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The right attitude. . .

I think I can safely say that nobody understands
quantum mechanics. So do not take the lecture too
seriously, feeling that you really have to understand in
terms of some model what I am going to describe, but
just relax and enjoy it. I am going to tell you what
nature behaves like. If you will simply admit that
maybe she does behave like this, you will find her a
delightful, entrancing thing. Do not keep saying to
yourself, if you can possibly avoid it, ’But how can it be
like that?’ because you will get ’down the drain’, into a
blind alley from which nobody has yet escaped. Nobody
knows how it can be like that.

Richard P. Feynman, The Messenger Lectures, 1964, Cornell
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Classical-quantum interplay

Examples

▸ Classical / quantum walks
▸ Classical / quantum error correcting codes
▸ Classical / quantum rejection sampling
▸ Conditional distributions / superoperators [Lei06, LS11]
▸ . . .

Our insights

▸ New bound entangled states with private key
▸ Implications for classical key distillation protocols
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Motivation

The Horodecki Magnum Opus [HHHH09]
The classical key agreement scenario is an elder sibling of an
entanglement-distillation-like scenario. [. . . ] The analogy has been
recently explored and proved to be fruitful for establishing new
phenomena in classical cryptography, and new links between privacy
and entanglement theory. The connections are quite beautiful,
however, they still remain not fully understood.



Previous work

Classical information theory
Secret key from common randomness by public
discussion [Mau93, AC93]

Classical analog of entanglement [CP02]
Quantum Classical

Quantum bits Secret classical bits
Classical bits Public classical bits

1
√

2
∣00⟩ + 1

√

2
∣11⟩ p00 = p11 = 1

2

Negative information

▸ Conditional quantum entropy can be negative [HOW05]
▸ This has a classical analogue [OSW05]



Distributions vs. quantum states

State space

Classical Quantum

PA ∈ Rn
+ ∣ψ⟩A ∈ Cn

∑a p(a) = 1 ∑a∣⟨a∣ψ⟩A∣
2 = 1

Correspondence

p(a) = ∣⟨a∣ψ⟩A∣
2 (PA = ∣ψ⟩2

A)

∣ψ⟩A = ∑
a

√
p(a)∣a⟩A (∣ψ⟩A =

√
PA)

“Classical” quantum states
If ∣ψ⟩A ≥ 0 then we identify ∣ψ⟩A and PA (they are different
descriptions of the same object)



The basic quantum-classical correspondence

Quantum states

Probability
distributions∣ψ⟩A

∣ψ⟩A ≥ 0 PAIdentify



Manifesto

1. In quantum mechanics, we never talk or think of a pure or
mixed state on a given quantum system. Instead, we only
use the notion of a pure state on the given system and a
purifying system (often referred to as environment or
eavesdropper). This is w.l.o.g. and is commonly referred to
as the “Church of the Larger Hilbert Space”.

2. Similarly, in classical theory, we never talk or think of a
probability distribution on a given state space. Instead, we
always explicitly include an extra eavesdropper system
and describe the joint distribution on both systems.

Talking of probability distributions without referring to the
extra eavesdropper system makes no sense!
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∣ψ⟩A

States on a single system

(and environment!)

∣ψ⟩A ↦ ∣ψ⟩A∣0⟩E
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Classical Schmidt decomposition

▸ ∣ψ⟩AE ∶=
√

PAE is a purification of

ρA = TrE ∣ψ⟩⟨ψ∣AE

= ∑
i

λi∣αi⟩⟨αi∣

▸ Schmidt decomposition:

∣ψ⟩AE = ∑
i

√
λi∣αi⟩A∣εi⟩E

⟨αi∣αj⟩ = δij ⟨εi∣εj⟩ = δij

▸ This decomposition is classical if

∣αi⟩ ≥ 0 and ∣εi⟩ ≥ 0
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Mixed distributions

▸ PAE is a mixed distribution on A

▸ PAE is “valid” if
√

PAE = ∑
i

√
λi∣αi⟩A∣εi⟩E

∣αi⟩ ≥ 0 have disjoint supports
∣εi⟩ ≥ 0 have disjoint supports

▸ PAE is pure iff the sum contains one term
▸ “Valid” PAE and ∣ψ⟩AE describe the same object
▸ It needs a new name. . .
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quant[um]
+

[class]ical
=

quantical



Correspondences

Quantum states

Probability
distributions∣ψ⟩AE

∣ψ⟩AE ≥ 0 PAEIdentify

Quantical
states

Quantical
distributionsIdentify
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When is PAE quantical?

(i)
√

PAE has a classical Schmidt decomposition
(ii) PAE is block-diagonal:

PAE =
⎛
⎜⎜⎜
⎝

Λ1 0 ⋯ 0
0 Λ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Λm

⎞
⎟⎟⎟
⎠

where Λi = ui ⋅ vT
i for some column vectors ui, vi > 0
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Entropy



Quantical entropy

Computing entropy from purification

▸ Let λi ∶= the sum of entries of Λi

PAE =
⎛
⎜⎜⎜
⎝

Λ1 0 ⋯ 0
0 Λ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Λm

⎞
⎟⎟⎟
⎠

▸ The quantical entropy of PAE is

H(λi ∶ i = 1, . . . , m) = S(ρA)
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Multipartite states



cl[assical] en[t]anglement
=

enclanglement



Unambiguous tripartite distributions

Olive property
PABE is unambiguous if any single party’s state can be
unambiguously determined by the rest of the parties

∀b, e ∶ ∣{a ∶ p(a, b, e) ≠ 0}∣ ≤ 1
∀a, b ∶ ∣{e ∶ p(a, b, e) ≠ 0}∣ ≤ 1
∀a, e ∶ ∣{b ∶ p(a, b, e) ≠ 0}∣ ≤ 1



Genuine tripartite enclanglement

GHZ

000
111

W

100
010
001

Odd

100
010
001
111

Three qubits can be entangled only in two ways [DVC00]
because ∣GHZ⟩ and ∣Odd⟩ are equivalent via H⊗3



Bound entanglement and
superactivation



Bound entanglement with key

Bound entanglement

▸ Task: Distill EPR pairs from a mixed state by LOCC
▸ Bound entangled states require entanglement to make, but

no EPR pairs can be distilled from them by LOCC
▸ Example: PPT states

Private key

▸ Task: Distill private random bits by LOCC
▸ Possible strategy: distill EPR pairs and measure them
▸ Sometimes key can be extracted even when no EPR pairs

can be distilled [HHHO05, HPHH08]
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Classical analogue

Bound enclanglement

▸ Task: Distill classical key by two-way public discussion
(this includes error correction and privacy amplification)

▸ Such protocols are quantical
▸ Cannot obtain key from quantical PPT distributions
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Recipe

0 1

0

1

B

A
(a∣00⟩AB + b∣11⟩AB)∣x⟩E

+(c∣01⟩AB + d∣10⟩AB)∣y⟩E

Unambiguous

▸ Union of disjoint cliques
▸ No repeated rows or columns within a clique

PT-invariant
▸ Union of crosses
▸ Each cross has zero determinant



Example in 3× 3

0 1 2

0

1

2

B

A

K(PABE) ≥ 0.0057852

PAB =
⎛
⎜
⎝

0.167184 0.171529 0.001243
0.089041 0.091355 0.017492
0.441714 0.017157 0.003285

⎞
⎟
⎠

QX∣A = (1 0 0.670965
0 1 0.329035

)



Example in 4× 4

0 1 2 3

0

1

2

3

B

A
o

o

K(PABE) ≥ 0.0293914

K(PABE) ≥ 0.0213399
in [HPHH08]



Example in 4× 5

0 1 2 3 4

0

1

2

3

B

A

K(PABE) ≥ 0.0480494



Superactivation

Superactivation [SY08]

▸ Let N have bound entangled Choi matrix with private key
▸ Let E be the 50% erasure channel
▸ Q(N) = Q(E) = 0
▸ Q(N ⊗E) ≥ 1

2 P(N)
▸ This holds also for the quantical capacities!



Summary

1. Classical analogue of quantum mechanics

2. It is essential to always include environment
3. Classical analogue of bound entanglement
4. Better examples of bound entanglement with key
5. Noisy processing is essential for classical key agreement

Richard Feynman: I think I can safely say that nobody understands
quantum mechanics

This work: To fully understand something quantum, one has to at
least understand its quantical equivalent
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Open questions

1. Other ways of bringing quantum and classical worlds
closer together or further apart

2. How does quantical mechanics fit into existing
axiomatizations of quantum theory?

3. Can Bell inequalities be violated in quantical theory?
(Probably not.)

4. Is there quantical NPT bound enclanglement?
5. Is the optimal protocol for distilling entanglement or key

from a quantical state also quantical?
6. Does quantical theory add anything to the ontic [PBR12]

vs. epistemic [Spe07] debate?



Open questions

1. Other ways of bringing quantum and classical worlds
closer together or further apart

2. How does quantical mechanics fit into existing
axiomatizations of quantum theory?

3. Can Bell inequalities be violated in quantical theory?
(Probably not.)

4. Is there quantical NPT bound enclanglement?
5. Is the optimal protocol for distilling entanglement or key

from a quantical state also quantical?
6. Does quantical theory add anything to the ontic [PBR12]

vs. epistemic [Spe07] debate?



Open questions

1. Other ways of bringing quantum and classical worlds
closer together or further apart

2. How does quantical mechanics fit into existing
axiomatizations of quantum theory?

3. Can Bell inequalities be violated in quantical theory?
(Probably not.)

4. Is there quantical NPT bound enclanglement?
5. Is the optimal protocol for distilling entanglement or key

from a quantical state also quantical?
6. Does quantical theory add anything to the ontic [PBR12]

vs. epistemic [Spe07] debate?



Open questions

1. Other ways of bringing quantum and classical worlds
closer together or further apart

2. How does quantical mechanics fit into existing
axiomatizations of quantum theory?

3. Can Bell inequalities be violated in quantical theory?
(Probably not.)

4. Is there quantical NPT bound enclanglement?

5. Is the optimal protocol for distilling entanglement or key
from a quantical state also quantical?

6. Does quantical theory add anything to the ontic [PBR12]
vs. epistemic [Spe07] debate?



Open questions

1. Other ways of bringing quantum and classical worlds
closer together or further apart

2. How does quantical mechanics fit into existing
axiomatizations of quantum theory?

3. Can Bell inequalities be violated in quantical theory?
(Probably not.)

4. Is there quantical NPT bound enclanglement?
5. Is the optimal protocol for distilling entanglement or key

from a quantical state also quantical?

6. Does quantical theory add anything to the ontic [PBR12]
vs. epistemic [Spe07] debate?



Open questions

1. Other ways of bringing quantum and classical worlds
closer together or further apart

2. How does quantical mechanics fit into existing
axiomatizations of quantum theory?

3. Can Bell inequalities be violated in quantical theory?
(Probably not.)

4. Is there quantical NPT bound enclanglement?
5. Is the optimal protocol for distilling entanglement or key

from a quantical state also quantical?
6. Does quantical theory add anything to the ontic [PBR12]
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Thank you!
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Capacities

Quantum capacity

Q(N) ≥ max
∣ψ⟩AA′

1
2
[I(A; B) − I(A; E)]∣φ⟩ABE

where NA′→BE and ∣φ⟩ABE = UN ∣ψ⟩AA′

Private capacity

P(N) ≥ max
ρXA′

[I(X; B) − I(X; E)]σXBE

where ρXA′ = ∑x px∣x⟩⟨x∣X ⊗ ρA′
x and σXBE = UN ρXA′U†

N


