Algorithmically Random Oracles

Margus Niitsoo

Outline

- Random Oracle Model
 - What is it?
 - What is it good for?
- Algorithmically Random Oracles
 - Kolmogorov Complexity
 - Deterministic one-way functions
- Isomorphism result

- You have an ID scheme:
 - Alice has a secret sk

- You have an ID scheme:
 - Alice has a secret sk
 - Alice sends c to Bob

С

- You have an ID scheme:
 - Alice has a secret sk
 - Alice sends c to Bob
 - Bob sends r to Alice

- You have an ID scheme:
 - Alice has a secret sk
 - Alice sends c to Bob
 - Bob sends r to Alice
 - Alice sends a to Bob

- You have an ID scheme:
 - Alice has a secret sk
 - Alice sends c to Bob
 - Bob sends r to Alice
 - Alice sends a to Bob
 - Bob verifies f(pk,c,r,a) = 1

- You have an ID scheme:
 - Alice has a secret sk
 - Alice sends c to Bob
 - Bob sends r to Alice
 - Alice sends a to Bob
 - Bob verifies f(pk,c,r,a) = 1
- We want a Signature scheme!

- Signature Scheme
 - Alice has a secret sk
 - Alice generates c

- Signature Scheme
 - Alice has a secret sk
 - Alice generates c
 - Computes r=h(d,c)

sk

- Signature Scheme
 - Alice has a secret sk
 - Alice generates c
 - Computes r=h(d,c)
 - Alice signs d: (a,r,c)

(d,a,r,c)

- Signature Scheme
 - Alice has a secret sk
 - Alice generates c
 - Computes r=h(d,c)
 - Alice signs d: (a,r,c)

• Bob verifies f(pk,c,h(d,c),a) = 1 (d,a,r,c)

Alice has good stuff

- Signature Scheme
 - Alice has a secret sk
 - Alice generates c
 - Computes r=h(d,c)
 - Alice signs d: (a,r,c)

- Bob verifies f(pk,c,h(d,c),a) = 1 (d,a,r,c)
- How good Hash do we need?

- We need hash to...
 - Work Fast so we use SHA-2

- We need hash to...
 - Work Fast so we use SHA-2
 - One-way? Collision-resistant?

- We need hash to...
 - Work Fast so we use SHA-2
 - One-way? Collision-resistant?
 - Magic (Dwork 03)

- We need hash to...
 - Work Fast so we use SHA-2
 - One-way? Collision-resistant?
 - Magic (Dwork 03)
 - Ideally random
 - Answers to queries are independent and uniformly distributed

ROM: What is it?

- We need h to be...
 - Ideally random
 - Answers to queries are uniformly distributed and independent

ROM: What is it?

- We need h to be...
 - Ideally random
 - Answers to queries are uniformly distributed and independent
- Introducing a Random Oracle:

ROM: What is it?

- We need h to be...
 - Ideally random
 - Answers to queries are uniformly distributed and independent
- Introducing a Random Oracle:
 - h chosen uniformly from all h
 - Result holds in ROM

- Fiat-Shamir heuristic
 - What we just described
- Simple proofs for strong security
 - Efficient CCA-2 cryptosystem (BR93)
- Also used in Oracle Separation
 - (Proving certain reductions impossible)

ROM: Flipside?

- Family of functions
 - No secure instances (CGH99)
 - Certain things impossible (Nielsen 02)
 - "Oracle Extraction Step" (BJN 09)

Getting rid of Randomness

- Literally "too good to be true"
 - Most functions non-computable!
 - With Probability 1, to be precise

Getting rid of Randomness

- Literally "too good to be true"
 - Most functions non-computable!
 - With Probability 1, to be precise
- Hypothesis: Non-computability of h is enough
 - This is almost the case

Kolmogorov Complexity

- Which is more complex?
 - 01001101011100100010
 - 111111111111111111111
- Kolmogorov Complexity C(s) : Length of the shortest program that outputs s

Algorithmic Randomness

• **s** is c-random if C(**s**)>|**s**| - c

- An infinite sequence **s** is random if $C(s_k) > s_k - c_s$ for all k
 - Such sequences occur with Prob. 1

Alg. Rand. Oracle

- Instead of choosing h randomly
- Fix alg. random sequence
 - Construct h based on that
- "Deterministic random functions"
 - Good one-way functions
 - Proof: If there exists an inverter, we can find a shorter description

AROM VS ROM

Theorem:

A system is secure in ROM iff

it is secure relative to every AROM

Applications

- Philosophically interesting
 - Secure fixed instantiations do exist!
- Kolmogorov-complexity based security proofs
 - May be conceptually simpler
- Avoid "oracle extraction" step
 - Concise description of the Measure 1 set

Thank you for listening! Questions? Comments?

