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Figure: Ideal world
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Figure: Real world
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Linear Secret Sharing
A secret sharing scheme is specified by a randomized function
Share, which takes in a secret value x ∈ ZN and splits it into m
pieces.

x ≡ x1 + x2 + · · ·+ xm mod N .

The vector of shares is commonly denoted by [[x ]]. In our case,
[[x ]] = (x1, x2, . . . , xm). N normally is pe, where p is prime and
e ≥ 1. Otherwise, the Chinese Remainder Theorem allows us
to split into a collection independent secret sharing schemes.
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Sharemind
http://research.cyber.ee/sharemind/

http://research.cyber.ee/sharemind/
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3 parties that tolerant at most 1 passive corrupted party.
Additive share in Z232 .
Currently used for privacy preserving datamining (PPDM).
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Operation Notation Round count
Addition [[x ]] + [[y ]] τad = 0
Multiplication [[x ]] · [[y ]] τmul = 1
Smaller than [[x ]] ≤ [[y ]] τst = O(log `)
Strictly less [[x ]] < [[y ]] τsl = O(log `)

Equality test [[x ]] ?
= [[y ]] τeq = O(log `)

Bit-decomposition Decom([[x ]]) τbd = O(log `)

Table: Round complexity of common share-computing operations
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Server’s input: [[X1]], · · · , [[Xk ]] (Xi ∈ {0,1})

Server’s output: [[Y ]] = [[X1 ∧ · · · ∧ Xk )]]

1 All minersMp∈{0,1,2} compute [[S]] =
∑k

i=1[[Xi ]].
2 All minersMp∈{0,1,2} call equality check protocol to

compute [[S]]
?
= k .

Since addition can be done locally, the round complexity is
τeq = O(log `), where ` ≥ dlog ke. (We can do better, as k is
public. Discussed in later slides.)
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High degree Conjunction and Disjunction

Server’s input: [[X1]], · · · , [[Xk ]] (Xi ∈ {0,1})

Server’s output: [[Y ]] = [[X1 ∨ · · · ∨ Xk )]]

1 All minersMp∈{0,1,2} compute [[S]] =
∑k

i=1[[Xi ]].
2 All minersMp∈{0,1,2} call equality check protocol to

compute [[S]]
?
= 0.

Since addition can be done locally, the round complexity is
τeq = O(log `), where ` ≥ dlog ke. (We can do better, as k is
public. Discussed in later slides.)
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Oblivious Transfer Protocol

(1,n) OT

Server’s input: Shared database [[X1]], · · · , [[Xn]]

Server’s output: ⊥

Client’s input: Shared index [[i]]

Client’s output: xi
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Query phase:

A client submits shares of i to the miner nodes.

Processing phase:

1. For j ∈ {1, . . . ,n}, miners evaluate in parallel:
[[yi ]]← [[xj ]] · (j

?
= [[i]]).

2. Miners compute the shares of the reply:
[[z]]← [[y1]] + · · ·+ [[yn]].

Reconstruction phase:

Miners send the shares of z to the client who
reconstructs and outputs z.
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(1,n) OT

Whenever the database elements xi ∈ {0,1}` and the index i
can be embedded into the ring ZN , we can use high-degree con-
junction to represent oblivious transfer as an arithmetic circuit

xi =
n∑

j=1

(i ?
= j) · xj =

n∑
j=1

dlog(n+1)e∧
k=1

(ik
?
= jk ) · xj (1)

where ik and jk respectively denote the k th bit of i and j .

ik
?
= jk ≡

{
1− ik , if jk = 0 ,

ik , if jk = 1 .
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Theorem
The round complexity of the OT is τeq + τmul + 1 where τmul and
τeq are the round complexities of multiplication and equality test
protocols. The protocol achieves security against malicious
data donors and clients provided that the miner nodes follow
the assumptions of share computing protocols.

Next Problem
How to ensure the client’s input are valid?
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Lemma
xi ∈ Zpt For uniformly chosen ri ∈ Zpt ,
Pr [x1r1 + · · ·+ x`r` = 0] ≤ 1

p provided that some xk 6= 0.

Public zero test batch

1 All minersMp∈{0,1,2} compute
[[St ]] = [[x1]]r1,t + · · ·+ [[x`]]r`,t , for t = {1,2, · · · , κ}, where
κ is security parameter. ri is uniformly chosen from Zpt .

2 All minersMp∈{0,1,2} open [[St ]]. If all St = 0, then
x1 = 0, · · · , x` = 0.
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Range Proof

There are 3 ways to ensure that the client’s index bits ik ∈ {0,1}.

Require the client send index bits that shared in Z2, then
the server do share conversion to Zpt .
Require the client send the entire index [[i]], then the server
calls Bit-decomposition protocol Decom([[i]]) to ik .
Allow the client to send shared index bits in Zpt , then the
server ZK proves ik ∈ {0,1}.
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Range Proof
Miners can securely compute
α = [[i1]](1− [[i1]])r1 + · · ·+ [[i`]](1− [[i`]])r`.

Check whether α ?
= 0.

Repeat κ times.

Note that is b ∈ {0,1} then b∗(1−b) = 0, and it reveals nothing
about b. Therefore, we can even directly open [[b]] ∗ (1− [[b]]).

Equality test batch

To check [[x1]]
?
= [[y1]], · · · , [[x`]]

?
= [[y`]] can be done as

[[St ]] = ([[x1]]− [[y1]])r1,t + · · ·+ ([[x`]]− [[y`]])r`,t

and check [[St ]]
?
= 0, for t = {1,2, · · · , κ}.
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Tweaked Version
As a first step towards lower communication complexity note that
the right hand side of Eq. (1) can be viewed as multivariate poly-
nomial with arguments i1, . . . , i`:

f (i1, . . . , il) =
n∑

j=1

∏
k=1

(1− ik − jk + 2ik jk ) · xj =
∑

K⊆{1,...,`}

αK ·
∏
k∈K

ik

where the coefficients before monomials are linear combinations

αK(x1, . . . , xn) = αK,1x1 + · · ·+ αK,nxn

with public constants αK,1, . . . , αK,n ∈ {−1,1}. For example, for
the three element database

f (i1, i2) = x1i1 + x2i2 + (x3 − x2 − x1)i1i2 .
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Oblivious Shuffle Protocol

Server’s input: Shared database [[x1]], · · · , [[xn]]

Server’s output: Shuffled database [[xπ(1)]], · · · , [[xπ(n−1)]]

1 For p ∈ {0,1,2}, all miners do:
1 Mp shares its shares additively to other parties.
2 Mp−1,Mp+1 compute additives 2-out-of-2 shares of

x1, . . . , xn.
3 Mp−1 andMp+1 jointly pick a random permutation πp.

They permute the shared database locally and set
[[xi ]]← [[xπp(i)]]

4 Mp−1 andMp+1 share their shares additively for all
partiesMp∈{0,1,2}.

5 All parties compute additive sharings of xπ(1), . . . , xπ(n).
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Theorem
For any linear secret sharing scheme, there exists a oblivious
shuffle protocol secure in the semihonest model such that
round complexity and computational complexity is O(2mn log n)
where n is the database size and m is the number of miner
nodes.

Implementation for random permutation
We propose a solution using a block cipher, say, 128-bit AES.
In our solution, the parties, Alice and Bob, pick the random keys
ka and kb, respectively, and send them to each other. Then
they compute σ(i) ← AESka⊕kb(i) (i = 0, . . . ,n − 1). Note that,
in practice, since n << 2128, σ(i) is sparse. Hence, in order
to get a real permutation, Alice and Bob can make an array of
pairs (i , σ(i)) and sort the array according to σ(i). The resulting
permutation of the first elements of the pairs will be π.
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Figure: Benchmark for oblivious shuffle protocol
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Thank You!
Questions?
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