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0.1 Berge’s Lemma

Lemma (Berge, 1957). A matching M in a graph G is a maximum matching if and only if G has no
M -augmenting path.

Proof. Let us prove the contrapositive: G has a matching larger than M if and only if G has an M-augmenting
path. Clearly, an M-augmenting path P of G can be used to produce a matching M’ that is larger than
M — just take M’ to be the symmetric difference of P and M (M’ contains exactly those edges of G that
appear in exactly one of P and M). Hence, the backward direction follows.

For the forward direction, let M’ be a matching in G larger than M. Consider D, the symmetric difference
of M and M’. Observe that D consists of paths and even cycles (each vertex of D has degree at most 2 and
edges belonging to some path or cycle must alternate between M and M’). Since M’ is larger than M, D
contains a component that has more edges from M’ than M. Such a component is a path in G that starts
and ends with an edge from M’, so it is an M-augmenting path. O



0.2 Konig’s Theorem

Theorem (Konig, 1931). The mazimum cardinality of a matching in a bipartite graph G is equal to the
minimum cardinality of a vertex cover of its edges.

C] > |M]|
e Trivial: One needs at least | M| vertices to cover all edges of M.
IC| < |M]|

e Choose cover: For every edge in M choose its end in B if some alternating path ends there, and its
end in A otherwise.

e Pick edge: Pick ab € E. If ab € M, we are done, so assume ab ¢ M. Since M is maximal, it cannot
be that both a and b are unmatched.

e Alternating path that ends in b:

— Easy case: If ¢ is unmatched, then b is matched and ab is an alternating path that ends in B,
sobeC.

— Hard case: If b is unmatched, then a is matched to some o'. If a ¢ C, then &’ € C and some
alternating path P ends in ¥'. If b € P, let P/ = Pb, otherwise P’ = Pb'ab. M is maximal, so P’
is not an augmenting path, so b must be matched and hence b € C, since P’ ends at b.



0.3 Hall’s Theorem

Theorem (Hall, 1935). A bipartite graph G contains a matching of A if and only if |N(S)| > |S| for all
S CA.

—
e Trivial: If A is matched then every S C A has at least |S| neighbours.
—
e Induction on |A|: Apply induction on |A|. Base case |A| =1 is trivial.

e Many neighbours: Assume |N(S)| > |S| + 1 for every S # (. By induction hypothesis G — e has a
matching M, where e € E can be chosen arbitrarily. Then M U {e} is a matching of A.

e Few neighbours: Assume |N(S)| = |S] for some S ¢ {0, A}.
— Cut in two pieces: Consider graphs G's and G 4\ 5 induced by SUN(S) and (A\ S)U(B\N(S)),
respectively.

— Check marriage condition: It holds for both graphs:

x We kept all neighbours of S, so |[Ng4(S)| = |Ng(9)].
x If |NGA\S(S')’ < |8’] for some S C A\ S, then |[Ng(SUS")| = |[Ng(S)| + ’NGA\S(S’)‘ <
|S| 4+ |S9’|, a contradiction.
— Put matchings together: By induction hypothesis G5 and G 4\ ¢ contain matchings for S and
A\ S, respectively. Putting these together gives a matching of A in G.



0.4 Tutte’s Theorem

Theorem (Tutte, 1947). A graph G has a 1-factor if and only if (G — S) < |S| for all S C V(G), where
q(H) is the number of odd order components of H.

e Trivial: If G has a 1-factor, then Tutte’s condition is satisfied.

e Consider an edge-maximal counterexample G: Let G be a counterexample (G satisfies Tutte’s
condition, but has no 1-factor). Addition of edges preserves Tutte’s property, so it suffices to consider
an edge-maximal counterexample G (adding any edge yields a 1-factor).

e (G has no bad set: We call S C V bad if Vs € S,Yv € V : sv € E and all components of G — S are
complete. If S is a bad set in a graph with no 1-factor, then S or () violates Tutte’s condition. Thus,
G has no bad set.

e Choose S’: Let S’ = {v € V : v is adjacent to all other vertices}. Since S’ is not bad, G — S’ has a
component A with non-adjacent vertices a,a’.

e Define a,b,¢,d: Let a,b,c € A be the first 3 vertices on the shortest a — a’ path within A (ab,bc € E
but ac ¢ E). Moreover, since b ¢ S’, there exists d € V such that bd ¢ E.

e Even cycles containing ac and bd: G is edge-maximal without 1-factor, so let M,. and M4 be
1-factors of G + ac and G + bd, respectively. M,.® M,y consists of disjoint even cycles, so let C,. and
Chpa be the cycles containing ac and bd, respectively.

e Contradiction by constructing a 1-factor:

— If ac ¢ Chpq then My @ Cyq is a 1-factor of G.

— If ac € Cyq then My, & v is a 1-factor of G, where v = bd. .. is the shortest cycle whose vertices
are all in Cyq and the last edge being either ab or cb. In particular, ac ¢ E(v).



0.5 Menger’s Theorem

Theorem (Menger, 1927). Let G = (V,E) be a graph and A,B C V. Then the minimums number of
vertices separating A from B in G is equal to the maximum number of disjoint A — B paths in G.

“min separator” > “max # of paths”
e Trivial: To separate A from B one must cut every A — B path .
“min separator” < “max # of paths”

e Induction on |E|: Apply induction on |E|. Let k be the size of a minimal A — B separator. If £ = ()
then |A N B| = k and there are k trivial paths.

e Find a separator containing an edge: |E| > 1, so G has an edge e = zy. First find an A — B
separator containing adjacent vertices.

— Contract e: If G contains less than k disjoint A — B paths, then so does G/e. Let v, be the
vertex obtained by contracting e.

— Find a smaller separator: Let Y be a smallest A — B separator in GG/e. It must be the case
that |Y] is either k — 1 or k:
* A minimal A — B separator in G is also an A — B separator in G/e, so |Y] < k.
x If |Y| <k — 2 then G has an A — B separator of size k — 2 (if v ¢ Y)or k—1 (iffv. €Y), a
contradiction.
If |Y| = k, by induction hypothesis there exist k disjoint A — B paths and we are done. Thus,
|Y| =k —1. Also, v, € Y since otherwise Y would be an A — B separator in G of size less than k.

— Extend the separator: X = (Y \ {ve})U{z,y} is an A — B separator in G of size k, containing
edge e = zy.

e Remove the edge and apply induction hypothesis: To apply the induction hypothesis, consider
G — e. Use X as one of the sets A, B.

— A— X paths: Every A— X separator in G — e is also an A — B separator in G and hence contains
at least k vertices. By induction hypothesis there are k disjoint A — X paths in G — e
— X — B paths: Similarly.

— Combine paths: X separates A and B in G, so these two paths systems do not meet outside of
X and thus can be combined into k disjoint A — B paths.



0.6 Kuratowski’s Theorem

Theorem (Kuratowski, 1930; Wagner, 1937). The following assertions are equivalent:
1. G is planar;
2. G contains neither K5 nor Ks 3 as a minor;

3. G contains neither K5 nor K33 as a topological minor.

Kuratowski’s theorem follows from these lemmas:

e Lemma (2 & 3). A graph contains K5 or Ks 3 as a minor if and only if it contains Ky or K33 as a
topological minor.

e Lemma (3-connected case). Every 3-connected graph without a K5 or K33 minor is planar.

e Lemma. If |G| > 4 and G is edge-mazimal without K5 and K33 as topological minors, then G is
3-connected.

Lemma (2 < 3). A graph contains K5 or K33 as a minor if and only if it contains K5 or K33 as a
topological minor.

«—
e Trivial: Every topological minor is also a minor.

—
e Trivial for K3 3: Every minor with maximum degree at most 3 is also a topological minor.

e Remaining part: It suffices to show that every graph G with a K5 minor contains K5 as a topological
minor or K33 as a minor.



Lemma (3-connected case). Every 3-connected graph without a K5 or Ks 3 minor is planar.

Induction on |V|: Apply induction on V. If |V| = 4 then G = K4, which is planar.

e Contract edge ry: G has an edge zy such that G/zy is again 3-connected. Moreover, G'/zy has no
K5 and no K33 minor. By induction hypothesis G/xy admits a plane drawing G.

A partial drawing: Let f be the face of G — Vgy containing v,,. The boundary C of f is a cycle, since
G — vy, is 2-connected. Let X = Ng(2)\ {y} and Y = Ng(y) \ {z}. Let Gx = G — {vgyv:v € Y\ X}
be the drawing G with only those neighbours of v, left that are in X. Gx may be viewed as a drawing
of G — y in which z is represented by v,,. We want to add y back to Gx.

Arcs: Fix a direction of the cycle C' and enumerate the vertices of X N C as xg,...,zr_1. Also, let
P ={wx;...xi11:1 € Z} be the set of paths connecting z; and x; 1 along C for all 4.

Arc containing Y: Let us show that Y C V(P) for some P € P. Assume not. Since G is 3-connected,
z and y each have at least two neighbours in C. By assumption, there exist distinct P/, P” € P and
distinct ¢,y € Y, such that y' € P', y’ € P”, and y/,y"” ¢ P’ N P”. We get a contradiction with
planarity of G as follows:

— IfY ¢ X then y can be assumed to be an inner vertex of P’, so the endpoints =’ and z” of
P’ separate y' from y” in C. These four vertices together with # and y form a subgraph that is
topologically equivalent to K3 3 (the two stable sets are {z,y’,y"} and {y,2’, 2"}).

— IfY C X then ¢/,y” € Y N X and we consider two cases:

« If Y N X| =2, then ¥ and y” must be separated by two neighbours of « and we obtain Kj 3
as before.

* Otherwise, let ¥/ € (Y N X)\ {¢',y"}. Then = and y have three common neighbours on C
and these together with z and y form a subgraph that is topologically equivalent to K.

e Add back vertex y: AsY C V(P) where P = x;...x;41 for some i € Zj, the drawing Gy can be
extended to a plane drawing of G by putting y in the face f; C f of the cycle zz; Px;y;ix.



Lemma. If|G| > 4 and G is edge-mazimal without K5 and K3 3 as topological minors, then G is 3-connected.

Lemma. Let X be a set of 3-connected graphs. Let G be a graph with k(G) < 2, and let G, G2 be proper
induced subgraphs of G such that G = G1 U Gy and |G1 N G2| = k(G). If G is edge-mazimal without a
topological minor in X, then so are G1 and G, and G1 NGy = K.

e asdf: Every vertex v € S = V(G1 N G2) has a neighbour in every component of G; — S for i € {1,2},
otherwise S would separate G, contradicting |S| = x(G). By maximality of G, every edge e added to
G lies in a subgraph topologically equivalent to some X € X.



0.7 Five Colour Theorem

Theorem (Five Colour Theorem). Every planar graph is 5-colourable.

Induction on |V|: Apply induction on |V|. Basis case |V| < 5 is trivial.

Find a vertex of degree < 5:

— Prove inequality: Prove that £ < 3V — 6 using the following:
* Euler’s formula: F — F+V =2,
* Count edges: 3F < 2F, since each face has at least 3 edges.
— Contradiction: If Vv € V' : degv > 6 then 2E = )~ _, degv > 6V. Both inequalities together
give 6V — 12 > 2F > 6V, a contradiction.

e Degree < 5: By induction hypothesis G — v admits a 5-colouring. Since degv < 4, the remaining
colour can be used for v.

Degree = 5:
— Pick non-adjacent neighbours: Let a, b be any two non-adjacent neighbours of v (if N(v) = K5
then G is not planar, a contradiction).

— Find a colouring with c¢(a) = ¢(b): Consider G’ = (G—v+ab)/ab. G’ is planar, so by induction
hypothesis it is 5-colourable. This yields a 5-colouring of G, where a and b get the same colour.
Only 4 colours are used for the neighbours of v, so one colour is left for v.
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0.8 Brooks’ Theorem
Theorem (Brooks, 1941). A connected graph G that is neither complete nor an odd cycle has x(G) < A(G).

e Induction on |V|: Apply induction on |V].

e Trivial for small A: If A(G) < 2 then in fact A(G) = 2 and G is a path of length at least 2 or an
even cycle, so x(G) = A(G) = 2. From now on assume that A(G) > 3. In particular, |V| > 4. Let
A = A(G).

e A-colouring for G — v: Let v be any fixed vertex of G and H = G —v. To show that x(H) < A, for
each component H' of H consider two cases.

— Generic case: If H' is not complete or an odd cycle, then by induction hypothesis y(H') <
A(H") < A.

— Complete graph or an odd cycle: If H' is complete or an odd cycle, then all its vertices have
maximum degree and at least one is adjacent to v. Hence, x(H') = A(H') + 1 < A.

e Assume the opposite: Assume x(G) > A(G). This assumption imposes a certain structure on G
leading to a contradiction.

1. Neighbours of v form a “rainbow”: Since x(H) < A < x(G), every A-colouring of H uses
all A colours on N(v). In particular, deg(v) = A. Let N(v) = {v1,...,va} with ¢(v;) = 1.

2. 2-coloured components: Vertices v; and v; lie in a common component C;; of the subgraph
induced by all vertices of colours i # j. Otherwise we could interchange the colours in one of the
components, contradicting property 1.

3. Every component is a path: degq,(vi) < A so degy(vp) < A — 1 and the neighbours of vy,
have pairwise different colours. Otherwise we could recolour vy contrary to property 1. Thus, the
only neighbour of v; in Cj; is on a v; — v; path P in Cjj, and similarly for v;. If Cy; # P then
some inner vertex of P has 3 neighbours in H of the same colour. Let u be the first such vertex
on P. Since at most A — 2 colours are used on its neighbours, we can recolour u, contradicting
property 2. Thus C;; = P.

4. All paths are internally disjoint: If v; # u € Cy; N Cjyg, then according to property 3 two
neighbours of u are coloured 7 and two are coloured k. We may recolour u so that v; and v; lie in
different components, contradicting property 2. Hence, all paths C;; are internally vertex-disjoint.

e A contradiction: The structure imposed on G is not possible.

— Non-adjacent neighbours: If all A neighbours of v are adjacent, then G = Ka41, a contradic-
tion. Assume vivy ¢ E.

— First vertex on Cjs: Let vju be the first edge on the path Cia (u # vy and c(u) = 2). After
interchanging colours 1 and 3 on the path Ci3, u is adjacent to a vertex with colour 3, so it also
lies on Cs3, a contradiction.
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0.9

Hajés’ Theorem

Theorem (Hajés, 1961). Let G be a graph and k € N. Then x(G) > k if and only if G has a k-constructible
subgraph.

Definition. The class of k-constructible graphs is defined recursively as follows:

1.
2.

K, is k-constructible.
If G is k-constructible and xzy ¢ E(G) then so is (G + zy)/zy.

If G; and G2 are k-constructible and G; N Go = {z}, zy1 € E(G1), and xy2 € E(Gz), then H =
(G1 UG3) — a2y1 — xy2 + y1y2 is also k-constructible.

Trivial: All k-constructible graphs are at least k-chromatic.

1. X(Kk) = k.
2. If (G + zy)/xy has a colouring with fewer than k colours, then so does G, a contradiction.

3. In any colouring of H vertices y; and ys receive different colours, so one of them, say y;, will be
coloured differently from z. Thus, if H can be coloured with fewer than k colours, then so can
(1, a contradiction.

Assume the opposite: The case k < 3 is trivial, so assume x(G) > k > 3, but G has no k-
constructible subgraph.

Edge-maximal counterexample: If necessary, add some edges to make G edge-maximal with the
property that none of its subgraphs is k-constructible.

Non-adjacency is not an equivalence relation: G cannot be maximal r-partite, otherwise G
admits an r-colouring (colour each stable set with a different colour), hence r > x(G) > k and G
contains a k-constructible subgraph Kj. Thus, there are vertices x,y1,y2 such that y12, 2y ¢ E(G)
but y1y2 € F(G). Since G is edge-maximal without a k-constructible subgraph, edge xy; lies in a
k-constructible subgraph H; C G + xy; for each i € {1, 2}.

Glue: Let H) be an isomorphic copy of Hs such that H, NG = (Hy — Hy) + « together with
an isomorphism ¢ : Hy — H) : v — o' that fixes Hy N H) pointwise. Then H; N H) = {z}, so
H = (Hy U Hb) — zy1 — xyh + y1y5 is k-constructible by step 3.

Identify: To transform H into a subgraph of G, one by one identify each vertex v’ € H) — G with its
copy v'. Since vv’ is never an edge of H, this corresponds to the operation in step 2. Eventually, we
obtain a k-constructible subgraph (Hy U Hs) — zy1 — zy2 + 1192 C G.
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0.10 Vizing’s Theorem
Theorem (Vizing, 1964). Every graph G satisfies A(G) < x'(G) < A(G) + 1.

e First inequality: Clearly, one needs at least A colours to colour the edges of G, so X' (G) > A. Tt
remains to show that G admits a (A 4 1)-edge-colouring (from now on, simply “a colouring”).

e Induction on |E|: Apply induction on |E|. Basis case £ = () is trivial.

e Every vertex misses a colour: By induction hypothesis G — e admits a colouring for every e € E.
Edges at a given vertex v use at most deg(v) < A colours, so some colour 8 € [A + 1] is missing at v.

e Define o/f-path: For any a # [ there is a unique maximal walk starting at v with edge colours
alternating between o and 8. This walk must be a path, for any internal vertex u with deg(u) > 3
would be adjacent to two edges of the same colour.

e Assume the opposite: Suppose G has no colouring (that is, x'(G) > A(G) + 1).

End of the a/p-path: Let zy € E and consider any colouring of G — zy. If colour « is missing
at z and [ is missing at y, then the «/8-path from y ends in x. Otherwise interchange o and
on this path, so now zy has colour . This gives a colouring of G, a contradiction.

First “page”: Pick xzyy € E. By induction, Gy = G — zyp has a colouring cy. Let a be the
colour missing at x in c¢g.

Construct a maximal “book”: If yy has colour 5y missing in ¢y and x has a neighbour y with
co(zy) = PBo, let y1 = y. In general, if §; is missing for y;, let ;41 be such that co(zyir1) = Bi.
Let yo,y1,...,yr be a maximal such sequence of distinct neighbours of x.

“Flip pages”: For each graph G; = G — zy; define colouring ¢; to be identical to ¢y, except
ci(xy;) = co(xy;j41) if 7 < 4. In each of the graphs G; vertex z is adjacent to exactly k vertices
from the set {yo,...,yr}. Moreover, the corresponding edges use all k colours from {f,..., Bk}

B-edge at xz: Colour 8 = ) is missing at yg in all ¢; (in particular, in ¢x). However, it is not
missing at x in ¢, otherwise we could colour zy; with 8 and extend ¢i. Hence, x has a -edge (in
each ¢;). By maximality of k, it must be zy; for some [. In particular, for ¢ it is xy; with 0 <1 < k
(I # 0 since xyg ¢ Go, | # k since yi misses [3), but for ¢ this is zy;_1, since co(zy;) = ck(xyi—1).

e A contradiction:

Path P: Let P be the a/f-path from yj in G, (with respect to ¢x). As « is missing at z, P ends
at x with the S-edge zy;_1.

Path P’: In cp,...,¢—1 colour § is missing at y;—1. Let P’ be the «/f-path from y;—1 in G;_4
(with respect to ¢;_1). P’ must start with y;_1 Py and end in x. However, y; has no S-edge, a
contradiction.
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0.11 Turan’s Theorem

Theorem (Turdn, 1941). Let n and r > 1 be integers. If G is a K,.-free graph with n vertices and the largest
possible number of edges, then G = T,._1(n), a Turdn graph.

e Induction on n: Apply induction on n. Basis case n < r — 1 is trivial, since K,, = T;._1(n). Thus,
assume n > r and let t,._1(n) = | Tr—1(n)]|

e Complete subgraph of size r — 1: Adding any edge to G creates K., thus K = K,_; C G.
e Upper bound on ||G||: By induction hypothesis, |G — K|| < t,—1(n —r + 1). Also, each vertex of
G — K has at most r — 2 neighbours in K, otherwise adding back K would yield a K,. Hence,
r—1
161 < trsn=r 4 )+ =t D=2+ (75 ) =t )
where the last equality follows by inspection of T,._i(n). In fact, |G| = t,.—1(n), since T,_1(n) is
K,-free and G is edge-maximal K,-free.

e Independent sets: Let x1,x2,...,2,._1 be the vertices of K and let V; = {v € V : va; ¢ E}. Since
the inequality (1) is tight, every vertex of G — K has exactly r — 2 neighbours in K. Thus, vz; ¢ E
if and only if Vj # i : va; € E. Each V; is independent since K, ¢ G. Moreover, they partition V.
Hence, G is (r — 1)-partite.

e Maximality: Turdn graph 7,_;(n) is the unique (r—1)-partite graph with n vertices and the maximum
number of edges, since all partition sets differ in size by at most 1. Hence, G = T,._1(n) by the assumed
extremality of G.
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