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Basics

Definition
A subgroup N of a group G is called normal (write N EG) if
gHg−1 = H for every g ∈ G.

Examples (boring)

I {1G}EG

I GEG

Definition
A nontrivial group G is called simple if its only normal subgroups
are {1G} and G itself.
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Decomposition

Definition
A normal series for a group G is a sequence

{1G} = G0 CG1 C · · ·CGn = G.

Factor groups Gi+1/Gi are called the factors of the series.

Definition
A composition series of a group G is a maximal normal series
(meaning that we cannot adjoin extra terms to it).
Note: All factors in a composition series are simple.

Theorem (Jordan-Hölder)

Every two composition series of a group are equivalent, i.e., have
the same length and the same (unordered) family of simple factors.
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The classification theorem
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The classification theorem

Theorem (Classification of finite simple groups)

The following is a complete list of finite simple groups:

1. cyclic groups of prime order

2. alternating groups of degree at least 5

3. simple groups of Lie type

4. sporadic simple groups
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The classification theorem

Theorem (Classification of finite simple groups)

The following is a complete list of finite simple groups:

1. cyclic groups of prime order

2. alternating groups of degree at least 5

3. simple groups of Lie type

4. sporadic simple groups

Some statistics

I Proof spreads across some 500 articles (mostly 1955–1983).

I More than 100 mathematicians among the authors.

I It is of the order of 10,000 pages long.

The proof is being reworked and the 2nd generation proof is
expected to span only a dozen of volumes.

6



Introduction The classification theorem Finite simple groups Classical groups Conclusion

The classification theorem

Theorem (Classification of finite simple groups)

The following is a complete list of finite simple groups:

1. cyclic groups of prime order

2. alternating groups of degree at least 5

3. simple groups of Lie type

4. sporadic simple groups

Some statistics

I Proof spreads across some 500 articles (mostly 1955–1983).

I More than 100 mathematicians among the authors.

I It is of the order of 10,000 pages long.

The proof is being reworked and the 2nd generation proof is
expected to span only a dozen of volumes.

6



Introduction The classification theorem Finite simple groups Classical groups Conclusion

The classification theorem

Theorem (Classification of finite simple groups)

The following is a complete list of finite simple groups:

1. cyclic groups of prime order

2. alternating groups of degree at least 5

3. simple groups of Lie type

4. sporadic simple groups

Headlines

I Cartwright, M. “Ten Thousand Pages to Prove Simplicity.”
New Scientist 109, 26-30, 1985.

I Cipra, B. “Are Group Theorists Simpleminded?” What’s
Happening in the Mathematical Sciences, 1995-1996, Vol. 3.
Providence, RI: Amer. Math. Soc., pp. 82-99, 1996.
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Proof

Strategy

I Let K be the (conjectured) complete list of finite simple
groups.

I Proceed by induction on the order of the simple group to be
classified and consider a minimal counterexample, i.e., let G
be a finite simple group of minimal order such that G /∈ K.

I Note that every proper subgroup H of G is a K-group, i.e.,
has the property that B EA ≤ H ⇒ A/B ∈ K.

Starting point

I Odd Order Theorem (Feit-Thompson) Groups of odd order
are solvable (i.e., all factors in composition series are cyclic).

I Equivalently, every finite non-abelian simple group is of even
order.
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Finite simple groups
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Cyclic and alternating groups

Cyclic groups

Cn = Z/nZ |Cn| = n

Cp is simple whenever p is a prime (by Lagrange’s theorem).
Cp are the only abelian finite simple groups.

Alternating groups

An = {σ ∈ Sn | sgn(σ) = 1} |An| =
n!

2

For n ≥ 5 An is simple (Galois, Jordan) and non-abelian.
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Groups of Lie type

Chevalley and twisted Chevalley groups

There are 16 infinite families that can be grouped as follows:

I classical Lie groups (6):
I linear groups (1)
I symplectic groups (1)
I unitary groups (1)
I orthogonal groups (3)

I exceptional and twisted groups of Lie type (10)
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Sporadic groups

Sporadic groups

There are 26 sporadic groups that can be grouped as follows:

I Mathieu groups (5)

I groups related to the Leech lattice (7)

I groups related to the Monster group (8)

I other groups (6)
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Classical groups

12



Introduction The classification theorem Finite simple groups Classical groups Conclusion

Notation

Dictionary

Prefixes

G general
S special
P projective
Z center

Sets of matrices

L linear
Sp symplectic
U unitary
O orthogonal

Definitions and examples

Ln(q) := Mn×n(Fq)

GLn(q) := {M ∈ Ln(q) | detM 6= 0}
SLn(q) := {M ∈ GLn(q) | detM = 1}

Z
(
GLn(q)

)
:=
{
αIn | α ∈ F×

q

} ∼= F×
q

PGLn(q) := GLn(q)/Z
(
GLn(q)

)
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Constructing simple matrix groups

“Recipe”

Z
(
SLn(q)

)
C SLn(q) C GLn(q) ⊂ Ln(q)

PSLn(q) = SLn(q)/Z
(
SLn(q)

)

Description

I Take a set of matrices, e.g., Ln(q).

I Note that GLn(q) ⊂ Ln(q) is a group.

I GLn(q) is not simple, since SLn(q) is the kernel of
det : GLn(q)→ F×

q , so SLn(q) C GLn(q).

I SLn(q) is still not simple, since Z
(
SLn(q)

)
C SLn(q).

I Consider PSLn(q) = SLn(q)/Z
(
SLn(q)

)
.
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Linear groups PSLn(q)

Definition
The projective special linear group is

PSLn(q) := SLn(q)/Z
(
SLn(q)

)

Theorem (Jordan–Dickson)

PSLn(q) is simple, except for n = 2 and q = 2 or 3.

Question
What is the order of PSLn(q)?

15
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Order of GLn(q)

Claim 1

|GLn(q)| = (qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1)

= qn(n−1)/2
n∏

i=1

(qi − 1)

Proof.
Let v1, . . . , vn ∈ Fn

q be the columns of a matrix from GLn(q):

1. There are qn − 1 non-zero vectors to choose v1 from.

2. |{α1v1 | α1 ∈ Fq}| = q, so there are qn − q choices for v2.

3. |{α1v1 + α2v2 | α1, α2 ∈ Fq}| = q2, so there are qn − q2
choices for v2.

4. etc.
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Order of PSLn(q)

Claim 2

|SLn(q)| = |GLn(q)| /
∣∣F×

q

∣∣ where
∣∣F×

q

∣∣ = q − 1

Claim 3

|PSLn(q)| = |SLn(q)| /d where d = gcd(q − 1, n)

Conclusion

|PSLn(q)| = qn(n−1)/2

gcd(q − 1, n)

n∏
i=2

(qi − 1)

17
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Symplectic groups PSp2m(q)

Definition
Let J :=

(
0 Im

−Im 0

)
. The set of symplectic matrices is

Sp2m(q) :=
{
S ∈ L2m(q) | SJST = J

}

It turns out that Sp2m(q) ⊂ SL2m(q).

Definition
The projective symplectic group is

PSp2m(q) := Sp2m(q)/Z
(
Sp2m(q)

)
Order

|PSp2m(q)| = qm
2

gcd(q − 1, 2)

m∏
i=1

(q2i − 1)
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Unitary groups PSUn

(
q2
)

Definition
For x ∈ Fq2 define x̄ := xq. Note that ¯̄x = xq

2
= x. The set of

unitary matrices is

Un

(
q2
)

:=
{
U ∈ Ln

(
q2
)
| ŪTU = In

}

Definition
The projective special unitary group is

PSUn

(
q2
)

:= SUn

(
q2
)
/Z
(
SUn

(
q2
))

Order

∣∣PSUn

(
q2
)∣∣ =

qn(n−1)/2

gcd(q + 1, n)

n∏
i=2

(
qi − (−1)i

)
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Orthogonal groups

Sorry

Didn’t have time to finish this...
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Conclusion
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Conclusion

I Every finite group has a “unique” decomposition into finite
simple groups (Jordan-Hölder Theorem).

I The finite simple groups are (Classification Theorem):
I cyclic groups of prime order
I alternating groups of degree at least 5
I simple groups of Lie type
I sporadic simple groups

I The classical groups are
I linear groups PSLn(q)
I symplectic groups PSp2m(q)
I unitary groups PSUn

(
q2
)

I orthogonal groups

Thank you for your attention!
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