
01.10.2010 Between Qualification and Certification: 1
Specifying and Verifying Model Transformations in an Embedded Code Generator

Between Qualification and Certification:

Specifying and Verifying Model Transformations in an
Embedded Code Generator

Andres Toom1,2

Joint work with Marc Pantel2

1. Institute of Cybernetics at Tallinn University of Technology, Estonia
2. IRIT-ENSEEIHT, Université de Toulouse, France

Joint Estonian-Latvian Computer Science Theory Days

30.09 – 03.10.2010 / Rakari, Latvia

01.10.2010 Between Qualification and Certification: 2
Specifying and Verifying Model Transformations in an Embedded Code Generator

Outline

Model Driven Engineering (MDE)
Tool Qualification

DO-178B(C)

Gene-Auto Embedded Code Generator
Proven Development – Certified Elementary Tool Development
With The Coq Proof Assistant

N. Izerrouken, M. Pantel, X. Thirioux (IRIT)
Structural Model Transformation Specification and Validation
with MOF and OCL

Joint work with M. Pantel (IRIT)

01.10.2010 Between Qualification and Certification: 3
Specifying and Verifying Model Transformations in an Embedded Code Generator

MDE

01.10.2010 Between Qualification and Certification: 4
Specifying and Verifying Model Transformations in an Embedded Code Generator

Model Driven Engineering (MDE)

MDE promotes using models in each phase of software
development
Main idea:

The abstract platform independent model (PIM) is transformed to
the target specific model (code) through a series of successive
refinements

Well known examples
Unified Modeling Language (UML) - OMG
Meta-Object Facility (MOF) - OMG
Eclipse Modeling Framework (EMF)

Ecore, EMOF

01.10.2010 Between Qualification and Certification: 5
Specifying and Verifying Model Transformations in an Embedded Code Generator

Software Development V-Cycle

01.10.2010 Between Qualification and Certification: 6
Specifying and Verifying Model Transformations in an Embedded Code Generator

Some challenges

Functionality and complexity increase of embedded systems

Increased safety-criticality, high-integrity

Required software longevity (maintainable up to 80 years)

Product quality and certification (DO-178/ED-12, ISO 26262,
…)

Need to reduce development cycles and prototype loops to
achieve cost-efficiency

01.10.2010 Between Qualification and Certification: 7
Specifying and Verifying Model Transformations in an Embedded Code Generator

Tool Qualification

01.10.2010 Between Qualification and Certification: 8
Specifying and Verifying Model Transformations in an Embedded Code Generator

DO-178

DO-178B(C)/ED-12B(C) - Software Considerations In Airborne
Systems And Equipment Certification

Main software related civil avionics standard in the US, Europe
and many other countries

Has motivated also standards in other domains, e.g. the
new automotive ISO 26262 standard

01.10.2010 Between Qualification and Certification: 9
Specifying and Verifying Model Transformations in an Embedded Code Generator

DO-178 (contd)

Short history of the DO-178/ED-12
1982 DO-178/ED-12

1985 DO-178A/ED-12A

1992 DO-178B/ED-12B

2010? DO-178C/ED-12C
SG4: Model Based Design and Verification

SG5: Object-Oriented Technology

SG6: Formal Methods

01.10.2010 Between Qualification and Certification: 10
Specifying and Verifying Model Transformations in an Embedded Code Generator

DO-178 (contd)

DO-178/ED-12 objectives vs. level of criticality

01.10.2010 Between Qualification and Certification: 11
Specifying and Verifying Model Transformations in an Embedded Code Generator

DO178 and testing

Test coverage criteria for code structure

Level C - statement coverage

Level B - decision coverage

Level A - modified condition/decision coverage
(MC/DC)

Example

if a and (b or c) then

x = y;

Statement coverage - 1 test needed

Decision coverage - 2 tests needed

Modified condition/decision coverage (MC/DC) -

4 tests needed

01.10.2010 Between Qualification and Certification: 12
Specifying and Verifying Model Transformations in an Embedded Code Generator

DO178B(C) and Formal Methods

DO178B states
A formal method can be used as an alternative method

An alternative method should be shown to satisfy the
objectives of this document

DO178C
Does not relax this basic requirement, but provides more
guidelines to using formal methods in a qualified context

01.10.2010 Between Qualification and Certification: 13
Specifying and Verifying Model Transformations in an Embedded Code Generator

Gene-Auto

Embedded Code Generator

01.10.2010 Between Qualification and Certification: 14
Specifying and Verifying Model Transformations in an Embedded Code Generator

Main objectives
Translation of functional specifications of application software
from high-level graphical modelling formalisms
(Simulink/Stateflow/Scicos) to imperative sequential code

C, Ada

DO-178B(C)/ED-12B(C) qualifiable toolset for safety-critical
embedded systems

Open source and customisable architecture

Evaluate formal methods based code generator qualification
vs. traditional testing based approach

01.10.2010 Between Qualification and Certification: 15
Specifying and Verifying Model Transformations in an Embedded Code Generator

Main scope

01.10.2010 Between Qualification and Certification: 16
Specifying and Verifying Model Transformations in an Embedded Code Generator

Toolset architecture and approach

01.10.2010 Between Qualification and Certification: 17
Specifying and Verifying Model Transformations in an Embedded Code Generator

Toolset architecture and approach (contd)

01.10.2010 Between Qualification and Certification: 18
Specifying and Verifying Model Transformations in an Embedded Code Generator

Toolset architecture and approach (contd)

01.10.2010 Between Qualification and Certification: 19
Specifying and Verifying Model Transformations in an Embedded Code Generator

Proven Development – Certified Elementary Tool
Development With The Coq Proof Assistant

N. Izerrouken, M. Pantel, X. Thirioux (IRIT)

01.10.2010 Between Qualification and Certification: 20
Specifying and Verifying Model Transformations in an Embedded Code Generator

Proven development with Coq

In the early phase of Gene-Auto a comparative study of several
formal techniques was conducted. Including:

Proven development, certified development (B-method), proof
carrying code, translation validation, model checking, static
analysis

Proven development with a proof assistant and program
extraction was identified as the most appropriate technique
currently available for this task
Initial case study

Sequencing of Simulink block diagrams

01.10.2010 Between Qualification and Certification: 21
Specifying and Verifying Model Transformations in an Embedded Code Generator

Sequencing of Simulink block diagrams

Fragment of an automotive powertrain controller (Continental)

01.10.2010 Between Qualification and Certification: 22
Specifying and Verifying Model Transformations in an Embedded Code Generator

Coq

An interactive theorem prover (proof assistant)
Capable of extracting a certified program from the
constructive proof of its formal specification
Considered to have nearly industrial strength
Not DO-178 qualified
Part of the Coq kernel formally verified. Verification of a larger
subset and other components (e.g. extractor) ongoing
Has been used to program and prove the correctness of a
compiler from a large subset of the C programming language
to PowerPC assembly code

X. Leroy, Formal verification of a realistic compiler
(CompCert)

01.10.2010 Between Qualification and Certification: 23
Specifying and Verifying Model Transformations in an Embedded Code Generator

Summary of the proven development
experiment

Block sequencer tool (Coq + OCaml extraction)
ca 4500 LOC of specification and proofs
ca 130 proved theorems
Izerrouken, N., Pantel, M., Thirioux, X., Machine-Checked
Sequencer for Critical Embedded Code Generator, ICFEM'09

Block diagram typer (Coq + OCaml extraction)
Prototype. Similar approach as above
Type checking (limited subset of blocks)
Type inference in the forward and backward direction (in
progress)

01.10.2010 Between Qualification and Certification: 24
Specifying and Verifying Model Transformations in an Embedded Code Generator

Summary of the proven development (contd)

The technology is quite difficult for common software
engineers
It is quite difficult to give an accurate estimation of the
development time based on the early user requirements
Qualified Coq proof checker and program extractor are
currently only available preliminary academic prototypes
Development of scalable algorithms is not trivial

01.10.2010 Between Qualification and Certification: 25
Specifying and Verifying Model Transformations in an Embedded Code Generator

Structural Model Transformation Specification and
Validation with MOF and OCL

Joint work with M. Pantel (IRIT)

01.10.2010 Between Qualification and Certification: 26
Specifying and Verifying Model Transformations in an Embedded Code Generator

Domain Specific Model Transformations

Very application and user specific
Often quite simple structural refinements
Need to be easily maintainable and customisable

01.10.2010 Between Qualification and Certification: 27
Specifying and Verifying Model Transformations in an Embedded Code Generator

Domain Specific Model Transformations (contd)

Gene-Auto Functional Model Preprocessor
Input of the tool is a raw imported GASystemModel
Output is refined GASystemModel
The tool performs following main transformations (model
refinements):

Masked Subsystems that have corresponding library Blocks are
replaced by library Blocks
Stateflow Subsystems are replaced with Stateflow Blocks and their
port datatypes are determined
All remaining elementary Blocks in the input model are matched with
corresponding library Blocks
Virtual Subsystems are flattened
Execution priorities of concurrent Blocks are computed based on
their graphical position

01.10.2010 Between Qualification and Certification: 28
Specifying and Verifying Model Transformations in an Embedded Code Generator

Translation Validation

1998 A. Pnueli et al.
A posteriori verification of individual transformation instances
Transformation is followed by a verification phase
The transformation engine can give additional hints to the
verifier

01.10.2010 Between Qualification and Certification: 29
Specifying and Verifying Model Transformations in an Embedded Code Generator

MOF and OCL

Meta-Object Facility (MOF) - OMG standard
Four-layered meta-modeling architecture (M0..M3)
Most prominent example: Unified Modeling Language (UML)
meta-model (M2 model)

Object Constraints Language (OCL) - OMG standard
A declarative constraint and object query language.
Initially conceived as a formal specification language extension to
the UML
Can now be used with any MOF meta-model

01.10.2010 Between Qualification and Certification: 30
Specifying and Verifying Model Transformations in an Embedded Code Generator

MOF - OCL Example
Company (Meta)Model

01.10.2010 Between Qualification and Certification: 31
Specifying and Verifying Model Transformations in an Embedded Code Generator

MOF - OCL Example (contd)
-------- Employee class in the metaEmployee class in the metaEmployee class in the metaEmployee class in the meta----modelmodelmodelmodel

class Employee

empID : EInt

name : EString

employed : EBoolean

salary : EDouble

balance : Edouble

-------- OCL constraintsOCL constraintsOCL constraintsOCL constraints

context Employee

inv : empID > 0

inv : employed implies salary > 0

context Employee::paySalary()

pre : employed and salary > 0

post : balance = balance@pre + salary

01.10.2010 Between Qualification and Certification: 32
Specifying and Verifying Model Transformations in an Embedded Code Generator

Model Transformation Constraints with
MOF - OCL

-------- SourceSourceSourceSource

context GASystemModel

inv: getAllElements()->isUnique(id)

inv: …

-------- TargetTargetTargetTarget

context GASystemModel

inv: getAllElements()->isUnique(id)

inv: getAllElements()

->select(oclIsKindOf(SystemBlock)

and isVirtual)

->isEmpty()

inv: …

01.10.2010 Between Qualification and Certification: 33
Specifying and Verifying Model Transformations in an Embedded Code Generator

Model Transformation Constraints (contd)

Need to model the whole transformation

-------- SystemSystemSystemSystem----totototo----System transformationSystem transformationSystem transformationSystem transformation

class SM2SM

src : GASystemModel

tgt : GASystemModel

01.10.2010 Between Qualification and Certification: 34
Specifying and Verifying Model Transformations in an Embedded Code Generator

Example: Gene-Auto Tool
Requirement

TR-FMPB-022 ���� Elementary tool operational requirement

The tool must expand virtual (sub)systems

For each block of type SystemBlock in the source model:

If it is an atomic system, the tool processes the contents of the
system in order to replace any inner virtual systems, but does
not flatten the current system

If it is a virtual system, the tool replaces the SystemBlock block
by its content

Traced toolset operational requirement ���� GR-SL-B008

01.10.2010 Between Qualification and Certification: 35
Specifying and Verifying Model Transformations in an Embedded Code Generator

Example model

01.10.2010 Between Qualification and Certification: 36
Specifying and Verifying Model Transformations in an Embedded Code Generator

Example (contd)

01.10.2010 Between Qualification and Certification: 37
Specifying and Verifying Model Transformations in an Embedded Code Generator

flattenedChildBlocks()

context SM2SM

def: flattenedChildBlocks()
blocks->

select(
-------- Primitive child blocksPrimitive child blocksPrimitive child blocksPrimitive child blocks
(not oclIsKindOf(SystemBlock)) or
-------- Atomic SubSystemsAtomic SubSystemsAtomic SubSystemsAtomic SubSystems
(oclIsKindOf(SystemBlock)

and not isVirtual))

-------- Add children of nonAdd children of nonAdd children of nonAdd children of non----atomic SubSystemsatomic SubSystemsatomic SubSystemsatomic SubSystems
->union(

self.blocks
->select(oclIsKindOf(SystemBlock)

and isVirtual)
->collect(flattenedChildBlocks()))

01.10.2010 Between Qualification and Certification: 38
Specifying and Verifying Model Transformations in an Embedded Code Generator

Hints from the Code Generator

01.10.2010 Between Qualification and Certification: 39
Specifying and Verifying Model Transformations in an Embedded Code Generator

Tool Requirement in MOF - OCL
(using hints from the code generator)

context SM2SM

-------- TRTRTRTR----FMPBFMPBFMPBFMPB----022:022:022:022:
inv:

-------- All nonAll nonAll nonAll non----atomic Systems in the src have a atomic Systems in the src have a atomic Systems in the src have a atomic Systems in the src have a
-------- corresponding Sys2Sys linkcorresponding Sys2Sys linkcorresponding Sys2Sys linkcorresponding Sys2Sys link
self.src.getAllElements()

->select(oclIsKindOf(SystemBlock))
->select(isVirtual = false)

=
self.links.sys2sys.src

and

-------- Each System was correctly flattenedEach System was correctly flattenedEach System was correctly flattenedEach System was correctly flattened
self.links.sys2sys

->forAll(
tgt.blocks = src.flattenedChildBlocks())

01.10.2010 Between Qualification and Certification: 40
Specifying and Verifying Model Transformations in an Embedded Code Generator

Summary of Translation Validation with
MOF - OCL

Fits well the classical MDE software development
process

Natural language requirements can be well formalised in OCL by
a domain specialist
If the requirements evolve, then the rules can be easily adjusted.
Changes have only local effect
Implementers have precise requirements and need not have
deep domain knowledge

Rather light and stable tool-chain
Consistency of the set of rules is only up to the specifier

Semantic analysis can be performed as a separate stage, by a
different person/team – separation of concerns

Completeness (model coverage) analysis is complicated
Need to validate each transformation instance

01.10.2010 Between Qualification and Certification: 41
Specifying and Verifying Model Transformations in an Embedded Code Generator

Thank you!

