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Sensitivity of a Boolean function

.Sensitivity to a bit..

.

Function f is sensitive to bit i on x if

f(x1, . . . , xi, . . . , xn) ̸= f(x1, . . . , 1− xi, . . . , xn)

.Sensitivity on a word..

.

The sensitivity of f on x is the number of sensitive bits on x:

s(f, x) = |{i|f(x1, . . . , xi, . . . , xn) ̸= f(x1, . . . , 1− xi, . . . , xn)}|

.Sensitivity of a Boolean function..

.

The sensitivity of f is the maximum of sensitivities on a word
over all inputs: s(f) = max

w
s(f,w).



. . . . . .

Sensitivity: an example

.Three-argument majority function..

.
f(x1, x2, x3) =

{
1 if at least two of x1, x2, x3 are 1,
0 otherwise.

.Sensitivity of majority..

.

s(f, 011) = 2, because there are exactly two bits, namely x2
(f(011) ̸= f(010)) and x3 (f(011) ̸= f(001)), whose change
would change the value of f;
s(f, 000) = 0 s(f, 001) = 2 s(f, 010) = 2 s(f, 011) = 2
s(f, 100) = 2 s(f, 110) = 2 s(f, 101) = 2 s(f, 111) = 0;
we conclude that the sensitivity of f is 2.
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Block sensitivity of a Boolean function

.Blocks..

.

Let x be a Boolean string of length n and let S be any subset of
indices, we will call S a “block”. By xS we will mean x with all
the bits in S flipped.
.Sensitivity to block..
.Function f is sensitive to block S on x if f(x) ̸= f(xS)

.Example..

.
The three-argument majority function is sensitive to block 1, 2
on 000, because f(0, 0, 0) ̸= f(1, 1, 0).
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Block sensitivity of a Boolean function (cont.)

.Block sensitivity on word..

.

The block sensitivity bs(f, x) of f on input x is defined as the
maximum number k of disjoint subsets B1, . . . ,Bk of
{1, 2, . . . , n} such that for each Bi, f(x) ̸= f(xBi).
.Block sensitivity of a function..
.
The block sensitivity bs(f) of f is max

x
bs(f, x).

.A generalization of sensitivity..

.
The relation to sensitivity is immediate: block sensivity
generalizes different bits to disjoint blocks.
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The block sensitivity problem

.The main open problem..

. Is there a constant c such that bs(f) = O(sc(f))?

.Progress on the block sensitivity problem..

.

the best known upper bound of block sensitivity in terms
of sensitivity is exponential [Kenyon04];
the best separation is quadratic: bs(f) = 1

2s(f)2 for
Rubinstein’s function [Rubinstein95];
the gap has been exponential for more than 20 years.
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The importance of the block sensitivity problem

.A possible proof technique..

.

note that for most functions it is very easy to determine
their sensitivity. We can’t say the same about other
complexity measures;
also note that block sensitivity is polynomially related to
almost every other complexity measure: deterministic
query complexity, quantum query complexity, certificate
complexity, etc.;
if sensitivity and block sensitivity are polynomially related,
then we would have an immense number of new results
about other complexity measures.
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Approaching the block sensitivity problem
.The results of Kenyon and Kutin..

.

this paper demonstrates the best upper bound (though
exponential). Their proof is via l-block sensitivity, which
limits the block size to at most l.
at the end of the paper there is an interesting open
question Q about bs2 and s;
even an improvement to the constants in the relationship
between bs2 and s could lead to a subexponential upper
bound of block sensitivity in terms of sensitivity;

.A possible attack – trying small examples..

.

investigate small examples looking for improvements to Q;
if there is a small example that substantially improves the
solution to Q and we are able to generalize it, then we have
proved a new upper bound of block sensitivity!
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Investigating Boolean functions of low degree

.Exhaustive search..

.

the number of n variable Boolean functions is 22
n ;

an exhaustive search is unfeasible for even n = 5;
a result obtained by exhaustive search: a short proof of
sub-quadratic separation between sensitivity and block
sensitivity.

.An idea from cryptography – reducing the problem to SAT..

.

build a SAT instance by considering 2n variables
corresponding to the values of f(x1, x2, . . . xn);
add additional variables and clauses for constraints s(f) ≤ s
and bs(f) ≥ bs, for arbitrary constants s, bs;
use a SAT solver on the resulting problem instances.
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Results
.Results of computer search..

.

we found a 9-argument function with a somewhat simple
structure and bs(f) > 1

2s(f)2;
our experiments give a complete characterization of
possible s and bs pairs for every n not exceeding 12.

.The main result – improved separation..

.

we were able to generalize our function
(bs(f) = 1

2s(f)2 + 1
2s(f)), thereby improving the best known

separation;
our function also improves the best results about question
from paper by Kenyon and Kutin, however this
improvement is not strong enough to prove the
subexponential bound we seeked.
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The main result

.The main theorem..

.

For every non-negative integer k there exists a Boolean function
f of n = (2k + 1)2 variables, for which s(f) = 2k + 1 and
bs(f) = (2k + 1)(k + 1).
.Our function..

.

An example of such a function is given by dividing variables
into 2k + 1 disjoint sections with 2k + 1 variables in each
section. We define f to be 1 iff there is a section x1, x2, . . . , x2k+1

such that either:
(i) x2i−1 = x2i = 1 for some 1 ≤ i ≤ k and all other xj’s are 0,

or
(ii) x2k+1 = 1 and all other xj’s are 0.
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Our function
.
A concrete example: n = 92..

.

1 2 3 4 5 6 7 8 9

1 0 0 1 1 0 0 0 0 0
2 0 0 0 0 0 0 1 1 0
3 1 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 1
5 0 0 1 0 0 0 0 0 0 incomplete pair
6 0 0 1 1 0 1 0 0 0 extra 1 bit
7 0 1 1 0 0 1 0 0 0 misaligned pair
8 0 0 0 0 0 0 0 0 0 all zeroes
9 0 0 0 0 0 0 0 0 0 all zeroes

A row is “good” if either:
there is exactly one 1 bit and it is in the last column;
there is exactly two 1 bits, they are “paired” and the pair is
correctly aligned.
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Proof of the main result

.
s(f) ≥ 2k + 1, bs(f) ≥ (2k + 1)(k + 1)..

.

we observe that for input w = 0 . . . 0 we have
s(f,w) ≥ 2k + 1 and bs(f,w) ≥ (2k + 1)(k + 1)

.
bs(f) = (2k + 1)(k + 1)..

.

assume we have already proved that s(f) = 2k + 1;
assume that the maximal block sensitivity is achieved using
u blocks of size 1 and v blocks of size a least 2;
from the sensitivity we have u ≤ 2k + 1;
from the total number of variables we have
u + 2v ≤ (2k + 1)2;
taken together:
bs(f) = u + v ≤ 1

2((2k + 1) + (2k + 1)2) = (2k + 1)(k + 1).
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Proof of the main result (cont.)

.
s(f) ≤ 2k + 1..

.

We consider two cases for arbitrary input w:
f(w) = 1

if there is only one “good” section, we have at most 2k + 1
choices for the bit to alter;
if there are at least two “good” sections, we can’t change
the value of f by flipping just one input bit.

f(w) = 0

we prove that for each of the 2k+1 sections there is at most
one bit whose change could flip the value of f;
proof by case analysis (consider how 1 bits could be
distributed among pairs and unpaired bit).
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Questions

Questions?
More details in our paper:
http://tinyurl.com/blocksensitivity

http://tinyurl.com/blocksensitivity

