculate the function to 
solve the problem?



Unstructured search

� Any deterministic algorithm needs N = 2n queries to the 
black-box in a worst case.

� Probabilistically we also need Ω(N) queries to solve the 
problem.

� Grover’s quantum search algorithm can solve the 
problem making O(√N) queries to the black-box



Grover’s algorithm

� Start at uniform superposition of all x ∈ {0,1} n

� Repeat O(√N) times

� Perform query

� Apply the inversion about average 
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� Start at uniform superposition of all x ∈ {0,1} n

� Repeat O(√N) times

� Perform query

� Apply the inversion about average
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Grover’s algorithm

� By repeating algorithm steps O(√N) times probability to 
measure x with f(x) = 1 will become close to 1.

1 2 x : f(x) = 1 N…
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Grover’s algorithm

� Grover’s quantum search algorithm can solve the 
problem making O(√N) queries to the black-box

� The probability of finding a solution after k steps is 
sin2 (2k / √N)
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Probabilistic algorithms

� We have a probabilistic algorithm, which finds a solution 
with probability p.

� How many times we need to run the algorithm to find a 
solution with probability 1 ?

� On the average we should run the algorithm 1/p times.



Probabilistic algorithms

� If after k steps the probability of finding a solution is p(k), 
the average running  time of the algorithm is k / p(k).
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Grover’s algorithm

� Grover’s quantum search algorithm can solve the 
problem making O(√N) queries to the black-box

� The probability of finding a solution after k steps is 
sin2 (2k / √N)
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Grover’s algorithm

� Let M be a number of steps of the Grover’s algorithm.
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Grover’s algorithm

� If p(k) = k/M, the average running time is M.

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0



Grover’s algorithm

� If p(k) < k/M, the average running time > M.
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Grover’s algorithm

� If p(k) > k/M, the average running time < M.
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Grover’s algorithm

� The optimal moment to end the computation is the 
minimum of the k/p(k) = k / sin2 (πk / 2M) function. 

� Calculation gives k ≈ 0.74202 and the average running 
time k/p(k) ≈ 0.87857.

� That is the average number of steps can be reduced by 
approximately 12.14%.



Conclusions

� The average number of Grover's algorithm steps  can be 
reduced by approximately 12.14%.

� The same argument can be applied to a wide range of 
other quantum query algorithms, such as amplitude 
amplification, some variants of quantum walks and 
NAND formula evaluation, etc.



Thank you !


