Finite simple groups

Maris Ozols

University of Waterloo

December 2, 2009

Introduction

Introduction The classification theorem Finite simple groups Cl

Basics

Definition

A subgroup N of a group G is called normal (write $N \unlhd G$) if $gHg^{-1} = H$ for every $g \in G$.

Basics

Definition

A subgroup N of a group G is called normal (write $N\unlhd G)$ if $gHg^{-1}=H$ for every $g\in G.$

Examples (boring)

- $\{1_G\} \unlhd G$
- ightharpoonup G riangleleft G

Basics

Definition

A subgroup N of a group G is called normal (write $N \unlhd G$) if $gHg^{-1} = H$ for every $g \in G$.

Examples (boring)

- $ightharpoonup \{1_G\} \unlhd G$
- ightharpoonup G riangleleft G

Definition

A nontrivial group G is called simple if its only normal subgroups are $\{1_G\}$ and G itself.

Definition

A normal series for a group G is a sequence

$$\{1_G\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G.$$

Factor groups G_{i+1}/G_i are called the factors of the series.

Definition

A normal series for a group G is a sequence

$$\{1_G\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G.$$

Factor groups G_{i+1}/G_i are called the factors of the series.

Definition

A composition series of a group G is a maximal normal series (meaning that we cannot adjoin extra terms to it).

Decomposition

Definition

A normal series for a group G is a sequence

$$\{1_G\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G.$$

Factor groups G_{i+1}/G_i are called the factors of the series.

Definition

A composition series of a group G is a maximal normal series (meaning that we cannot adjoin extra terms to it).

Note: All factors in a composition series are simple.

Definition

A normal series for a group G is a sequence

$$\{1_G\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G.$$

Factor groups G_{i+1}/G_i are called the factors of the series.

Definition

A composition series of a group G is a maximal normal series (meaning that we cannot adjoin extra terms to it).

Note: All factors in a composition series are simple.

Theorem (Jordan-Hölder)

Every two composition series of a group are equivalent, i.e., have the same length and the same (unordered) family of simple factors.

Theorem (Classification of finite simple groups)

The following is a complete list of finite simple groups:

- 1. cyclic groups of prime order
- 2. alternating groups of degree at least 5
- 3. simple groups of Lie type
- 4. sporadic simple groups

Theorem (Classification of finite simple groups)

The following is a complete list of finite simple groups:

- 1. cyclic groups of prime order
- 2. alternating groups of degree at least 5
- 3. simple groups of Lie type
- 4. sporadic simple groups

Some statistics

- ▶ Proof spreads across some 500 articles (mostly 1955–1983).
- ▶ More than 100 mathematicians among the authors.
- ▶ It is of the order of 10,000 pages long.

Theorem (Classification of finite simple groups)

The following is a complete list of finite simple groups:

- 1. cyclic groups of prime order
- 2. alternating groups of degree at least 5
- 3. simple groups of Lie type
- 4. sporadic simple groups

Some statistics

- ▶ Proof spreads across some 500 articles (mostly 1955–1983).
- ▶ More than 100 mathematicians among the authors.
- ▶ It is of the order of 10,000 pages long.

The proof is being reworked and the 2nd generation proof is expected to span *only* a dozen of volumes.

Theorem (Classification of finite simple groups)

The following is a complete list of finite simple groups:

- 1. cyclic groups of prime order
- 2. alternating groups of degree at least 5
- 3. simple groups of Lie type
- 4. sporadic simple groups

Headlines

- Cartwright, M. "Ten Thousand Pages to Prove Simplicity." New Scientist 109, 26-30, 1985.
- ► Cipra, B. "Are Group Theorists Simpleminded?" What's Happening in the Mathematical Sciences, 1995-1996, Vol. 3. Providence, RI: Amer. Math. Soc., pp. 82-99, 1996.

nite simple groups

Strategy

Let K be the (conjectured) complete list of finite simple groups.

Strategy

- ▶ Let K be the (conjectured) complete list of finite simple groups.
- ▶ Proceed by induction on the order of the simple group to be classified and consider a minimal counterexample, i.e., let G be a finite simple group of minimal order such that $G \notin \mathcal{K}$.

Strategy

- ▶ Let K be the (conjectured) complete list of finite simple groups.
- ▶ Proceed by induction on the order of the simple group to be classified and consider a minimal counterexample, i.e., let G be a finite simple group of minimal order such that $G \notin \mathcal{K}$.
- ▶ Note that every proper subgroup H of G is a \mathcal{K} -group, i.e., has the property that $B \triangleleft A \leq H \Rightarrow A/B \in \mathcal{K}$.

Proof

Strategy

- ▶ Let K be the (conjectured) complete list of finite simple groups.
- ▶ Proceed by induction on the order of the simple group to be classified and consider a minimal counterexample, i.e., let G be a finite simple group of minimal order such that $G \notin \mathcal{K}$.
- ▶ Note that every proper subgroup H of G is a \mathcal{K} -group, i.e., has the property that $B \leq A \leq H \Rightarrow A/B \in \mathcal{K}$.

Starting point

▶ Odd Order Theorem (Feit-Thompson) Groups of odd order are solvable (i.e., all factors in composition series are cyclic).

Proof

Strategy

- ▶ Let K be the (conjectured) complete list of finite simple groups.
- ▶ Proceed by induction on the order of the simple group to be classified and consider a minimal counterexample, i.e., let G be a finite simple group of minimal order such that $G \notin \mathcal{K}$.
- ▶ Note that every proper subgroup H of G is a \mathcal{K} -group, i.e., has the property that $B \leq A \leq H \Rightarrow A/B \in \mathcal{K}$.

Starting point

- ▶ Odd Order Theorem (Feit-Thompson) Groups of odd order are solvable (i.e., all factors in composition series are cyclic).
- Equivalently, every finite non-abelian simple group is of even order.

Cyclic and alternating groups

Cyclic groups

$$C_n = \mathbb{Z}/n\mathbb{Z}$$
 $|C_n| = n$

 C_p is simple whenever p is a prime (by Lagrange's theorem). C_p are the only abelian finite simple groups.

Cyclic and alternating groups

Cyclic groups

$$C_n = \mathbb{Z}/n\mathbb{Z}$$
 $|C_n| = n$

 C_p is simple whenever p is a prime (by Lagrange's theorem). C_p are the only abelian finite simple groups.

Alternating groups

$$A_n = \{ \sigma \in S_n \mid \operatorname{sgn}(\sigma) = 1 \}$$
 $|A_n| = \frac{n!}{2}$

For $n \geq 5$ A_n is simple (Galois, Jordan) and non-abelian.

Chevalley and twisted Chevalley groups

There are 16 *infinite families* that can be grouped as follows:

Chevalley and twisted Chevalley groups

There are 16 *infinite families* that can be grouped as follows:

classical Lie groups (6):

Chevalley and twisted Chevalley groups

There are 16 *infinite families* that can be grouped as follows:

- classical Lie groups (6):
 - ▶ linear groups (1)
 - symplectic groups (1)
 - unitary groups (1)
 - orthogonal groups (3)

Chevalley and twisted Chevalley groups

There are 16 *infinite families* that can be grouped as follows:

- classical Lie groups (6):
 - ▶ linear groups (1)
 - symplectic groups (1)
 - unitary groups (1)
 - orthogonal groups (3)
- exceptional and twisted groups of Lie type (10)

Sporadic groups

There are 26 sporadic groups that can be grouped as follows:

Mathieu groups (5)

Sporadic groups

- Mathieu groups (5)
- groups related to the Leech lattice (7)

Sporadic groups

- Mathieu groups (5)
- groups related to the Leech lattice (7)
- groups related to the Monster group (8)

Sporadic groups

- Mathieu groups (5)
- groups related to the Leech lattice (7)
- groups related to the Monster group (8)
- other groups (6)

Notation

Dictionary

Prefixes	
G	general
\mathbf{S}	special
Р	projective
Z	center

Sets of matrices	
L	linear
Sp	symplectic
U	unitary
Ο	orthogonal

Notation

Dictionary

Prefixes	
G	general
\mathbf{S}	special
Р	projective
Z	center

Sets of matrices	
L	linear
Sp	symplectic
U	unitary
О	orthogonal

Definitions and examples

Dictionary

Prefixes	
G	general
\mathbf{S}	special
Р	projective
Z	center

Sets of matrices	
L	linear
Sp	symplectic
U	unitary
Ο	orthogonal

Classical groups

Definitions and examples

$$L_n(q) := M_{n \times n}(\mathbb{F}_q)$$

Notation

Dictionary

Prefixes	
G	general
\mathbf{S}	special
Ρ	projective
Z	center

Sets of matrices	
L	linear
Sp	symplectic
U	unitary
Ο	orthogonal

Definitions and examples

$$L_n(q) := M_{n \times n}(\mathbb{F}_q)$$

$$GL_n(q) := \{ M \in L_n(q) \mid \det M \neq 0 \}$$

Dictionary

Prefixes		
G	general	
\mathbf{S}	special	
Р	projective	
Z	center	

Sets of matrices		
L	linear	
Sp	symplectic	
U	unitary	
Ο	orthogonal	

Definitions and examples

$$L_n(q) := M_{n \times n}(\mathbb{F}_q)$$

$$GL_n(q) := \{ M \in L_n(q) \mid \det M \neq 0 \}$$

$$SL_n(q) := \{ M \in GL_n(q) \mid \det M = 1 \}$$

Dictionary

Prefixes		
\mathbf{G}	general	
\mathbf{S}	special	
Ρ	projective	
\mathbf{Z}	center	

Sets of matrices		
L	linear	
Sp	symplectic	
U	unitary	
Ο	orthogonal	

Definitions and examples

$$L_n(q) := M_{n \times n}(\mathbb{F}_q)$$

$$GL_n(q) := \{ M \in L_n(q) \mid \det M \neq 0 \}$$

$$SL_n(q) := \{ M \in GL_n(q) \mid \det M = 1 \}$$

$$Z(GL_n(q)) := \{ \alpha I_n \mid \alpha \in \mathbb{F}_q^{\times} \} \cong \mathbb{F}_q^{\times}$$

Notation

Dictionary

Prefixes		
\mathbf{G}	general	
\mathbf{S}	special	
P	projective	
Z	center	

Sets of matrices		
L	linear	
Sp	symplectic	
U	unitary	
Ο	orthogonal	

Definitions and examples

$$L_n(q) := M_{n \times n}(\mathbb{F}_q)$$

$$GL_n(q) := \{ M \in L_n(q) \mid \det M \neq 0 \}$$

$$SL_n(q) := \{ M \in GL_n(q) \mid \det M = 1 \}$$

$$Z(GL_n(q)) := \{ \alpha I_n \mid \alpha \in \mathbb{F}_q^{\times} \} \cong \mathbb{F}_q^{\times}$$

$$PGL_n(q) := GL_n(q)/Z(GL_n(q))$$

Constructing simple matrix groups "Recipe"

$$Z(SL_n(q)) \triangleleft SL_n(q) \triangleleft GL_n(q) \subset L_n(q)$$

 $PSL_n(q) = SL_n(q)/Z(SL_n(q))$

Constructing simple matrix groups

"Recipe"

$$Z(SL_n(q)) \triangleleft SL_n(q) \triangleleft GL_n(q) \subset L_n(q)$$

 $PSL_n(q) = SL_n(q)/Z(SL_n(q))$

Description

▶ Take a set of matrices, e.g., $L_n(q)$.

Constructing simple matrix groups

"Recipe"

$$Z(SL_n(q)) \triangleleft SL_n(q) \triangleleft GL_n(q) \subset L_n(q)$$

 $PSL_n(q) = SL_n(q)/Z(SL_n(q))$

- ▶ Take a set of matrices, e.g., $L_n(q)$.
- ▶ Note that $GL_n(q) \subset L_n(q)$ is a group.

"Recipe"

$$Z(SL_n(q)) \triangleleft SL_n(q) \triangleleft GL_n(q) \subset L_n(q)$$

 $PSL_n(q) = SL_n(q)/Z(SL_n(q))$

- ▶ Take a set of matrices, e.g., $L_n(q)$.
- ▶ Note that $GL_n(q) \subset L_n(q)$ is a group.
- ▶ $\operatorname{GL}_n(q)$ is not simple, since $\operatorname{SL}_n(q)$ is the kernel of $\det: \operatorname{GL}_n(q) \to \mathbb{F}_q^{\times}$, so $\operatorname{SL}_n(q) \lhd \operatorname{GL}_n(q)$.

"Recipe"

$$Z(SL_n(q)) \triangleleft SL_n(q) \triangleleft GL_n(q) \subset L_n(q)$$

 $PSL_n(q) = SL_n(q)/Z(SL_n(q))$

- ▶ Take a set of matrices, e.g., $L_n(q)$.
- ▶ Note that $GL_n(q) \subset L_n(q)$ is a group.
- ▶ $\operatorname{GL}_n(q)$ is not simple, since $\operatorname{SL}_n(q)$ is the kernel of $\det : \operatorname{GL}_n(q) \to \mathbb{F}_q^{\times}$, so $\operatorname{SL}_n(q) \lhd \operatorname{GL}_n(q)$.
- ▶ $\mathrm{SL}_n(q)$ is still not simple, since $\mathrm{Z}\big(\mathrm{SL}_n(q)\big) \lhd \mathrm{SL}_n(q)$.

"Recipe"

$$Z(SL_n(q)) \triangleleft SL_n(q) \triangleleft GL_n(q) \subset L_n(q)$$

 $PSL_n(q) = SL_n(q)/Z(SL_n(q))$

- ▶ Take a set of matrices, e.g., $L_n(q)$.
- ▶ Note that $GL_n(q) \subset L_n(q)$ is a group.
- ▶ $\operatorname{GL}_n(q)$ is not simple, since $\operatorname{SL}_n(q)$ is the kernel of $\det : \operatorname{GL}_n(q) \to \mathbb{F}_q^{\times}$, so $\operatorname{SL}_n(q) \lhd \operatorname{GL}_n(q)$.
- ▶ $\mathrm{SL}_n(q)$ is still not simple, since $\mathrm{Z}\big(\mathrm{SL}_n(q)\big) \lhd \mathrm{SL}_n(q)$.
- ► Consider $PSL_n(q) = SL_n(q)/Z(SL_n(q))$.

Linear groups $PSL_n(q)$

Definition

The projective special linear group is

$$PSL_n(q) := SL_n(q)/Z(SL_n(q))$$

Linear groups $PSL_n(q)$

Definition

The projective special linear group is

$$PSL_n(q) := SL_n(q)/Z(SL_n(q))$$

Theorem (Jordan-Dickson)

 $\operatorname{PSL}_n(q)$ is simple, except for n=2 and q=2 or 3.

Classical groups

Definition

The projective special linear group is

$$PSL_n(q) := SL_n(q)/Z(SL_n(q))$$

Theorem (Jordan–Dickson)

 $PSL_n(q)$ is simple, except for n=2 and q=2 or 3.

Question

What is the order of $PSL_n(q)$?

Classical groups

Claim 1

$$|GL_n(q)| = (q^n - 1)(q^n - q)(q^n - q^2)\dots(q^n - q^{n-1})$$
$$= q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$$

Proof.

Claim 1

$$|GL_n(q)| = (q^n - 1)(q^n - q)(q^n - q^2)\dots(q^n - q^{n-1})$$

= $q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$

Proof.

Let $v_1, \ldots, v_n \in \mathbb{F}_q^n$ be the columns of a matrix from $GL_n(q)$:

1. There are q^n-1 non-zero vectors to choose v_1 from.

Order of $GL_n(q)$

Claim 1

$$|GL_n(q)| = (q^n - 1)(q^n - q)(q^n - q^2)\dots(q^n - q^{n-1})$$

= $q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$

Proof.

- 1. There are $q^n 1$ non-zero vectors to choose v_1 from.
- 2. $|\{\alpha_1 v_1 \mid \alpha_1 \in \mathbb{F}_q\}| = q$, so there are $q^n q$ choices for v_2 .

Order of $GL_n(q)$

Claim 1

$$|GL_n(q)| = (q^n - 1)(q^n - q)(q^n - q^2)\dots(q^n - q^{n-1})$$

= $q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$

Proof.

- 1. There are $q^n 1$ non-zero vectors to choose v_1 from.
- 2. $|\{\alpha_1 v_1 \mid \alpha_1 \in \mathbb{F}_q\}| = q$, so there are $q^n q$ choices for v_2 .
- 3. $|\{\alpha_1v_1 + \alpha_2v_2 \mid \alpha_1, \alpha_2 \in \mathbb{F}_q\}| = q^2$, so there are $q^n q^2$ choices for v_2 .

Claim 1

$$|GL_n(q)| = (q^n - 1)(q^n - q)(q^n - q^2)\dots(q^n - q^{n-1})$$
$$= q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$$

Proof.

- 1. There are $q^n 1$ non-zero vectors to choose v_1 from.
- 2. $|\{\alpha_1 v_1 \mid \alpha_1 \in \mathbb{F}_q\}| = q$, so there are $q^n q$ choices for v_2 .
- 3. $|\{\alpha_1v_1 + \alpha_2v_2 \mid \alpha_1, \alpha_2 \in \mathbb{F}_q\}| = q^2$, so there are $q^n q^2$ choices for v_2 .
- 4. etc.

Order of $PSL_n(q)$

Claim 2

$$|\mathrm{SL}_n(q)| = |\mathrm{GL}_n(q)| \, / \, \big| \mathbb{F}_q^{ imes} \big| \quad ext{where } \big| \mathbb{F}_q^{ imes} \big| = q-1$$

Order of $PSL_n(q)$

Claim 2

$$|\mathrm{SL}_n(q)| = \left|\mathrm{GL}_n(q)\right| / \left|\mathbb{F}_q^ imes
ight| \quad ext{where } \left|\mathbb{F}_q^ imes
ight| = q-1$$

Claim 3

$$|PSL_n(q)| = |SL_n(q)|/d$$
 where $d = \gcd(q-1, n)$

Order of $PSL_n(q)$

Claim 2

$$|\mathrm{SL}_n(q)| = \left|\mathrm{GL}_n(q)\right| / \left|\mathbb{F}_q^ imes \right| \quad ext{where } \left|\mathbb{F}_q^ imes \right| = q-1$$

Claim 3

$$|PSL_n(q)| = |SL_n(q)|/d$$
 where $d = \gcd(q-1, n)$

Conclusion

$$|PSL_n(q)| = \frac{q^{n(n-1)/2}}{\gcd(q-1,n)} \prod_{i=2}^n (q^i - 1)^{-1}$$

Symplectic groups $PSp_{2m}(q)$

Definition

Let $J:=\left(egin{smallmatrix} 0 & I_m \\ -I_m & 0 \end{array}\right)$. The set of symplectic matrices is

$$\operatorname{Sp}_{2m}(q) := \left\{ S \in \operatorname{L}_{2m}(q) \mid SJS^{\mathsf{T}} = J \right\}$$

Let $J:=\left(egin{smallmatrix} 0 & I_m \\ -I_m & 0 \end{array}\right)$. The set of symplectic matrices is

$$\operatorname{Sp}_{2m}(q) := \left\{ S \in \operatorname{L}_{2m}(q) \mid SJS^{\mathsf{T}} = J \right\}$$

It turns out that $\mathrm{Sp}_{2m}(q)\subset\mathrm{SL}_{2m}(q)$.

Symplectic groups $PSp_{2m}(q)$

Definition

Let $J:=\left(egin{smallmatrix} 0 & I_m \\ -I_m & 0 \end{array}\right)$. The set of symplectic matrices is

$$\operatorname{Sp}_{2m}(q) := \left\{ S \in \operatorname{L}_{2m}(q) \mid SJS^{\mathsf{T}} = J \right\}$$

It turns out that $\mathrm{Sp}_{2m}(q)\subset\mathrm{SL}_{2m}(q).$

Definition

The projective symplectic group is

$$PSp_{2m}(q) := Sp_{2m}(q)/Z(Sp_{2m}(q))$$

Symplectic groups $PSp_{2m}(q)$

Definition

Let $J:=\left(egin{array}{cc} 0 & I_m \\ -I_m & 0 \end{array}\right)$. The set of symplectic matrices is

$$\operatorname{Sp}_{2m}(q) := \left\{ S \in \operatorname{L}_{2m}(q) \mid SJS^{\mathsf{T}} = J \right\}$$

It turns out that $\operatorname{Sp}_{2m}(q) \subset \operatorname{SL}_{2m}(q)$.

Definition

The projective symplectic group is

$$PSp_{2m}(q) := Sp_{2m}(q)/Z(Sp_{2m}(q))$$

Order

$$|PSp_{2m}(q)| = \frac{q^{m^2}}{\gcd(q-1,2)} \prod_{i=1}^{m} (q^{2i} - 1)$$

For $x\in \mathbb{F}_{q^2}$ define $\bar x:=x^q.$ Note that $\bar{\bar x}=x^{q^2}=x.$ The set of unitary matrices is

$$U_n(q^2) := \left\{ U \in L_n(q^2) \mid \bar{U}^\mathsf{T} U = I_n \right\}$$

For $x\in \mathbb{F}_{q^2}$ define $\bar x:=x^q.$ Note that $\bar{\bar x}=x^{q^2}=x.$ The set of unitary matrices is

$$U_n(q^2) := \left\{ U \in L_n(q^2) \mid \bar{U}^\mathsf{T} U = I_n \right\}$$

Definition

The projective special unitary group is

$$PSU_n(q^2) := SU_n(q^2)/Z(SU_n(q^2))$$

For $x\in \mathbb{F}_{q^2}$ define $\bar x:=x^q.$ Note that $\bar{\bar x}=x^{q^2}=x.$ The set of unitary matrices is

$$U_n(q^2) := \left\{ U \in L_n(q^2) \mid \bar{U}^\mathsf{T} U = I_n \right\}$$

Definition

The projective special unitary group is

$$PSU_n(q^2) := SU_n(q^2)/Z(SU_n(q^2))$$

Order

$$|PSU_n(q^2)| = \frac{q^{n(n-1)/2}}{\gcd(q+1,n)} \prod_{i=2}^n (q^i - (-1)^i)$$

Orthogonal groups

Sorry

Didn't have time to finish this...

Conclusion

Conclusion

► Every finite group has a "unique" decomposition into finite simple groups (Jordan-Hölder Theorem).

The classification theorem Finite simple groups Classical groups Conclusion

Conclusion

Every finite group has a "unique" decomposition into finite simple groups (Jordan-Hölder Theorem).

- ► The finite simple groups are (Classification Theorem):
 - cyclic groups of prime order
 - alternating groups of degree at least 5
 - simple groups of Lie type
 - sporadic simple groups

- Every finite group has a "unique" decomposition into finite simple groups (Jordan-Hölder Theorem).
- ► The finite simple groups are (Classification Theorem):
 - cyclic groups of prime order
 - alternating groups of degree at least 5
 - simple groups of Lie type
 - sporadic simple groups
- The classical groups are
 - ▶ linear groups $PSL_n(q)$
 - symplectic groups $PSp_{2m}(q)$
 - unitary groups $PSU_n(q^2)$
 - orthogonal groups

Conclusion

- Every finite group has a "unique" decomposition into finite simple groups (Jordan-Hölder Theorem).
- ► The finite simple groups are (Classification Theorem):
 - cyclic groups of prime order
 - alternating groups of degree at least 5
 - simple groups of Lie type
 - sporadic simple groups
- The classical groups are
 - ▶ linear groups $PSL_n(q)$
 - symplectic groups $PSp_{2m}(q)$
 - unitary groups $PSU_n(q^2)$
 - orthogonal groups

Thank you for your attention!