
“The Computational Complexity of Linear Optics”
by Scott Aaronson and Alex Arkhipov

arXiv:1011.3245

Maris Ozols

April 21, 2011

The BIG dilemma...

The great dream

Quantum computers are more powerful than classical computers

The sad possibility

Church–Turing thesis: Everything that is efficiently computable by
any physical device is efficiently computable by a Turing machine

Which one do we believe in?
I Shor’s algorithm
⇒ You can’t simulate a quantum computer
unless you can factor efficiently!

I This result
⇒ You can’t simulate a quantum computer
unless. . . something bad happens. . .

The BIG dilemma...

The great dream

Quantum computers are more powerful than classical computers

The sad possibility

Church–Turing thesis: Everything that is efficiently computable by
any physical device is efficiently computable by a Turing machine

Which one do we believe in?

I Shor’s algorithm
⇒ You can’t simulate a quantum computer
unless you can factor efficiently!

I This result
⇒ You can’t simulate a quantum computer
unless. . . something bad happens. . .

The BIG dilemma...

The great dream

Quantum computers are more powerful than classical computers

The sad possibility

Church–Turing thesis: Everything that is efficiently computable by
any physical device is efficiently computable by a Turing machine

Which one do we believe in?
I Shor’s algorithm
⇒ You can’t simulate a quantum computer
unless you can factor efficiently!

I This result
⇒ You can’t simulate a quantum computer
unless. . . something bad happens. . .

The BIG dilemma...

The great dream

Quantum computers are more powerful than classical computers

The sad possibility

Church–Turing thesis: Everything that is efficiently computable by
any physical device is efficiently computable by a Turing machine

Which one do we believe in?
I Shor’s algorithm
⇒ You can’t simulate a quantum computer
unless you can factor efficiently!

I This result
⇒ You can’t simulate a quantum computer
unless. . .

something bad happens. . .

The BIG dilemma...

The great dream

Quantum computers are more powerful than classical computers

The sad possibility

Church–Turing thesis: Everything that is efficiently computable by
any physical device is efficiently computable by a Turing machine

Which one do we believe in?
I Shor’s algorithm
⇒ You can’t simulate a quantum computer
unless you can factor efficiently!

I This result
⇒ You can’t simulate a quantum computer
unless. . . something bad happens. . .

The BIG dilemma...

The great dream

Quantum computers are more powerful than classical computers

The sad possibility

Church–Turing thesis: Everything that is efficiently computable by
any physical device is efficiently computable by a Turing machine

Which one do we believe in?
I Shor’s algorithm
⇒ You can’t simulate a quantum computer
unless you can factor efficiently!

I This result
⇒ You can’t simulate a quantum computer
unless. . . something bad happens. . .

The BIG dilemma...

The great dream

Quantum computers are more powerful than classical computers

The sad possibility

Church–Turing thesis: Everything that is efficiently computable by
any physical device is efficiently computable by a Turing machine

Which one do we believe in?
I Shor’s algorithm
⇒ You can’t simulate a quantum computer
unless you can factor efficiently!

I This result
⇒ You can’t simulate a quantum computer
unless. . . something bad happens. . .

The BIG dilemma...

The great dream

Quantum computers are more powerful than classical computers

The sad possibility

Church–Turing thesis: Everything that is efficiently computable by
any physical device is efficiently computable by a Turing machine

Which one do we believe in?
I Shor’s algorithm
⇒ You can’t simulate a quantum computer
unless you can factor efficiently!

I This result
⇒ You can’t simulate a quantum computer
unless. . . something bad happens. . .

Polynomial
hierarchy
collapses!

Complexity theory crash course

Complexity classes

I P – polynomial time

I NP – non-deterministic polynomial time

I PH – polynomial hierarchy (2nd order logic)

I BPP – bounded-error probabilistic polynomial time

I BQP – bounded-error quantum polynomial time

PH

BQP
BPPNP

P

?

Computation with non-interacting bosons

Model of computation

I Parameters: n photons in m = poly(n) modes

I State space: span{|s1, . . . , sm〉 : sk ≥ 0,
∑m

k=1 sk = n}
I Initial state: |1n〉 := |1, . . . , 1, 0, . . . , 0〉
I Transformations: ϕn(U) for any U ∈ U(m), where ϕn extends

the action from 1 to n photons

I Measurement: the number of photons in each mode

The BosonSampling problem

Given a description of U ∈ U(m), produce samples from the
probability distribution

Pr[S] := |〈S|ϕn(U)|1n〉|2

Transition matrix

Definition
If |S〉 = |s1, . . . , sm〉 and |T 〉 = |t1, . . . , tm〉 then ϕn is defined as

〈S|ϕn(A)|T 〉 =
perm(AS,T)√

s1! · · · sm!t1! · · · tm!

where AS,T is the n× n matrix obtained by taking si copies of the
ith row and tj copies of jth column of A

Example

ϕ2 :

(
a b
c d

)
|10〉
|01〉 7→

 a2
√
2ab b2√

2ac ad+ bc
√
2bd

c2
√
2cd d2

 |20〉|11〉
|02〉

Properties

I ϕn is a homomorphism: ϕn(A ·B) = ϕn(A) · ϕn(B)

I if U is unitary then so is ϕn(U)

Transition matrix

Definition
If |S〉 = |s1, . . . , sm〉 and |T 〉 = |t1, . . . , tm〉 then ϕn is defined as

〈S|ϕn(A)|T 〉 =
perm(AS,T)√

s1! · · · sm!t1! · · · tm!

where AS,T is the n× n matrix obtained by taking si copies of the
ith row and tj copies of jth column of A

Example

ϕ2 :

(
a b
c d

)
|10〉
|01〉 7→

 a2
√
2ab b2√

2ac ad+ bc
√
2bd

c2
√
2cd d2

 |20〉|11〉
|02〉

Properties

I ϕn is a homomorphism: ϕn(A ·B) = ϕn(A) · ϕn(B)

I if U is unitary then so is ϕn(U)

Transition matrix

Definition
If |S〉 = |s1, . . . , sm〉 and |T 〉 = |t1, . . . , tm〉 then ϕn is defined as

〈S|ϕn(A)|T 〉 =
perm(AS,T)√

s1! · · · sm!t1! · · · tm!

where AS,T is the n× n matrix obtained by taking si copies of the
ith row and tj copies of jth column of A

Example

ϕ2 :

(
a b
c d

)
|10〉
|01〉 7→

 a2
√
2ab b2√

2ac ad+ bc
√
2bd

c2
√
2cd d2

 |20〉|11〉
|02〉

Properties

I ϕn is a homomorphism: ϕn(A ·B) = ϕn(A) · ϕn(B)

I if U is unitary then so is ϕn(U)

Permanent

The magic box

aei+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

aei+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei

+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf

+ dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc

+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc+ gec

+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc+ gec+ ahf

+ dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

aei+ gbf + dhc+ gec+ ahf + dbi

perm

a b c
d e f
g h i



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

perm

(
a b
d e

)

Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

perm

(
a b
d e

)

Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

perm

a a b
d d e
d d e



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Permanent

The magic box

a b c

d e f

g h i

perm

a a b
d d e
d d e



Definition perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

Theorem (Valiant ‘79)
Computing perm(A) is #P-hard

〈S|ϕn(A)|T 〉 =
perm(AS,T)

√
s1! · · · sm!t1! · · · tm!

Main results

Theorem (exact case)

The exact BosonSampling problem is not efficiently solvable by
a classical computer, unless polynomial hierarchy collapses

Theorem (approximate case)

If the following two conjectures are true:

1. the permanent of a random Gaussian matrix is #P-hard to
approximate and

2. it is not too concentrated around 0

then it is not possible to approximately solve the
BosonSampling problem, unless polynomial hierarchy collapses

Main results

Theorem (exact case)

The exact BosonSampling problem is not efficiently solvable by
a classical computer, unless polynomial hierarchy collapses

Theorem (approximate case)

If the following two conjectures are true:

1. the permanent of a random Gaussian matrix is #P-hard to
approximate and

2. it is not too concentrated around 0

then it is not possible to approximately solve the
BosonSampling problem, unless polynomial hierarchy collapses

Experimental feasibility

Linear optics

I prepare photons using single photon sources

I use beam splitters and phase shifters to implement U

I use photodetectors to perform the readout

I the order of parameters: n = 10, m = 20

Good

I easier to build than a full-scale QC (no interaction between
pairs of photons needed)

I photons are never used as qubits (no need to store them)

Problems

I need good photon sources and detectors

I all n photons must arrive at the destination at the same time

Experimental feasibility

Linear optics

I prepare photons using single photon sources

I use beam splitters and phase shifters to implement U

I use photodetectors to perform the readout

I the order of parameters: n = 10, m = 20

Good

I easier to build than a full-scale QC (no interaction between
pairs of photons needed)

I photons are never used as qubits (no need to store them)

Problems

I need good photon sources and detectors

I all n photons must arrive at the destination at the same time

Experimental feasibility

Linear optics

I prepare photons using single photon sources

I use beam splitters and phase shifters to implement U

I use photodetectors to perform the readout

I the order of parameters: n = 10, m = 20

Good

I easier to build than a full-scale QC (no interaction between
pairs of photons needed)

I photons are never used as qubits (no need to store them)

Problems

I need good photon sources and detectors

I all n photons must arrive at the destination at the same time

Thank you!

