

Plan of presentation

Bell’s inequalities

- In Physics
- In Computer Science
- Clasical CHSH game
* Quantum strategy for CHSH game
* Analysis of generalized CHSH game

Einstein vs, Bell

A.Einstein:

- "God does not play at dice with the universe."
- N.Bors:
- "Quit telling God what to do!"
* A.Einstein, B.Podolsky, N.Rosen (1935)
- Can Quantum-Mechanical Description of Physical Reality be Considered Complete?
- Also known as EPR paradox
- J.S.Bell (1964):
- if momentum and position of photon exists whether they are measured or not then Bell's Inequality, would be satisfied
- A.Einstein :
- "I think that a particle must have a separate reality independent of the measurements. That is an electron has spin, location and so forth even when it is not being measured. I like to think that the moon is there even if I am not looking at it"

EPis paradox

* Pion (no spin), splits into two photons
- Their spins have to add up to no spin
* Example with balls

Bells inequalities

* "Hidden variable" theory
- J.S.Bell:
- Number(A, not B) $+\operatorname{Number}(\mathrm{B}$, not C$) ~>=$ Number(A, not C$)$
- Lets look at a set of students:
- Men
- Heigth more than 1,7m
- Blue eyes

Bell s inequality vizualizetion

$A+$
A^{-}

$$
N(A+, C-) \leq N(B+, C-)+N(A+, B-)
$$

Original version:
Borsós, K.; Benedict, M. G. University of Szeged, Hungary "Animation of experiments in modern quantum physics"

Does Quantum Vechanics Viok are the Ineguality?

CLASSICAL EXPERIMENT

* A, B, C - statistiska monētas mešanas eksperimenta rezultāti
- A un B dod vienādu rezultātu 99\% gadījumu
- B un C dod vienādu rezultātu 99\% gadījumu
no šī seko, ka:
- A un C dod vienādu rezultātu 98\% gadījumu

QUANTUM MECHANICAL EXPERIMENT

* A,B,C - spina mērījuma vērtības (leņk̦ī 0, $\theta, 2 \theta$ pret asi), divām sapītām daḷiṇām
- Varbūtība, ka A un B dod vienādu rezultātu ir $1-\varepsilon^{2}(\varepsilon$ atkarīgs no θ)
- Varbūtība, ka B un C dod vienādu rezultātu ir $1-\varepsilon^{2}$
no šī seko, ka:
- Varbūtība, ka A un C dod vienādu rezultātus ir 1-(2ع) ${ }^{2}$
- Izvēlamies θ tā lai $\varepsilon=0,1$, tad $[A, B]=99 \%,[B, C]=99 \%$, bet $[A, C]=96 \%$

What are the conseguences?

Bell's theorem is based on assumptions:

- Logic is valid
- There is a reality separate from its observation
- No information can travel faster than light

Witch assumption is wrong?

- K.Godel:
- "Any theory proposed for the foundation of mathematics will be either insufficient for mathematics, incomplete, or inconsistent."
- Physics, Philosophy, Religion :
- Could it be that the universe only exists because we are conscious of it?
- Perhaps we only exist because someone or something is conscious of us?
- "Schrödinger`s cat" - until no measurement is made cat is in a superstate of both dead and alive!
- Information might be able to travel faster than light.

Bell s inequality in Compuiter science

 CHStlomeInput: $\mathbf{a}, \mathbf{b} \in\{0,1\}$
Output: $\mathbf{x , y} \in\{0,1\}$

Rules:

- No communication after inputs received
- Players win,
- If $a=b=1$, leads to $x \oplus y=1$
- If $a=0$ or $b=0$, leads to $x \oplus y=0$

With classical resources, $\operatorname{Pr}[\mathrm{x} \oplus \mathrm{y}=\mathrm{a} \wedge \mathrm{b}] \leq 0.75$

$\mathbf{a} \mathbf{b}$	$\mathbf{x} \oplus \mathbf{y}$
00	0
01	0
10	0

$11 \quad 1$

But, with prior entanglement state $|00\rangle-|11\rangle$

- $\operatorname{Pr}[x \oplus y=a \wedge b]=\cos ^{2}(\pi / 8)=1 / 2+1 / 4 \sqrt{ } 2=0.853$...

Quantum strategy of CHSH game

* Alice and Bob start with entanglement
$|\phi\rangle=|00\rangle-|11\rangle$
Alice: if $s=0$ then rotate by $\theta_{A}=-\pi / 16$ else rotate by $\theta_{A}=+3 \pi / 16$ and measure

Bob: if $t=0$ then rotate by $\theta_{\mathrm{B}}=-\pi / 16$ else rotate by $\theta_{B}=+3 \pi / 16$ and measure

Win probability:

$$
\operatorname{Pr}[a \oplus b=s \wedge t]=\cos ^{2}(\pi / 8)=1 / 2+1 / 4 \sqrt{ } 2=0.853 \ldots
$$

Quantum strategy of CrSil game

Alice and Bob start with entanglement $|\phi\rangle=|00\rangle-|11\rangle$
0 - Alice
1 - Alice

O-Bob
1 - Bob

Quantum strategy of CHSH game

$B^{\text {A }}$	0 - ALICE	1 - Alice
$\begin{aligned} & \text { m } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
M O 品 -		

Win probability:
$\operatorname{Pr}[a \oplus b=s \wedge t]=\cos ^{2}(\pi / 8)=1 / 2+1 / 4 \sqrt{ } 2=0.853 \ldots$

CHSH game - non-uniform input

- Classical strategy:
- Best strategy $x=0, y=0$
- Success probability 0.75

$\mathbf{a} \mathbf{b}$	Correct Answer	$\mathbf{x ~ y}$	$\mathbf{x} \oplus \mathbf{y}$	Satisfy
00	0	00	0	+
01	0	00	0	+
10	0	00	0	+
11	1	00	0	-

What if input bits are not give uniformly?

* Players are allowed to use probabilistic (mixed) strategy:
- Best strategy: choose each of 4 strategies with probability 0.25
- Success probability 0.75

$\mathbf{a} \mathbf{b}$	Correct Answer	$\mathrm{x}=0$ $\mathrm{y}=0$	\oplus		$\mathrm{x}=0$ $\mathrm{y}=\mathrm{b}$	\oplus		$\mathrm{x}=\mathrm{a}$ $\mathrm{y}=0$	\oplus		$\mathrm{x}=\mathrm{a}$ $\mathrm{y}=!\mathrm{b}$	\oplus	
00	0	00	0	+	00	0	+	00	0	+	01	1	-
01	0	00	0	+	01	1	-	00	0	+	00	0	+
10	0	00	0	+	00	0	+	10	1	-	11	0	+
11	1	00	0	-	01	1	+	10	1	+	10	1	+

Generalized ChSH game (3 players)

Input: a,b,c$\in\{0,1\}$
Output: $\mathbf{x , y , z} \in\{0,1\}$
Players wins

- If $a=b=c=1$, leads to $x \oplus y \oplus z=1$
- If other, leads to $\mathrm{x} \oplus \mathrm{y} \oplus \mathrm{z}=0$

Classically:

- Best strategy: $\{x=0, y=0, z=0\}$
- $\operatorname{Pr}[x \oplus y \oplus z=a \wedge b \wedge c] \leq 7 / 8$

Probabilistic strategy?

Previous method will not work, because

- There is just 1 strategy that gives 7/8;
- Other strategies have max. 5/8

$\mathbf{a ~ b ~ c ~}$	$x \oplus y \oplus z$
000	0
001	0
010	0
011	0
100	0
101	0
110	0
111	1

Generalized CHSH(3 pl) analysis

Every player gives their output individually

- Players got 4 options for deterministic individual strategies ($0,1, \mathrm{a}, \mathrm{la}$)
- As there are 3 players, we get $4^{3}=64$ strategies
* There are strategies that give identical results on all inputs. (it would suffice to analyze only one of them)
- By properties of $\operatorname{XOR}(x, y, z)$, there are groups of 4 strategies with identical results
- Lets choose just 1 from each 4 of them: 64/4=16

By properties of XOR each strategy has an opposite. It gives opposite results on all inputs - this leads to probability 1-V,

- We want to study that strategy from a pair that has highest probability (do not use opposite strategies) 16/2=8
There will be,
- One strategy with probability 7/8
- 7 strategies with probability $5 / 8$

Generalized CrSt game - matrix game

Now it is easy to transform CHSH game to
" 2 player zero sum matrix game"

Input bits	Correct Xor value	Strategys							
		$" 0,0,0 "$	$" 0,0, a 3 "$	$" 0, a 2,0 "$	"0,a2,!a3"	"a1,0,0"	"a1,0,!a3"	"a1,!a2,0"	"a1,a2,a3"
$0,0,0$	0	0	0	0	1	0	1	1	0
$0,0,1$	0	0	1	0	0	0	0	1	1
$0,1,0$	0	0	0	1	0	0	1	0	1
$0,1,1$	0	0	1	1	1	0	0	0	0
$1,0,0$	0	0	0	0	1	1	0	0	1
$1,0,1$	0	0	1	0	0	1	1	0	0
$1,1,0$	0	0	0	1	0	1	0	1	0
$1,1,1$	1	0	1	1	1	1	1	1	1

Max. success probability is 0.7

- strategy " $0,0,0$ " with $3 / 10$, rest of them with $1 / 10$

Generalized ChSH game (n players)

By generalizing this method a bound for
n-player Generalized CHSH game was found
Upper and lower bound for success probability are equal and is:

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{\frac{2^{n}}{\left(2^{n}-1\right)+\left(2^{n-1}-1\right)}}{\frac{2^{\mathrm{n}}-1}{\left(2^{\mathrm{n}-1}-1\right)+\left(2^{\mathrm{n}}-1\right)}=\frac{2}{3}} \quad \frac{15}{22}{ }_{\frac{31}{94}}^{\frac{31}{46}}
$$

Extentions

The same bound holds for games that have rules in form

* It is easy to extend this method to other games that have more than one input string giving answer " 1 ".

Thank you, Questions?

Materials used:
http://library.thinkquest.org/C008537/cool/bellsinequality/bellsinequality.html

* W. Dam, P. Grunwald, R. Gill "The statistical strength of nonlocality proofs"
* J.Watrous, Univerity of Calgary Lecture notes in "Quantum computation"
* R.Cleve, Univerity of Waterloo Lecture notes in "Introduction to Quantum Information Processing"

Tried to guess the guestions! (Fhank you for asking this)

	$0=A L C E$	1- ALIC 를	

