Applied machine learning in game theory

Dmitrijs Rutko Faculty of Computing University of Latvia

Joint Estonian-Latvian Theory Days at Rakari, 2010

Topic outline

- Game theory
 - Game Tree Search
 - Fuzzy approach
- Machine learning
 - Heuristics
 - Neural networks
 - Adaptive / Reinforcement learning
- Card games

Deterministic / stochastic games Perfect / imperfect information games

Finite zero-sum games

	deterministic	chance
perfect information	chess, checkers, go, othello	backgammon, monopoly, roulette
imperfect information	battleship, kriegspiel, rock- paper-scissors	bridge, poker, scrabble

Topic outline

Game theory

- Game Tree Search
- Fuzzy approach
- Machine learning
 - Heuristics
 - Neural networks
 - Adaptive / Reinforcement learning
- Card games

Game trees

Classical algorithms

Advanced search techniques

- Transposition tables
- Time efficiency / high cost of space
 - PVS
 - Negascout
 - NegaC*
 - SSS* / DUAL*
 - MTD(f)

Fuzzy approach

BNS enhancement through selftraining

Traditional statistical approach

Two dimensional game sub-tree distribution

															Tree
	23	24	25	26	27	28	29	30	31	32	33	34	35	36	count
23	0														0
24	0	0													0
25	0	1	0												1
26	0	0	2	3											5
27	0	0	5	3	3										11
28	0	1	0	12	12	13									38
29	0	0	2	10	35	43	34								124
30	1	2	6	9	26	58	71	33							206
31	0	0	6	10	27	41	78	57	33						252
32	0	1	3	13	17	30	32	41	38	14					189
33	0	0	1	2	8	12	26	28	21	11	2				111
34	0	0	0	1	3	5	13	8	6	2	2	2			42
35	0	0	0	0	0	2	4	3	2	3	0	0	0		14
36	0	0	0	0	0	0	1	2	2	1	1	0	0	0	7

Statistical sub-tree separation

Experimental results. 2-width trees

Experimental results. 3-width trees

Future research directions in game tree search

- Multi-dimensional self-training
- Wider trees
- Real domain games

Topic outline

- Game theory
 - Game Tree Search
 - Fuzzy approach
- Machine learning
 - Heuristics
 - Neural networks
 - Adaptive / Reinforcement learning
- Card games

Games with element of chance

Expectiminimax algorithm

- Expectiminimax(n) =
 - Utility(n)
 - If n is a terminal state
 - Max s ∈ Successors(n) Expectiminimax(s)
 - if n is a max node
 - Min s ∈ Successors(n) Expectiminimax(s)
 - if n is a min node
 - $\Sigma s \in Successors(n) P(s) * Expectiminimax(s)$
 - if n is a chance node

 $\blacksquare O(w^d c^d)$

Perfomance in Backgammon

*-Minimax Performance in Backgammon, Thomas Hauk, Michael Buro, and Jonathan Schaeer

Backgammon

- Evaluation methods
 - Static pip count
 - Heuristic key points
 - Neural Networks

Temporal difference (TD) learning

- Reinforcement learning
- Prediction method

Experimental setup

- Multi-layer perceptron
- Representation encoding
 - Raw data (27 inputs)
 - Unary (157 inputs)
 - Extended unary (201 inputs)
 - Binary (201 input)

Training game series – 400 000 games

Learning results

Program "DM Backgammon"

Topic outline

- Game theory
 - Game Tree Search
 - Fuzzy approach
- Machine learning
 - Heuristics
 - Neural networks
 - Adaptive / Reinforcement learning
- Card games

Artificial Intelligence and Poker*

AI Problems	Poker problems
Imperfect information	Hidden cards
Multiple agents	Multiple human players
Risk management	Bet strategy and outcome
Agent modeling	Opponent(s) modeling
Misleading information	Bluffing
Unreliable information	Taking bluffing into account
*	Joint work with Annija Rupeneite

