
Round-efficient OT and Oblivious Shuffle
Protocols for Secure Multi-party Computation

Bingsheng Zhang1,2

Joint work with: Sven Laur2 Jan Willemson1,3

1Cybernetica AS, Estonia
2University of Tartu, Estonia

3STACC, Estonia

Joint Estonian-Latvian Theory Days at Rakari
30.09.2010—03.10.2010



Outline Outline

Secure Multi-party Computation and Sharemind
Existing Sharemind Elementary Protocols
High degree Conjunction and Disjunction
Oblivious Transfer Protocol
Oblivious Shuffle Protocol



Outline Outline

Secure Multi-party Computation and Sharemind

Multi-party Computation



Outline Outline

Secure Multi-party Computation and Sharemind

Figure: Ideal world



Outline Outline

Secure Multi-party Computation and Sharemind

Figure: Ideal world



Outline Outline

Secure Multi-party Computation and Sharemind

Figure: Real world



Outline Outline

Secure Multi-party Computation and Sharemind

Figure: Real world



Outline Outline

Secure Multi-party Computation and Sharemind

Linear Secret Sharing
A secret sharing scheme is specified by a randomized function
Share, which takes in a secret value x ∈ ZN and splits it into m
pieces.

x ≡ x1 + x2 + · · ·+ xm mod N .

The vector of shares is commonly denoted by [[x ]]. In our case,
[[x ]] = (x1, x2, . . . , xm). N normally is pe, where p is prime and
e ≥ 1. Otherwise, the Chinese Remainder Theorem allows us
to split into a collection independent secret sharing schemes.



Outline Outline

Secure Multi-party Computation and Sharemind

Sharemind
http://research.cyber.ee/sharemind/

http://research.cyber.ee/sharemind/


Outline Outline

Secure Multi-party Computation and Sharemind

3 parties that tolerant at most 1 passive corrupted party.
Additive share in Z232 .
Currently used for privacy preserving datamining (PPDM).



Outline Outline

Existing Sharemind Elementary Protocols

Existing Sharemind
Elementary Protocols



Outline Outline

Existing Sharemind Elementary Protocols

Operation Notation Round count
Addition [[x ]] + [[y ]] τad = 0
Multiplication [[x ]] · [[y ]] τmul = 1
Smaller than [[x ]] ≤ [[y ]] τst = O(log `)
Strictly less [[x ]] < [[y ]] τsl = O(log `)

Equality test [[x ]] ?
= [[y ]] τeq = O(log `)

Bit-decomposition Decom([[x ]]) τbd = O(log `)

Table: Round complexity of common share-computing operations



Outline Outline

High degree Conjunction and Disjunction

High degree Conjunction



Outline Outline

High degree Conjunction and Disjunction

Server’s input: [[X1]], · · · , [[Xk ]] (Xi ∈ {0,1})

Server’s output: [[Y ]] = [[X1 ∧ · · · ∧ Xk )]]

1 All minersMp∈{0,1,2} compute [[S]] =
∑k

i=1[[Xi ]].
2 All minersMp∈{0,1,2} call equality check protocol to

compute [[S]]
?
= k .

Since addition can be done locally, the round complexity is
τeq = O(log `), where ` ≥ dlog ke. (We can do better, as k is
public. Discussed in later slides.)



Outline Outline

High degree Conjunction and Disjunction

High degree Disjunction



Outline Outline

High degree Conjunction and Disjunction

Server’s input: [[X1]], · · · , [[Xk ]] (Xi ∈ {0,1})

Server’s output: [[Y ]] = [[X1 ∨ · · · ∨ Xk )]]

1 All minersMp∈{0,1,2} compute [[S]] =
∑k

i=1[[Xi ]].
2 All minersMp∈{0,1,2} call equality check protocol to

compute [[S]]
?
= 0.

Since addition can be done locally, the round complexity is
τeq = O(log `), where ` ≥ dlog ke. (We can do better, as k is
public. Discussed in later slides.)



Outline Outline

Oblivious Transfer Protocol

Oblivious Transfer



Outline Outline

Oblivious Transfer Protocol

(1,n) OT

Server’s input: Shared database [[X1]], · · · , [[Xn]]

Server’s output: ⊥

Client’s input: Shared index [[i]]

Client’s output: xi



Outline Outline

Oblivious Transfer Protocol

Query phase:

A client submits shares of i to the miner nodes.

Processing phase:

1. For j ∈ {1, . . . ,n}, miners evaluate in parallel:
[[yi ]]← [[xj ]] · (j

?
= [[i]]).

2. Miners compute the shares of the reply:
[[z]]← [[y1]] + · · ·+ [[yn]].

Reconstruction phase:

Miners send the shares of z to the client who
reconstructs and outputs z.



Outline Outline

Oblivious Transfer Protocol

(1,n) OT

Whenever the database elements xi ∈ {0,1}` and the index i
can be embedded into the ring ZN , we can use high-degree con-
junction to represent oblivious transfer as an arithmetic circuit

xi =
n∑

j=1

(i ?
= j) · xj =

n∑
j=1

dlog(n+1)e∧
k=1

(ik
?
= jk ) · xj (1)

where ik and jk respectively denote the k th bit of i and j .

ik
?
= jk ≡

{
1− ik , if jk = 0 ,

ik , if jk = 1 .



Outline Outline

Oblivious Transfer Protocol

Theorem
The round complexity of the OT is τeq + τmul + 1 where τmul and
τeq are the round complexities of multiplication and equality test
protocols. The protocol achieves security against malicious
data donors and clients provided that the miner nodes follow
the assumptions of share computing protocols.

Next Problem
How to ensure the client’s input are valid?



Outline Outline

Oblivious Transfer Protocol

Lemma
xi ∈ Zpt For uniformly chosen ri ∈ Zpt ,
Pr [x1r1 + · · ·+ x`r` = 0] ≤ 1

p provided that some xk 6= 0.

Public zero test batch

1 All minersMp∈{0,1,2} compute
[[St ]] = [[x1]]r1,t + · · ·+ [[x`]]r`,t , for t = {1,2, · · · , κ}, where
κ is security parameter. ri is uniformly chosen from Zpt .

2 All minersMp∈{0,1,2} open [[St ]]. If all St = 0, then
x1 = 0, · · · , x` = 0.



Outline Outline

Oblivious Transfer Protocol

Range Proof

There are 3 ways to ensure that the client’s index bits ik ∈ {0,1}.

Require the client send index bits that shared in Z2, then
the server do share conversion to Zpt .
Require the client send the entire index [[i]], then the server
calls Bit-decomposition protocol Decom([[i]]) to ik .
Allow the client to send shared index bits in Zpt , then the
server ZK proves ik ∈ {0,1}.



Outline Outline

Oblivious Transfer Protocol

Range Proof
Miners can securely compute
α = [[i1]](1− [[i1]])r1 + · · ·+ [[i`]](1− [[i`]])r`.

Check whether α ?
= 0.

Repeat κ times.

Note that is b ∈ {0,1} then b∗(1−b) = 0, and it reveals nothing
about b. Therefore, we can even directly open [[b]] ∗ (1− [[b]]).

Equality test batch

To check [[x1]]
?
= [[y1]], · · · , [[x`]]

?
= [[y`]] can be done as

[[St ]] = ([[x1]]− [[y1]])r1,t + · · ·+ ([[x`]]− [[y`]])r`,t

and check [[St ]]
?
= 0, for t = {1,2, · · · , κ}.



Outline Outline

Oblivious Transfer Protocol

Tweaked Version
As a first step towards lower communication complexity note that
the right hand side of Eq. (1) can be viewed as multivariate poly-
nomial with arguments i1, . . . , i`:

f (i1, . . . , il) =
n∑

j=1

∏
k=1

(1− ik − jk + 2ik jk ) · xj =
∑

K⊆{1,...,`}

αK ·
∏
k∈K

ik

where the coefficients before monomials are linear combinations

αK(x1, . . . , xn) = αK,1x1 + · · ·+ αK,nxn

with public constants αK,1, . . . , αK,n ∈ {−1,1}. For example, for
the three element database

f (i1, i2) = x1i1 + x2i2 + (x3 − x2 − x1)i1i2 .



Outline Outline

Oblivious Shuffle Protocol

Oblivious Shuffle Protocol



Outline Outline

Oblivious Shuffle Protocol

Server’s input: Shared database [[x1]], · · · , [[xn]]

Server’s output: Shuffled database [[xπ(1)]], · · · , [[xπ(n−1)]]

1 For p ∈ {0,1,2}, all miners do:
1 Mp shares its shares additively to other parties.
2 Mp−1,Mp+1 compute additives 2-out-of-2 shares of

x1, . . . , xn.
3 Mp−1 andMp+1 jointly pick a random permutation πp.

They permute the shared database locally and set
[[xi ]]← [[xπp(i)]]

4 Mp−1 andMp+1 share their shares additively for all
partiesMp∈{0,1,2}.

5 All parties compute additive sharings of xπ(1), . . . , xπ(n).



Outline Outline

Oblivious Shuffle Protocol

Theorem
For any linear secret sharing scheme, there exists a oblivious
shuffle protocol secure in the semihonest model such that
round complexity and computational complexity is O(2mn log n)
where n is the database size and m is the number of miner
nodes.

Implementation for random permutation
We propose a solution using a block cipher, say, 128-bit AES.
In our solution, the parties, Alice and Bob, pick the random keys
ka and kb, respectively, and send them to each other. Then
they compute σ(i) ← AESka⊕kb(i) (i = 0, . . . ,n − 1). Note that,
in practice, since n << 2128, σ(i) is sparse. Hence, in order
to get a real permutation, Alice and Bob can make an array of
pairs (i , σ(i)) and sort the array according to σ(i). The resulting
permutation of the first elements of the pairs will be π.



Outline Outline

Oblivious Shuffle Protocol

Figure: Benchmark for oblivious shuffle protocol



Outline Outline

Oblivious Shuffle Protocol

Thank You!
Questions?


	Outline
	Secure Multi-party Computation and Sharemind
	Existing Sharemind Elementary Protocols
	High degree Conjunction and Disjunction
	Oblivious Transfer Protocol
	Oblivious Shuffle Protocol


