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Complexity theory crash course

Complexity classes

» P — polynomial time

» NP — non-deterministic polynomial time

v

PH — polynomial hierarchy (2nd order logic)

» BPP — bounded-error probabilistic polynomial time

v

BQP — bounded-error quantum polynomial time



Computation with non-interacting bosons

Model of computation
» Parameters: n photons in m = poly(n) modes
» State space: span{|si,...,Sm) : sk > 0,> 1, S =n}
» Initial state: |1,) :=11,...,1,0,...,0)
» Transformations: ¢, (U) for any U € U(m), where ¢, extends
the action from 1 to n photons

» Measurement: the number of photons in each mode

The BOSONSAMPLING problem

Given a description of U € U(m), produce samples from the
probability distribution

Pr[S] = (S| (U)[1n)]”
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Transition matrix
Definition
If |S) =[s1,...,8m) and |T') = |t1,...,tm) then @, is defined as
perm(Ag 1)
S|, (AT = :
SlenAIT) =

where Ag 7 is the n X n matrix obtained by taking s; copies of the
ith row and t¢; copies of jth column of A

Example

b a? V2ab b2
Vo <Z d> = | V2ac ad +bc 2bd
2 V2ed d?

Properties
> o, is a homomorphism: ¢, (A - B) = ¢, (A) - on(B)
» if U is unitary then so is ¢, (U)



Permanent
(Slon(A)|T) = perm(Ag, 1)

sil-ssmlty! - tm!

The magic box




Permanent
(S|pn (A)|T) = perm(Ags )

sl rsmltr! -t

The magic box

o r—r—

Lo




Permanent
(Slon(A)|T) = perm(Ag, 1)

sil-ssmlty! - tm!

The magic box

ISH
a
.
—T




Permanent
(S|pn (A)|T) = perm(Ags )

sl rsmltr! -t

The magic box




Permanent

perm(Ag T)

(Slen(A)T) =

The magic box

&
Q]
S
| S—




Permanent

perm(Ag T)

(Slen(A)T) =

The magic box

ISH
Q]
~
—T




Permanent

The magic box

aet

| — —

—T

(Slen(A)T) =

perm(Ag T)




Permanent
(S|pn (A)|T) = perm(Ags )

sl rsmltr! -t

The magic box

— aei + gbf

ISH
Q]
—T

>
~
—T




Permanent
(S|pn (A)|T) = perm(Ags )

sl rsmltr! -t

The magic box

—r—r— a61’+gbf+dhc




Permanent
(S|pn (A)|T) = perm(Ags )

sl rsmltr! -t

The magic box

—r—ar— (I€Z+gbf+dhc+gec

S
<o
—

a
S
—T

>
~
—T




Permanent
(S|pn (A)|T) = perm(Ags, )

sl rsmltr! -t

The magic box

—r——r— a€l+gbf+dhc+gec+ahf

~ @
o o
@ -

| E— S—

s
~
—T




Permanent

perm(Ag,T)
(Slen(A)T) = sl!u-sm!ti‘!zjntm!
The magic box
N aei + gbf + dhc + gec + ahf + dbi
a . € :I
s n @




Permanent perm(Asg 1)

(Slen(IT) = =
The magic box
———— aei + gbf + dhc + gec + ahf + dbi
abc] a b ¢
d e f ] perm (d e f
....... g h ’L
g h i ]




Permanent perm(Asg 1)

(Slen(IT) = =

The magic box

N aei + gbf + dhc + gec + ahf + dbi

a b ¢ ]

....... a b ¢

d e f ] perm (d e f

....... g h ,L

g h i ]
Definition perm(A) = Z HAi,U(i)



Permanent
(S|pn (A)|T) = perm(Ags, )

51l Smltil- b

The magic box

,!,,!,—, aei + gbf + dhc + gec + ahf + dbi
abc]‘ a b ¢
d e f ]‘ perm (d e f)

g h 1

g b i

Definition perm(A) = Y [ 400

0€Sy 1=1



Permanent
(S|pn (A)|T) = perm(Ags )

s1le o smlta! -t

The magic box

e b cle o
o e (i)

Definition perm(A) = Y [ 400

og€S, i=1



Permanent
(S|pn (A)|T) = perm(Ags )

s1le o smlta! -t

The magic box

e b @ -
i pern (1)

Definition perm(A) = Y [ 400

og€S, i=1



Permanent
(S|pn (A)|T) = perm(Ags )

sl rsmltr! -t

The magic box

e 0o
: : perm | d d e
def]' (d d e>
g b i
Definition perm(A) = Z ﬁAi,a(i)

o€eSy i=1



Permanent
(S|pn (A)|T) = perm(Ags )

51l Smltal- b

The magic box

e 0o
5 : perm [d d e
def]' (d d e>
g b i
Definition perm(A) = Z ﬁAi,U(i)

€Sy i=1

Theorem (Valiant '79)
Computing perm(A) is #P-hard
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Theorem (approximate case)
If the following two conjectures are true:

1. the permanent of a random Gaussian matrix is #P-hard to
approximate and

2. it is not too concentrated around 0

then it is not possible to approximately solve the
BOSONSAMPLING problem, unless polynomial hierarchy collapses
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the order of parameters: n = 10, m = 20

Good

» easier to build than a full-scale QC (no interaction between
pairs of photons needed)

» photons are never used as qubits (no need to store them)

Problems

» need good photon sources and detectors

» all n photons must arrive at the destination at the same time



Thank youl!



