
Constant factor improvement

of the Grover's algorithm

Aleksandrs Rivošs
Nikolajs Nahimovs

Faculty of Computing
University of Latvia

Riga 2010

Introduction

� The Grover’s algorithm is a quantum search algorithm
solving the unstructured search problem in about O(√N)
queries.

� The algorithm is known to be optimal. For any number of
queries up to (π/4)√N it ensures a maximal possible
probability of finding the desired element.

Introduction

� However, it is still possible to reduce the average
number of steps required to find the desired element by
ending the computation earlier and repeating the
algorithm

� This fact is mentioned by Christof Zalka as a short
remark on analysis of the Grover’s algorithm

� We give a detailed description of this simple fact

Unstructured search

� We have a function given as a black-box:

f : {0,1} n → {0,1}

The unstructured search problem is to find x ∈ {0,1} n

such that f(x) = 1, or to conclude that no such x exists.

Query model : classical case

� In classical case we do not have any limitation on the

behavior of the function.

� The function takes an input and returns corresponding
output

f
x f (x)

Query model : quantum case

� In quantum case the function must be reversible.
Thus we can not use classical approach.

� To overcome the limitation we add an auxiliary input

f

x x

f (x)0

f
x f (x)

Query model : quantum case

� We can also make queries like

or even query a superposition all possible inputs

f
∑ xxα ∑ − xx

xf α)()1(

f

x xxf)()1(−

Query model : quantum case

� There is a simple way to visualize a quantum query

1 2 x : f(x) = 1 N…

…

…

…

1 2

x : f(x) = 1

N…

…

…

…

Query

State before the query

State after the query

Unstructured search

� We have a function given as a black-box:

f : {0,1} n → {0,1}

The unstructured search problem is to find x ∈ {0,1} n

such that f(x) = 1, or to conclude that no such x exists.

� How many times do we need to calculate the function to
solve the problem?

Unstructured search

� Any deterministic algorithm needs N = 2n queries to the
black-box in a worst case.

� Probabilistically we also need Ω(N) queries to solve the
problem.

� Grover’s quantum search algorithm can solve the
problem making O(√N) queries to the black-box

Grover’s algorithm

� Start at uniform superposition of all x ∈ {0,1} n

� Repeat O(√N) times

� Perform query

� Apply the inversion about average

1 2 x : f(x) = 1 N…

…

…

…

Grover’s algorithm

� Start at uniform superposition of all x ∈ {0,1} n

� Repeat O(√N) times

� Perform query

� Apply the inversion about average

1 2

x : f(x) = 1

N…

…

…

…

Grover’s algorithm

� Start at uniform superposition of all x ∈ {0,1} n

� Repeat O(√N) times

� Perform query

� Apply the inversion about average

1 2

x : f(x) = 1

N…

…

…

…

Average

Grover’s algorithm

� Start at uniform superposition of all x ∈ {0,1} n

� Repeat O(√N) times

� Perform query

� Apply the inversion about average

1 2 x : f(x) = 1 N…

…

…

…

Average

Grover’s algorithm

� Start at uniform superposition of all x ∈ {0,1} n

� Repeat O(√N) times

� Perform query

� Apply the inversion about average

1 2

x : f(x) = 1

N…

…

…

…

Grover’s algorithm

� Start at uniform superposition of all x ∈ {0,1} n

� Repeat O(√N) times

� Perform query

� Apply the inversion about average

1 2

x : f(x) = 1

N…

…

…

…
Average

Grover’s algorithm

� Start at uniform superposition of all x ∈ {0,1} n

� Repeat O(√N) times

� Perform query

� Apply the inversion about average

1 2 x : f(x) = 1 N…

…

…

…
Average

Grover’s algorithm

� By repeating algorithm steps O(√N) times probability to
measure x with f(x) = 1 will become close to 1.

1 2 x : f(x) = 1 N…

…

…

…

Grover’s algorithm

� Grover’s quantum search algorithm can solve the
problem making O(√N) queries to the black-box

� The probability of finding a solution after k steps is
sin2 (2k / √N)

Number of steps

Probability

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

Probabilistic algorithms

� We have a probabilistic algorithm, which finds a solution
with probability p.

� How many times we need to run the algorithm to find a
solution with probability 1 ?

� On the average we should run the algorithm 1/p times.

Probabilistic algorithms

� If after k steps the probability of finding a solution is p(k),
the average running time of the algorithm is k / p(k).

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Can stop at any step

Better to wait until the end

Grover’s algorithm

� Grover’s quantum search algorithm can solve the
problem making O(√N) queries to the black-box

� The probability of finding a solution after k steps is
sin2 (2k / √N)

Number of steps

Probability

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

Grover’s algorithm

� Let M be a number of steps of the Grover’s algorithm.

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Grover’s algorithm

� If p(k) = k/M, the average running time is M.

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Grover’s algorithm

� If p(k) < k/M, the average running time > M.

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Grover’s algorithm

� If p(k) > k/M, the average running time < M.

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Grover’s algorithm

� The optimal moment to end the computation is the
minimum of the k/p(k) = k / sin2 (πk / 2M) function.

� Calculation gives k ≈ 0.74202 and the average running
time k/p(k) ≈ 0.87857.

� That is the average number of steps can be reduced by
approximately 12.14%.

Conclusions

� The average number of Grover's algorithm steps can be
reduced by approximately 12.14%.

� The same argument can be applied to a wide range of
other quantum query algorithms, such as amplitude
amplification, some variants of quantum walks and
NAND formula evaluation, etc.

Thank you !

