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Abstract

This is a survey on the Clifford group on n qubits. I will discuss its properties and
applications in quantum computing.

1 Pauli matrices

The Pauli matrices on a single qubit are I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. On

n qubits the set of Pauli matrices is Pn = {σ1 ⊗ · · · ⊗ σn |σi ∈ {I,X, Y, Z}}, |Pn| = 4n. The
group Pn/U(1) is isomorphic to a vector space over F2 with dimension 2n via identification:

Z Y
| |
I X

⇐⇒
(0, 1) (1, 1)
| |

(0, 0) (1, 0)
(1)

where the multiplication of matrices corresponds to the addition of vectors.

2 Clifford group

2.1 Definition

To define the Clifford group, we do not have to turn the Pauli matrices into a group. We
need just non-identity Pauli matrices P ∗n = Pn \ {I⊗n} (their eigenvalues are ±1 with equal
multiplicity). We can ignore the global phase, since U and eiϕU act in the same way:

Definition. The Clifford group Cn on n qubits is

Cn =
{
U ∈ U(2n) |σ ∈ ±P ∗n ⇒ UσU † ∈ ±P ∗n

}
/U(1). (2)

2.2 Single qubit case

We have ±P ∗1 = {±X,±Y,±Z}. Conjugation must preserve the structure of P ∗1 , thus the
action of U ∈ C1 is completely determined by the images of X and Z. Moreover, UXU † and
UZU † must anti-commute. Thus X can go to any element of ±P ∗1 , but Z can only go to
±P ∗1 \

{
±UXU †

}
. Hence |C1| = 6 · 4 = 24.
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We can think of C1 as rotations of the Bloch sphere that permute ±x, ±y, and ±z
directions. There are 6 possibilities where the x axis can go. Once we have fixed the x axis,
we can still rotate around it and thus there are 4 possibilities where the z axis can go. C1
corresponds to the group of rotational symmetries of the cube.

2.3 Number of elements

To fix an element U ∈ Cn, it is enough to specify how it transforms Xi and Zi for all
i ∈ {1, . . . , n}, since they form a basis of the vector space (1). All X’s and Z’s commute,
except Xi and Zi that anti-commute (elements that anti-commute are joined by edges):

X1 X2 . . . Xn−1 Xn

| | | |
Z1 Z2 . . . Zn−1 Zn

(3)

Conjugation by U certainly must preserve this structure. Moreover, it can be shown that
there are no other restrictions, i.e., each mapping that sends (3) to distinct elements of ±P ∗n
and preserves their structure, determines a unique U ∈ Cn. Let us find all such mappings.

What are the possible images of the last pair (Xn, Zn)? Xn can go to any element of
±P ∗n , but Zn can only go to elements of ±P ∗n that anti-commute with UXnU

†. Thus there
are |±P ∗n | = 2(4n− 1) choices for Xn. Observe that each matrix in ±P ∗n anti-commutes with
exactly half1 of Pauli matrices Pn (this half is clearly in P ∗n). Thus, there are 2 |Pn| /2 = 4n

choices for Zn. The elements of Cn that leave both Xn and Zn fixed form a group isomorphic
to Cn−1 with the number of cosets equal to 2(4n − 1)4n. Hence |Cn| = 2(4n − 1)4n |Cn−1|.
Therefore,

|Cn| =
n∏

j=1

2(4j − 1)4j = 2n2+2n

n∏
j=1

(4j − 1). (4)

The first few values of |Cn| are given in Table 1. Equation (4) does not agree with [1], since in
[1] it is assumed that H,P ∈ Cn, i.e., Cn is implicitly defined as the group generated by H, P ,

and CNOT (see the next section) without ignoring the global phase. Since (PH)3 = e
2πi
8 I,

this way each Clifford group operation is obtained 8 times with different global phases.

n 1 2 3 4 5
|Cn| 24 11520 92897280 12128668876800 25410822678459187200

Table 1: The order the Clifford group Cn on n qubits (1
8

“Sloane’s A003956”).

2.4 Generators

Theorem. Cn = 〈Hi, Pi, CNOTij〉 /U(1), where

H = 1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
, CNOT =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
. (5)

1Let σ ∈ ±P ∗
n . Let k be a position where σ does not contain identity I. Then all Pauli matrices that

anti-commute with σ can be constructed as follows: put any of I, X, Y , Z at each position other than k;
then fill the kth position in any of two possible ways so that the obtained matrix anti-commutes with σ.
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See [2, p. 13] or [3, Section 5.8] for the proof. Note that for n = 1 we need only H and
P . It can be easily verified that they generate the rotational symmetry group of a cube.
Then we have to use induction on n. The main idea is to show that any Clifford operation
on n+ 1 qubits can be implemented using only those on at most n qubits.

3 Applications

3.1 Gottesman - Knill theorem

Quantum circuits that involve only Clifford group operations are not universal for quantum
computing. In fact, one can efficiently simulate such circuits on a classical computer.

Theorem. Any quantum computation involving only:

• state preparation in the computational basis,

• Clifford group operations,

• measurements in the standard basis,

• any classical control conditioned on the measurement outcomes

can be perfectly simulated in polynomial time on a probabilistic classical computer.

The main idea is to use the stabilizer formalism to see how the stabilizer of the quantum
state evolves instead of following the evolution of the state directly [4]. Aaronson and
Gottesman have written a program in C called CHP that can simulate such circuits [5]. It
can easily handle up to 3000 qubits!

3.2 Universal set of quantum gates

Assume we can implement all operations in Cn (e.g., it means that we can permute qubits
in arbitrary way). If we could implement any other fixed gate, that is not (a multiple of a
gate) in Cn, we could apply it on any ordered tuple of qubits. It turns out that this would
allow us to perform any quantum computation (Theorem 6.5 in [6]):

Theorem. Cn together with any other gate not in Cn form a universal set of quantum gates.

Unfortunately, there is no elementary proof available for this theorem. However, for
n = 1 it is not that hard to prove it. Recall the geometrical meaning of C1 discussed in
Sect. 2.2 – it is the rotational symmetry group of a cube. A classical result says that all
finite groups of rotations in R3 that do not have an invariant 2-dimensional subspace are
rotational symmetry groups of Platonic solids. Since there is no other Platonic solid, whose
rotational symmetry group properly contains that of a cube, the group obtained by adding
any gate to C1 must be infinite. Moreover, it can be shown that it is dense in O(3) [7].
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