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Outline

• Residual finite state automata (RFSA), canonical RFSA

• Biresidual (biRFSA) and biseparable automata, known

properties about their minimality

• Fooling set techniques for the lower bounds of the size of NFAs,

their relationship to biRFSA and biseparable automata

• Transition minimality of reversible canonical biRFSAs
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Residual finite state automata: motivation

• While there is a unique minimal DFA for every regular

language, there may be more than one minimal NFA.

• Residual finite state automata (RFSA) introduced by

Denis, Lemay, and Terlutte (2001) are a subclass of NFA with

a property similar to the uniqueness of minimal DFA.

• There is a unique RFSA called the canonical RFSA for a given

language that is a state-minimal RFSA.

• The size of the canonical RFSA is at least the size of a minimal

NFA and at most the size of the minimal DFA.

• Canonical RFSA can be a minimal NFA, even a unique one.

• Learning algorithms for regular languages that derive RFSAs

instead of DFAs have been developed.
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Definitions

• Let A = (Q, Σ, E, I, F ) be an NFA where Q is a finite set of

states, Σ is an input alphabet, E ⊆ Q × Σ × Q is a set of

transitions, I ⊆ Q is a set of initial states, and F ⊆ Q is a set

of final states.

• Given P ⊆ Q and x ∈ Σ∗, we denote by P · x the set P ′ ⊆ Q

such that p′ ∈ P ′ if and only if there is a path from any p ∈ P

to p′ labelled by x.

• The left and right languages of a state q ∈ Q are defined as

LL(A, q) = {x ∈ Σ∗ | q ∈ I · x} and

LR(A, q) = {x ∈ Σ∗ | {q} · x ∩ F 6= ∅}.

4



Residual finite state automata

• A language L′ ⊆ Σ∗ is a residual of a language L if there exists

a word u ∈ Σ∗ such that L′ = {v ∈ Σ∗ | uv ∈ L}.

• An automaton A is a residual finite state automaton (RFSA) if

for every state q of A, LR(A, q) is a residual of L(A).

• A residual of a language L is prime if it is non-empty and if it

cannot be obtained as the union of other residuals of L.

• The canonical RFSA of a regular language L is the automaton

A = (Q, Σ, E, I, F ) where Q is the set of prime residuals of L,

Σ is an input alphabet, I is the set of prime residuals of L

which are included in L, F is the set of prime residuals of L

containing the empty word, and for all prime residuals S and

S′ of L and for all a ∈ Σ, (S, a, S′) ∈ E if and only if aS′ ⊆ S.
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Residual finite state automata

• The canonical RFSA is the unique RFSA that has the

maximum number of transitions among the set of RFSAs

which have the minimum number of states (Denis et al., 2001).

• Any DFA is an RFSA: given a DFA A, for any state q of A,

LR(A, q) is a residual of L(A).

• There are cases where the canonical RFSA is a minimal NFA

and much smaller than the minimal DFA.
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Biresidual automata (biRFSA)

• BiRFSA is an RFSA such that its reversal automaton is also

an RFSA.

• BiRFSAs were introduced by Latteux, Roos, Terlutte (2005)

who studied their minimality issues.

• The canonical RFSA of a language accepted by a biRFSA is a

biRFSA.

• The canonical biRFSA is a state-minimal NFA (not necessarily

unique!)

• Any other state-minimal NFA is a subautomaton of the

canonical biRFSA.
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Biseparable automata

Latteux et al. (2005) introduced and studied a subfamily of

biRFSAs called biseparable automata.

• A trim NFA A = (Q, Σ, E, I, F ) is called separable if for every

state q ∈ Q there is some u ∈ Σ∗ such that I · u = {q}.

• A is biseparable if both A and AR are separable.

• Any biseparable automaton is a canonical biRFSA.

• Any biseparable automaton is a unique state-minimal NFA.

• Since biseparable automata include bideterministic automata

as a proper subclass, the last statement improves a similar

result for bideterministic automata (HT, Ukkonen, 2003).

• However, there exist unique minimal NFAs which are not

biseparable.
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Our results

• We consider two lower bound methods for the number of states

of NFAs and present two results related to these methods:

– First, the lower bound provided by the fooling set technique

is tight for and only for biseparable automata.

– Second, the lower bound provided by the extended fooling

set technique is tight for any language accepted by a

biRFSA.

• Third result: any reversible canonical biRFSA is

transition-minimal.

9



Lower bound techniques for the size of NFAs

• Fooling set technique (Glaister and Shallit, 1996):

Let L ⊆ Σ∗ be a regular language, and suppose there exists

a set of pairs P = {(xi, wi) | 1 ≤ i ≤ n} such that

(a) xiwi ∈ L, for 1 ≤ i ≤ n, and

(b) xjwi /∈ L, for 1 ≤ i, j ≤ n, i 6= j.

Then any NFA accepting L has at least n states.

• Extended fooling set technique (Birget, 1992):

(b’) xjwi /∈ L or xiwj /∈ L, for 1 ≤ i, j ≤ n

• Extended fooling set technique may provide a better lower

bound.

• Lower bounds obtained by these techniques are not necessarily

tight.
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Lower bound for biseparable automata

A lower bound provided by the fooling set technique can be tight if

and only if L is accepted by a biseparable automaton:

Theorem 1. Let L ⊆ Σ∗ be a regular language, and let n be the

maximum integer such that there exists a set of pairs

P = {(xi, wi) | 1 ≤ i ≤ n} with

(a) xiwi ∈ L, for 1 ≤ i ≤ n, and

(b) xjwi /∈ L, for 1 ≤ i, j ≤ n, i 6= j.

Then any NFA accepting L has n states if and only if it is

biseparable.

Corollary. Any NFA with n states accepting a language that has

a fooling set of size n is a unique minimal NFA for that language.
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Lower bound for biresidual languages

The extended fooling set technique provides a tight lower bound for

all languages accepted by a biRFSA:

Theorem 2. Let L ⊆ Σ∗ be a biRFSA language, and let n be the

maximum integer such that there exists a set of pairs

P = {(xi, wi) | 1 ≤ i ≤ n} with

(a) xiwi ∈ L, for 1 ≤ i ≤ n, and

(b) xjwi /∈ L or xiwj /∈ L, for 1 ≤ i, j ≤ n, i 6= j.

Then a minimal NFA accepting L has n states.

Note: there are languages other than those accepted by a biRFSA

for which the lower bound obtained by this technique is tight.
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Transition minimality of reversible biRFSAs

It is known that a canonical RFSA has the maximum number of

transitions among the set of RFSAs which have the minimum

number of states (Denis et al., 2001).

An NFA is called reversible if for any state-label pair (q, a) there is

at most one in-transition and one out-transition involving q and a.

Theorem 3. A reversible canonical biRFSA has the minimum

number of transitions among all ǫ-NFAs accepting the same

language.

To prove this result, the theory of transition-minimal ǫ-NFAs by

John (2003) was extended.

Cor. A reversible canonical biRFSA is a transition-minimal NFA.

Cor. A reversible biseparable automaton is transition-minimal.
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Conclusions and future work

• RFSAs are an interesting class of automata that deserves more

study.

• Since RFSAs are a generalization of DFAs then is it possible to

extend some results obtained for DFAs, for RFSAs?

• More connections between lower bound techniques and special

automata classes?

• More general theory of transition-minimal ǫ-NFAs?
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