
Denotational semantics for
lazy initialization of letrec

black holes as exceptions rather than divergence

Keiko Nakata
Institute of Cybernetics, Tallinn

Estonian-Latvian Theory Days, Rakari, 2 October 2010

Lazy evaluation

Lazy evaluation implements

• on-demand computation — evaluate when necessary
• memorization of computation — evaluate just once

Lazy evaluation in practice

Lazy evaluation is useful in practice.

• Dynamically linked shared libraries, plugins
• Lazy class initialization in Java and F#
• Lazy file initialization in F#
• Alice ML
• OSGi, NetBeans (through bundles)
• Eclipse

Syntax

Expressions M,N ::= n | s | x | λx .M | M N | •
| let rec x1 = M1 and . . . and xn = Mn in M
| M; N | print M

Results V ::= n | s | λx .M | •
Types τ ::= nat | string | τ1 → τ2

Lazy evaluation for letrec

Lazy evaluation provides a useful measure to initialize
(unrestricted) recursive bindings

let rec x1 = M1 and . . . and xn = Mn in N

where Mi ’s are arbitrary expressions.

• On-demand computation to find a most successful
initialization order.

• the initialization succeeds if and only if there is a
non-circular order in which the bindings can be initialized.

• Memorization for value recursion
• initialization may perform side-effects which are produced

just once

Examples

let rec x = print ′′hi ′′ and y = print ′′bye′′ in x
⇒ hi

let rec x = print ′′hi ′′ and y = print ′′bye′′ in x ; x
⇒ hi

let rec x = y and y = print ′′bye′′ and z = print ′′hi ′′ in x
⇒ bye

Black holes as exceptions

Circular initialization, or black holes, signal a runtime exception.

let rec x = x in x ⇒ exception

let rec x = (λy .y) x in x ⇒ exception

let rec f = λx .f in f ⇒ termination

let rec f = λx .f x in f 0 ⇒ divergence

NB. Traditionally black holes denote divergence. (But many
programming languages implement black holes as exceptions.)

Natural semantics
Judgment form

〈Ψ〉M ⇓ 〈Φ〉V expresses that an expression M in an initial
heap Ψ evaluates to a result V with the heap being Φ.

Inference rules of the Natural semantics

Result
〈Ψ〉V ⇓ 〈Ψ〉V

Application
〈Ψ〉M1 ⇓ 〈Φ〉λx .N 〈Φ[x ′ 7→ M2]〉N[x ′/x] ⇓ 〈Ψ′〉V x ′ fresh

〈Ψ〉M1 M2 ⇓ 〈Ψ′〉V

Variable
〈Ψ[x 7→ •]〉Ψ(x) ⇓ 〈Φ〉V
〈Ψ〉 x ⇓ 〈Φ[x 7→ V]〉V

Letrec
〈Ψ[x ′

1 7→ M ′
1, . . . , x

′
n 7→ M ′

n]〉N ′ ⇓ 〈Φ〉V x ′
1, . . . , x

′
n fresh

〈Ψ〉 let rec x1 = M1, . . . , xn = Mn in N ⇓ 〈Φ〉V

where M ′
i = Mi [x ′

1/x1] . . . [x ′
n/xn]

Errorβ
〈Ψ〉M1 ⇓ 〈Φ〉 •
〈Ψ〉M1 M2 ⇓ 〈Φ〉 •

How to detect black holes

〈x ′ 7→ •〉 • ⇓ 〈x ′ 7→ •〉 •
〈x ′ 7→ x ′〉 x ′ ⇓ 〈x ′ 7→ •〉 •

〈〉 let rec x = x in x ⇓ 〈x ′ 7→ •〉 •

〈x ′ 7→ •, y ′ 7→ •〉 y ′ ⇓ 〈x ′ 7→ • and y ′ = •〉 •
〈x ′ 7→ y ′, y ′ 7→ •〉 x ′ ⇓ 〈x ′ 7→ • and y ′ = •〉 •
〈x ′ 7→ y ′, y ′ 7→ x ′〉 y ′ ⇓ 〈x ′ 7→ • and y ′ = •〉 •

〈〉 let rec x = y and y = x in y ⇓ 〈x ′ 7→ • and y ′ = •〉 •

Lazy evaluation as a most successful initialization
strategy of recursive bindings

The initialization succeeds if and only if there is a non-circular
order in which the bindings can be initialized.

• The operational semantics searches such an order by
on-demand computation.

• The denotational semantics searches such one by
- initializing recursive bindings in parallel and
- choosing the most successful result as the denotation.

(Denotational semantics does not have evaluation order.)

Typing

n : nat s : string x : type(x) • : τ

x : τ1 M : τ2
λx .M : τ1 → τ2

M : τ1 → τ2 N : τ1
M N : τ2

x1 : τ1 . . . xn : τn M1 : τ1 . . . Mn : τn N : τ

let rec x1 = M1 and . . . and xn = Mn in N : τ

Denotational semantics

An expression M of type τ denotes an element of (Vτ + Errτ)⊥.

Errτ is a singleton, whose only element is •τ .

Vτ denotes proper values of type τ and is defined by

Vnat = N Vτ0→τ1 = [(Vτ0 + Errτ0)⊥ → (Vτ1 + Errτ1)⊥]

Notations
Denotational semantics

For d ∈ (Vτ0→τ1 + Errτ0→τ1)⊥ and d ′ ∈ (Vτ0 + Errτ0)⊥,
application of d to d ′ is defined by

d(d ′) =

{ ⊥τ1 when d = ⊥τ0→τ1

•τ1 when d = •τ0→τ1

ϕ(d ′) when d = ϕ ∈ Vτ0→τ1

Moreover we write (d)∗ to denote the strict version of d on both
⊥ and •, i.e.,

(d)∗(d ′) =

{ ⊥τ1 when d = ϕ and d ′ = ⊥τ0

•τ1 when d = ϕ and d ′ = •τ0

d(d ′) otherwise

An environment, ρ, maps variables to denotations:
ρ(x) ∈ (Vτ + Errτ)⊥ where x : τ .
The least environment, ρ⊥, maps all variables to bottom
elements.

Semantic function
Denotational semantics

The semantic function [[M : τ]]ρ assigns a denotation to a typing
derivation M : τ under an environment ρ.

[[n : τ]]ρ = n
[[x : τ]]ρ = ρ(x)
[[• : τ]]ρ = •τ

[[λx .M : τ0 → τ1]]ρ = λν.[[M : τ1]]ρ[x 7→ν]

[[Mτ0→τ1 Nτ0 : τ1]]ρ = ([[M : τ0 → τ1]]ρ)([[N : τ0]]ρ)
[[let rec x1 = Mτ1

1 , . . . , xn = Mτn
n in N : τ]]ρ = [[N : τ]]{{x1 7→Mτ1

1 ,...,xn 7→Mτn
n }}(n)

ρ

Semantic function for heaps
Denotational semantics

{{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(0)
ρ = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn]

{{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(m+1)
ρ =

µρ′.ρ[x1 7→ [[M1 : τ1]]ρm · [[M1 : τ1]]ρ′ , . . . , xn 7→ [[Mn : τn]]ρm · [[Mn : τn]]ρ′]

where ρm = {{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(m)
ρ

d · d ′ abbreviates ((λy .λx .x)∗(d))(d ′)

Denotation of heaps
Denotational semantics

The denotation of a heap Ψ = x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n under
an environment ρ is computed as follows.

1. Pre-initialize to black holes.
ρ0 = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn].

2. Compute the denotation of Mi : τi under ρ0.
3. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ0.

ρ1 = µρ′.ρ[x1 7→ d1, . . . , xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρ0 = •τi

[[Mi : τi]]ρ′ otherwise

4. Compute the denotation of Mi : τi under ρ1.
5. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ1.
6. ...

Denotation of heaps (cont.)
Denotational semantics

Generally, ρm+1 is given by taking the fixed-point semantics for
the recursive bindings whose initialization is successful under
the environment ρm

ρm+1 = µρ′.ρ[x1 7→ d1, . . . , xn 7→ dn]

where di =

{
•τi when [[Mi : τi]]ρm = •τi

[[Mi : τi]]ρ′ otherwise

This process is iterated for n times; it converges by then:

∀m, {{Ψ}}(n)
ρ = {{Ψ}}(n+m)

ρ

Semantic function for heaps
Denotational semantics

{{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(0)
ρ = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn]

{{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(m+1)
ρ =

µρ′.ρ[x1 7→ [[M1 : τ1]]ρm · [[M1 : τ1]]ρ′ , . . . , xn 7→ [[Mn : τn]]ρm · [[Mn : τn]]ρ′]

where ρm = {{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(m)
ρ

d · d ′ abbreviates ((λy .λx .x)∗(d))(d ′)

Adequacy
Denotational semantics

Evaluations preserve the denotations of expressions.

Proposition
For any typed expression M : τ , if 〈〉M ⇓ 〈Ψ〉V, then V : τ and
[[M : τ]]ρ⊥ = [[V : τ]]{{Ψ}}ρ⊥ .

An expression evaluates to a result if and only if its denotation
is non-bottom.

Proposition
For any typed expression M : τ , [[M : τ]]ρ⊥ 6= ⊥τ iff there are Φ
and V such that 〈〉M ⇓ 〈Φ〉V.

Operational soundness of equational laws for letrec

βneed
(λx .M) N = let rec x = N in M
lift
(let rec D in M) N = let rec D in M N
deref
let rec x = V ,D in C[x] = let rec x = V ,D in C[V]
deref env
let rec x = C[x ′], x ′ = V ,D in M = let rec x = C[V], x ′ = V ,D in M
assoc
let rec x = (let rec D in M),D′ in N = let rec D, x = M,D′ in N

where D abbreviates x1 = M1 . . . xn = Mn.

Monadic framework
for effectful unrestricted value recursion

Joint work with Masahito Hasegawa

Γ ` L : A→ T B
Γ ` L∗ : A→ T B Γ ` ηA : A→ T A Γ ` •A : T A

Γ, x1 : T A1, . . . , xn : T An ` L1 : T A1. . .
Γ, x1 : T A1, . . . , xn : T An ` Ln : T An

Γ ` µ(xT A1
1 , . . . , xT An

n).(L1, . . . ,Ln) : T A1 × . . .T An

Modeled in a target language given by a cartsian closed
category equipped with a strong monad and a uniform T-fixed
point operator and a family of black hole constants.

Black holes are exceptions!

