Bell's inequalities and Game Theory

Agnis Škuškovniks, University of Latvia Faculty of Computing

Eiropas Sociālā fonda projekts "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Estonian-Latvian Theory days, Rakari, 2010

ESF

EIROPAS SOCIĀLAIS

Plan of presentation

- Bell`s inequalities
 - In Physics
 - In Computer Science
- Clasical CHSH game
- Quantum strategy for CHSH game
- Analysis of generalized CHSH game

000000000000000000

Einstein vs. Bell

- A.Einstein:
 - "God does not play at dice with the universe."
- N.Bors:
 - "Quit telling God what to do!"
- A.Einstein, B.Podolsky, N.Rosen (1935)
 - Can Quantum-Mechanical Description of Physical Reality be Considered Complete?
 - Also known as EPR paradox
- ✤ J.S.Bell (1964):
 - if momentum and position of photon exists whether they are measured or not then Bell's Inequality, would be satisfied
- ✤ A.Einstein :
 - "I think that a particle must have a separate reality independent of the measurements. That is an electron has spin, location and so forth even when it is not being measured. I like to think that the moon is there even if I am not looking at it"

- Pion (no spin), splits into two photons
- Their spins have to add up to no spin
- Example with balls

✤ J.S.Bell:

Number(A, not B) + Number(B, not C) >= Number(A, not C)

- Lets look at a set of students:
 - Men
 - Heigth more than 1,7m
 - Blue eyes

Original version:

Borsós, K.; Benedict, M. G. University of Szeged, Hungary "Animation of experiments in modern quantum physics"

CLASSICAL EXPERIMENT

- A, B, C statistiska monētas mešanas eksperimenta rezultāti
 - A un B dod vienādu rezultātu 99% gadījumu
 - B un C dod vienādu rezultātu 99% gadījumu no šī seko, ka:
 - A un C dod vienādu rezultātu **98%** gadījumu

QUANTUM MECHANICAL EXPERIMENT

- A,B,C spina mērījuma vērtības (leņķī 0, θ, 2θ pret asi), divām sapītām daļiņām
 - Varbūtība, ka A un B dod vienādu rezultātu ir $1-\varepsilon^2$ (ε atkarīgs no θ)
 - Varbūtība, ka B un C dod vienādu rezultātu ir 1-ε²
 no šī seko, ka:
 - Varbūtība, ka A un C dod vienādu rezultātus ir 1-(2ε)²
 - Izvēlamies θ tā lai ε=0,1, tad [A,B]=99%, [B,C]=99%, bet [A,C]=96%

0000000000000

What are the consequences?

Bell's theorem is based on assumptions:

- Logic is valid
- There is a reality separate from its observation
- No information can travel faster than light
- Witch assumption is wrong?
 - K.Godel:
 - "Any theory proposed for the foundation of mathematics will be either insufficient for mathematics, incomplete, or inconsistent."
 - Physics, Philosophy, Religion :
 - Could it be that the universe only exists because we are conscious of it?
 - Perhaps we only exist because someone or something is conscious of us?
 - "Schrödinger`s cat" until no measurement is made cat is in a superstate of both dead and alive!
 - Information might be able to travel faster than light.

* But, with prior entanglement state $|00\rangle - |11\rangle$

• $\Pr[x \oplus y = a \land b] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

Alice and Bob start with entanglement $|\phi\rangle = |00\rangle - |11\rangle$

- Alice: if s = 0 then rotate by $θ_A = -π/16$ else rotate by $θ_A = + 3π/16$ and measure
- *** Bob**: if t = 0 then rotate by $\theta_{\rm B} = -\pi/16$ else rotate by $\theta_{\rm B} = + 3\pi/16$ and **measure**

Win probability:

 $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

Quantum strategy of CHSH game

Win probability: $Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

CHSH game - non-uniform input

Classical strategy:

- Best strategy x=0, y=0
- Success probability 0.75

ab	Correct Answer	ху х⊕у		Satisfy	
00	0	0 0	0	+	
01	0	0 0	0	+	
10	0	0 0	0	+	
11	1	0 0	0	-	

What if input bits are not give uniformly?

- Players are allowed to use probabilistic (mixed) strategy:
 - Best strategy: choose each of 4 strategies with probability 0.25
 - Success probability 0.75

a b	Correct Answer	x=0 y=0	•		x=0 y=b	⊕		x=a y=0	⊕		x=a y=!b	⊕	
0 0	0	0 0	0	+	0 0	0	+	0 0	0	+	0 1	1	-
0 1	0	0 0	0	+	0 1	1	1	0 0	0	+	0 0	0	+
10	0	0 0	0	+	0 0	0	+	10	1	-	11	0	+
11	1	0 0	0	1	0 1	1	+	1 0	1	+	10	1	+

Generalized CHSH game (3 players)

- Input: a,b,c ∈ {0,1}
- **♦** Output: **x,y,z** ∈ {0,1}
- Players wins
 - If a=b=c=1, leads to x⊕y⊕z=1
 - If other, leads to x⊕y⊕z=0
- Classically:
 - Best strategy: {x=0, y=0, z=0}
 - $Pr[x \oplus y \oplus z = a \land b \land c] \le 7/8$

Probabilistic strategy?

- Previous method will not work, because
 - There is just 1 strategy that gives 7/8;
 - Other strategies have max. 5/8

Generalized CHSH(3 pl) analysis

- Every player gives their output individually
 - Players got 4 options for deterministic individual strategies (0, 1, a, !a)
 - As there are 3 players, we get 4³=**64** strategies
- There are strategies that give identical results on all inputs. (it would suffice to analyze only one of them)
 - By properties of XOR(x,y,z), there are groups of 4 strategies with identical results
 - Lets choose just 1 from each 4 of them: 64/4=16
- By properties of XOR each strategy has an opposite. It gives opposite results on all inputs this leads to probability 1-V,
 - We want to study that strategy from a pair that has highest probability (do not use opposite strategies) 16/2=8
- There will be,
 - One strategy with probability 7/8
 - 7 strategies with probability 5/8

Generalized CHSH game – matrix game

Now it is easy to transform CHSH game to

"2 player zero sum matrix game"

Input bits	Correct XOR value	Strategys								
		"0,0,0"	"0,0,a3"	"0,a2,0"	"0,a2,!a3"	"a1,0,0"	"a1,0,!a3"	"a1,!a2,0"	"a1,a2,a3"	
0,0,0	0	0	0	0	1	0	1	1	0	
0,0,1	0	0	1	0	0	0	0	1	1	
0,1,0	0	0	0	1	0	0	1	0	1	
0,1,1	0	0	1	1	1	0	0	0	0	
1,0,0	0	0	0	0	1	1	0	0	1	
1,0,1	0	0	1	0	0	1	1	0	0	
1,1,0	0	0	0	1	0	1	0	1	0	
1,1,1	1	0	1	1	1	1	1	1	1	

Max. success probability is 0.7

strategy "0,0,0" with 3/10, rest of them with 1/10

Generalized CHSH game (n players)

 By generalizing this method a bound for **n-player Generalized CHSH game** was found
 Upper and lower bound for success probability are equal and is:

$$\frac{2^n}{(2^n-1)+(2^{n-1}-1)}$$

$$\lim_{n \to \infty} \frac{2^n - 1}{(2^{n-1} - 1) + (2^n - 1)} = \frac{2}{3}$$

The same bound holds for games that have rules in form

- XOR($\mathfrak{M}_{1},\mathfrak{M}_{2}...\mathfrak{M}_{n}$) = 0 for all other input string
- It is easy to extend this method to other games that have more than one input string giving answer "1".

Materials used:

- http://library.thinkquest.org/C008537/cool/bellsinequality/bellsinequality.html
- W. Dam, P. Grunwald, R. Gill "The statistical strength of nonlocality proofs"
- ✤ J.Watrous, Univerity of Calgary Lecture notes in "Quantum computation"
- * R.Cleve, Univerity of Waterloo Lecture notes in "Introduction to Quantum Information Processing"

Estonian-Latvian Theory days, Rakari, 2010

Tried to guess the questions! (Thank you for asking this)

0

