Round-efficient OT and Oblivious Shuffle Protocols for Secure Multi-party Computation

Bingsheng Zhang ${ }^{1,2}$

Joint work with: Sven Laur ${ }^{2}$ Jan Willemson ${ }^{1,3}$

${ }^{1}$ Cybernetica AS, Estonia
${ }^{2}$ University of Tartu, Estonia
${ }^{3}$ STACC, Estonia

Joint Estonian-Latvian Theory Days at Rakari 30.09.2010—03.10.2010

- Secure Multi-party Computation and Sharemind
- Existing Sharemind Elementary Protocols
- High degree Conjunction and Disjunction
- Oblivious Transfer Protocol
- Oblivious Shuffle Protocol

Secure Multi-party Computation and Sharemind

Multi-party Computation

Secure Multi-party Computation and Sharemind

Figure: Ideal world

Secure Multi-party Computation and Sharemind

Figure: Ideal world

Secure Multi-party Computation and Sharemind

Figure: Real world

Secure Multi-party Computation and Sharemind

Figure: Real world

Secure Multi－party Computation and Sharemind

Linear Secret Sharing

A secret sharing scheme is specified by a randomized function Share，which takes in a secret value $x \in \mathbb{Z}_{N}$ and splits it into m pieces．

$$
x \equiv x_{1}+x_{2}+\cdots+x_{m} \bmod N
$$

The vector of shares is commonly denoted by $\llbracket x \rrbracket$ ．In our case， $\llbracket x \rrbracket=\left(x_{1}, x_{2}, \ldots, x_{m}\right) . N$ normally is p^{e} ，where p is prime and $e \geq 1$ ．Otherwise，the Chinese Remainder Theorem allows us to split into a collection independent secret sharing schemes．

Secure Multi-party Computation and Sharemind

Sharemind

http://research.cyber.ee/sharemind/

Secure Multi-party Computation and Sharemind

- 3 parties that tolerant at most 1 passive corrupted party.
- Additive share in $\mathbb{Z}_{2^{32}}$.
- Currently used for privacy preserving datamining (PPDM).

Outline

Existing Sharemind Elementary Protocols

Existing Sharemind Elementary Protocols

Existing Sharemind Elementary Protocols

Operation	Notation	Round count
Addition	$\llbracket x \rrbracket+\llbracket y \rrbracket$	$\tau_{\text {ad }}=0$
Multiplication	$\llbracket x \rrbracket \cdot \llbracket y \rrbracket$	$\tau_{\text {mul }}=1$
Smaller than	$\llbracket x \rrbracket \leq \llbracket y \rrbracket$	$\tau_{\text {st }}=\mathrm{O}(\log \ell)$
Strictly less	$\llbracket x \rrbracket<\llbracket y \rrbracket$	$\tau_{\text {sl }}=\mathrm{O}(\log \ell)$
Equality test	$\llbracket x \rrbracket ? \stackrel{?}{=} \llbracket y$	$\tau_{\text {eq }}=\mathrm{O}(\log \ell)$
Bit－decomposition	Decom $\llbracket x \rrbracket)$	$\tau_{\text {bd }}=\mathrm{O}(\log \ell)$

Table：Round complexity of common share－computing operations

Outline

High degree Conjunction and Disjunction

High degree Conjunction

Server's input: $\llbracket X_{1} \rrbracket, \cdots, \llbracket X_{k} \rrbracket\left(X_{i} \in\{0,1\}\right)$
Server's output: $\left.\llbracket Y \rrbracket=\llbracket X_{1} \wedge \cdots \wedge X_{k}\right) \rrbracket$
(1) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ compute $\llbracket \mathbb{S} \rrbracket=\sum_{i=1}^{k} \llbracket X_{i} \rrbracket$.
(2) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ call equality check protocol to compute $\llbracket S \rrbracket \stackrel{?}{=} k$.

Since addition can be done locally, the round complexity is $\tau_{\text {eq }}=O(\log \ell)$, where $\ell \geq\lceil\log k\rceil$. (We can do better, as k is public. Discussed in later slides.)

High degree Conjunction and Disjunction

High degree Disjunction

Server's input: $\llbracket X_{1} \rrbracket, \cdots, \llbracket X_{k} \rrbracket\left(X_{i} \in\{0,1\}\right)$
Server's output: $\left.\llbracket Y \rrbracket=\llbracket X_{1} \vee \cdots \vee X_{k}\right) \rrbracket$
(1) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ compute $\llbracket \mathbb{S} \rrbracket=\sum_{i=1}^{k} \llbracket X_{i} \rrbracket$.
(2) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ call equality check protocol to compute $\llbracket S \rrbracket \stackrel{?}{=} 0$.

Since addition can be done locally, the round complexity is $\tau_{\text {eq }}=O(\log \ell)$, where $\ell \geq\lceil\log k\rceil$. (We can do better, as k is public. Discussed in later slides.)

Oblivious Transfer

Outline

Oblivious Transfer Protocol

$(1, n)$ OT

Server's input: Shared database $\llbracket X_{1} \rrbracket, \cdots, \llbracket X_{n} \rrbracket$
Server's output: \perp
Client's input: Shared index $\llbracket i \rrbracket$
Client's output: x_{i}

Oblivious Transfer Protocol

Query phase:
A client submits shares of i to the miner nodes.
Processing phase:

1. For $j \in\{1, \ldots, n\}$, miners evaluate in parallel:
$\llbracket y_{i} \rrbracket \leftarrow \llbracket x_{j} \rrbracket \cdot(j \stackrel{?}{=} \llbracket i \rrbracket)$.
2. Miners compute the shares of the reply:
$\llbracket z \rrbracket \leftarrow \llbracket y_{1} \rrbracket+\cdots+\llbracket y_{n} \rrbracket$.
Reconstruction phase:
Miners send the shares of z to the client who reconstructs and outputs z.

Oblivious Transfer Protocol

$(1, n)$ OT

Whenever the database elements $x_{i} \in\{0,1\}^{\ell}$ and the index i can be embedded into the ring \mathbb{Z}_{N}, we can use high-degree conjunction to represent oblivious transfer as an arithmetic circuit

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n}(i \stackrel{?}{=} j) \cdot x_{j}=\sum_{j=1}^{n} \bigwedge_{k=1}^{\lceil\log (n+1)\rceil}\left(i_{k} \stackrel{?}{=} j_{k}\right) \cdot x_{j} \tag{1}
\end{equation*}
$$

where i_{k} and j_{k} respectively denote the k th bit of i and j.

$$
i_{k} \stackrel{?}{=} j_{k} \equiv \begin{cases}1-i_{k}, & \text { if } j_{k}=0, \\ i_{k}, & \text { if } j_{k}=1 .\end{cases}
$$

Theorem

The round complexity of the OT is $\tau_{\mathrm{eq}}+\tau_{\mathrm{mul}}+1$ where τ_{mul} and $\tau_{\text {eq }}$ are the round complexities of multiplication and equality test protocols. The protocol achieves security against malicious data donors and clients provided that the miner nodes follow the assumptions of share computing protocols.

Next Problem

How to ensure the client's input are valid?

Oblivious Transfer Protocol

Lemma

$x_{i} \in \mathbb{Z}_{p^{t}}$ For uniformly chosen $r_{i} \in \mathbb{Z}_{p^{t}}$,
$\operatorname{Pr}\left[x_{1} r_{1}+\cdots+x_{\ell} r_{\ell}=0\right] \leq \frac{1}{p}$ provided that some $x_{k} \neq 0$.
Public zero test batch
(1) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ compute $\llbracket S_{t} \rrbracket=\llbracket x_{1} \rrbracket r_{1, t}+\cdots+\llbracket x_{\ell} \rrbracket r_{\ell, t}$, for $t=\{1,2, \cdots, \kappa\}$, where κ is security parameter. r_{i} is uniformly chosen from $\mathbb{Z}_{p^{t}}$.
(2) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ open $\llbracket S_{t} \rrbracket$. If all $S_{t}=0$, then $x_{1}=0, \cdots, x_{\ell}=0$.

Range Proof

There are 3 ways to ensure that the client's index bits $i_{k} \in\{0,1\}$.

- Require the client send index bits that shared in \mathbb{Z}_{2}, then the server do share conversion to $\mathbb{Z}_{p^{t}}$.
- Require the client send the entire index $\llbracket i \rrbracket$, then the server calls Bit-decomposition protocol Decom $(\llbracket i \rrbracket)$ to i_{k}.
- Allow the client to send shared index bits in $\mathbb{Z}_{p^{t}}$, then the server ZK proves $i_{k} \in\{0,1\}$.

Oblivious Transfer Protocol

Range Proof

－Miners can securely compute

$$
\alpha=\llbracket i_{1} \rrbracket\left(1-\llbracket i_{1} \rrbracket\right) r_{1}+\cdots+\llbracket i_{\ell} \rrbracket\left(1-\llbracket i_{\ell} \rrbracket\right) r_{\ell} .
$$

－Check whether $\alpha \stackrel{?}{=} 0$ ．
－Repeat κ times．
Note that is $b \in\{0,1\}$ then $b *(1-b)=0$ ，and it reveals nothing about b ．Therefore，we can even directly open $\llbracket b \rrbracket *(1-\llbracket b \rrbracket)$ ．

Equality test batch
To check $\llbracket x_{1} \rrbracket \stackrel{?}{=} \llbracket y_{1} \rrbracket, \cdots, \llbracket x_{\ell} \rrbracket \stackrel{?}{=} \llbracket y_{\ell} \rrbracket$ can be done as

$$
\llbracket S_{t} \rrbracket=\left(\llbracket x_{1} \rrbracket-\llbracket y_{1} \rrbracket\right) r_{1, t}+\cdots+\left(\llbracket x_{\ell} \rrbracket-\llbracket y_{\ell} \rrbracket\right) r_{\ell, t}
$$

and check $\llbracket S_{t} \rrbracket \stackrel{?}{=} 0$ ，for $t=\{1,2, \cdots, \kappa\}$ ．

Oblivious Transfer Protocol

Tweaked Version

As a first step towards lower communication complexity note that the right hand side of Eq. (1) can be viewed as multivariate polynomial with arguments i_{1}, \ldots, i_{ℓ} :

$$
f\left(i_{1}, \ldots, i_{l}\right)=\sum_{j=1}^{n} \prod_{k=1}\left(1-i_{k}-j_{k}+2 i_{k} j_{k}\right) \cdot x_{j}=\sum_{\mathcal{K} \subseteq\{1, \ldots, \ell\}} \alpha_{\mathcal{K}} \cdot \prod_{k \in \mathcal{K}} i_{k}
$$

where the coefficients before monomials are linear combinations

$$
\alpha_{\mathcal{K}}\left(x_{1}, \ldots, x_{n}\right)=\alpha_{\mathcal{K}, 1} x_{1}+\cdots+\alpha_{\mathcal{K}, n} x_{n}
$$

with public constants $\alpha_{\mathcal{K}, 1}, \ldots, \alpha_{\mathcal{K}, n} \in\{-1,1\}$. For example, for the three element database

$$
f\left(i_{1}, i_{2}\right)=x_{1} i_{1}+x_{2} i_{2}+\left(x_{3}-x_{2}-x_{1}\right) i_{1} i_{2} .
$$

Oblivious Shuffle Protocol

Oblivious Shuffle Protocol

Server's input: Shared database $\llbracket x_{1} \rrbracket, \cdots, \llbracket x_{n} \rrbracket$
Server's output: Shuffled database $\llbracket x_{\pi(1)} \rrbracket, \cdots, \llbracket x_{\pi(n-1)} \rrbracket$
(1) For $p \in\{0,1,2\}$, all miners do:
(1) \mathcal{M}_{p} shares its shares additively to other parties.
(2) $\mathcal{M}_{p-1}, \mathcal{M}_{p+1}$ compute additives 2 -out-of-2 shares of x_{1}, \ldots, x_{n}.
(3) \mathcal{M}_{p-1} and \mathcal{M}_{p+1} jointly pick a random permutation π_{p}. They permute the shared database locally and set $\llbracket x_{i} \rrbracket \leftarrow \llbracket x_{\pi_{\rho}(i)} \rrbracket$
(4) \mathcal{M}_{p-1} and \mathcal{M}_{p+1} share their shares additively for all parties $\mathcal{M}_{p \in\{0,1,2\}}$.
(6) All parties compute additive sharings of $x_{\pi(1)}, \ldots, x_{\pi(n)}$.

Oblivious Shuffile Protocol

Theorem

For any linear secret sharing scheme, there exists a oblivious shuffle protocol secure in the semihonest model such that round complexity and computational complexity is $\mathrm{O}\left(2^{m} n \log n\right)$ where n is the database size and m is the number of miner nodes.

Implementation for random permutation

We propose a solution using a block cipher, say, 128-bit AES. In our solution, the parties, Alice and Bob, pick the random keys k_{a} and k_{b}, respectively, and send them to each other. Then they compute $\sigma(i) \leftarrow A E S_{k_{a} \oplus k_{b}}(i)(i=0, \ldots, n-1)$. Note that, in practice, since $n \ll 2^{128}, \sigma(i)$ is sparse. Hence, in order to get a real permutation, Alice and Bob can make an array of pairs $(i, \sigma(i))$ and sort the array according to $\sigma(i)$. The resulting permutation of the first elements of the pairs will be π.

Oblivious Shuffle Protocol

Figure: Benchmark for oblivious shuffle protocol

Outline

Thank You! Questions?

