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1 Mathematics of quantum information

1.1 Basics
1.1.1 Bell basis, teleportatoin and superdense coding

Bell basis states:

_ 10,9+ (=D)*[1,9)
|Bay) = 3 (1)

Preparation of a Bell basis state (H on the first qubit, followed by CNOT):

@) {H |- (2)

ly) ——b-

M p. 25in NC !l

1.1.2 Measurements
General measurement:

M, pM}

Pm = Te(MpypML)  pm = S (3)

M POVM: !

Fact (Principle of deferred measurement). Measurements can always be moved
from an intermediate stage of a quantum circuit to the end of the circuit. Any
classically controlled operations that use the measurement results can be replaced
by conditional quantum operations.

1.1.3 Decompositions and normal forms

Fact. (A®1I)|¢) = (I®AT)|p) where |¢) =, |i)|i) is the mazimally entangled
state and A € M,,(C). This follows by projecting both sides on (j|(k|.

Theorem (Schmidt decomposition). If [¢)) € Ha ® Hp, then there exist or-
thonormal bases {|ia)}i and {|ig)}: for Ha and Hp, respectively, such that

) = Z)\i|iA>|iB>~ (4)

Note: one can take the first basis and the coefficients to be the eigenvectors and
square roots of the eigenvalues of the reduced state Trpg (|¢><z/1|), respectively.



Theorem (Purification). If p is a mized state on system A, then there is a
system B and a pure state |¢p) on AB such that

p = Trp(J)(¥]). (5)

Lemma (General purification). If 1) is a purification of p, then it can be
written in the form

W) = (0" @ U)|¢) (6)

for some unitary U.

Theorem (Polar decomposition). Any A € M,,(C) can be written in the form
A=UP=QU, (7)

where P,Q >0, U € U(n). In particular, P =V ATA and Q = vV AAT.

1.1.4 Pauli matrices and Bloch sphere
Pauli matrices are:
X=015) vy=07) 2=0G2) (8)

Any single qubit density matrix can be written as

Fact. If A% =1, then €94 = cos(0A) +isin(0A) = I cosf + iAsin .
Fact. (7-3)2 = |F]>I so 7- & has eigenvalues =+ |7].
Fact. Rotation around a unit vector 7 by angle « is given by

e"12(™%) = T cos g —i(7- &) sin §. (10)

1.1.5 Elementary circuit identities

< = - (11)
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1.2 Trace distance

Trace distance:

D)= 3 e el = mass(p(5) — a(5)). (15)
zeX
D(p,0) i= 5 Trlp— ol = max Tr(P(p—0)). (16)
For qubits:
Frr,s) = % It — ral. (17)
Tricks:

e If P,@ > 0, then Tr(PQ) > 0,
e If I > P >0 and Q > 0, then Tr(Q) > Tr(PQ),

e p—0o =@ — S, where @, S > 0 have orthogonal supports.
Theorem. Let {E,,} be a POVM. Then

D(p,d) = Féaﬁ D({pm}a{Qm})7 (18)

m

where py, = Tr(pEy,), and g = Tr(pEy,).

1.3 Fidelity and Uhlmann’s theorem

Fidelity:
F(p,q):=>_ \/Dalz = /P-4 (19)
zeX
F(p,0) = Tr/p'/2cp!/? (20)

A and AT have the same singular values, therefore Tr ‘AT’ = Tr|A|. Fidelity
is symmetric, since

F(p,o) =Tr/pt/2ap!/? (21)
:’I\r\/(a-l/Qpl/Q)To-l/Qpl/Q (22)

— Ty ‘01/2/)1/2‘ (23)

=Tr ‘(pl/zal/z)T’ (24)

— Ty pl/zal/z‘ (25)

= F(a,p). (26)

For qubits:

P =g (Leron e f0-imPa-inf)  en



Lemma. If A is any operator and U is unitary, then |Tr(AU)| < Tr|A].
Theorem (Uhlmann).

F(p,0) = nax, (1@ (28)

1.4 Quantum operations
Different representations of a general quantum operation &:
1. Stinespring representation: €(p) = Trg(U(p @ [0){(0))UT).
2. Kraus representation: E(p) = >, Eka;;, where )", E};Ek =1

3. Choi-Jamiotkowski representation: £(p) = Trp(Je-(I®p")), where Jg :=
(@ D(Ie)(el) = 3y E(li)i]) @ 13) (-

4. Completely positive and trace preserving: (EQI)(p) > 0and Tr&(p) = Trp
for all p.

How to convert between these representations:
e Stinespring = Kraus: Ej := (I ® (k))U(I ® |0))
e Kraus = Stinespring: U(I ® |0)) := Y, Exlk)
Physical interpretation of Kraus representation: £(p) =Y, prpk, where

EwpE]

t
pr = Tr(ExpE and pp = ————.
(Bup ) Tx(EypE})

(29)

1.5 Quantum gates, circuit model, and universality

Theorem (Z-Y decomposition). For any U € U(2) there exist a, 8,7,0 € R
such that U = e R, (B) Ry (v)R.(d), where Ry (0) = e~i5o,

Theorem. For any U € U(2) there exist A, B,C € U(2) such that ABC =1
and U = e"*AXBXC for some o € R.

Given such decomposition for U, we can implement c-U as follows:

(0o ) (30)

Note that

A(pen)f = —9— (31)




If V2 = U then we can implement cc-U as follows:

—e— (32>

— Py N Py

— = \J/L\C

Note: the marked region performs V1 controlled on XOR of the first two bits.
More controls can be added using workspace qubits initialized in |0):

U

— (33)
= ¢
—
—
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|0) & D
|0) O—e—0

o
:

We can add more controls to Toffoli gate without imposing any restrictions on
the initial state of the workspace:

(34)
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Note: the marked gates act as follows:

e invert w; if and only if the first 2 bits are set to 1,

e invert wo if and only if the first 3 bits are set to 1.

1.5.1 Givens rotations
If @ # 0 and B # 0 then
G(a,B)
L (Y (3)- (maﬁ ¥ |ﬁ|2> (35)
Vel 4152 N7 @/ 0




Note that G(«, ) € SU(2). In general a two-level unitary
1

1

VlIel® +18/° 5 a

Gij(aa ﬁ) =

1

is called Givens rotation. If U € U(n) then for appropriately chosen parameters
«a and 8 we have

0o U

where U’ € U(n — 1). By recursively applying this procedure we obtain a
diagonal matrix of the form diag(1,...,1,detU).
I implementing a 2-level unitary (Gray code) !!!

1 0
Gin .. .Gi13G1oU = ( ) (37)

2 Elementary quantum algorithms

2.1 Phase kickback
If a € {0,1} then

X=) = (=1)"-). (38)
If f:{0,1}" — {0,1} and Us|z)|y) = |z)|y ® f(z)) then
Uylz)|—) = (=1)/ @ |z)|-). (39)

2.2 Deutsch’s algorithm

Problem. Determine whether f : {0,1} — {0,1} is constant or balanced.
Equivalently, compute f(0) @ f(1).

Circuit.
0 —HH (40)
f
1) 1)
Analysis.
)10 2= ((FDO0)-) + (DD (41)
=)/ () + (O O) |- (12)

|[+) or |—) depending on f(0) @ f(1)



2.3 Deutsch—Jozsa algorithm
Problem. Determine whether f: {0,1}"™ — {0,1} 4s constant or balanced.

Circuit.

07) — H®" Hen (43)
) —{E_—{EF—N)

Analysis. Recall the formula:

L 2”71_ g

1) = 7 3 7 4
We have

e Z (45)

@) ||
2n {Z: f | > (46)
Heﬁl)in Z (—1)FTH @y 1) (47)

ve{0.1)r

The amplitude for 7 = 0 is given by

1 " +1 if f is constant
= X (—1>f<>—{0 L osant (48)
vefon} if f is balance

2.4 Bernstein—Vazirani problem

Problem. Determine § € {0,1}"™ by querying f : {0,1}™ — {0,1} given by

f(@)=8-T=5121D8200P -+ D Spy (49)
Circuit.
) = 0

Uy
1) 1)

Analysis. Apply the Hadamard transform formula in the backward direction:

n Uy 1 z-5
=) e S (~1)Pa))-) (51)
2 ze{0,1}m
gOMm+) 1 (45
= on > (=)TIy)) (52)
a:;yE{O,l}”

The amplitude for i = §'is clearly 1, so the other amplitudes must be 0.



2.5 Simon’s algorithm

3 Quantum Fourier transform and phase esti-
mation

Let y/2" = >0, y127' = 0.y1y2 . .. yn. Then

2" -1
QFT|z) = Z e2miey/2" |y (53)
\/27
1 LT . -t
= 7 D e iiav ) (54)
yG{O,l}"
n
= @ (1) + =2 ) (55)

1

4 Shor’s algorithm for factoring

4.1 Period finding
f:{0,1,...,2" =1} — {0,1}"™. Promise: f(z)= f(y) & x =y (mod b).

on

10y [0y P55 ﬁn Z )]0 (56)
2" -1
s ﬁn Z )| f (= (57)

If we get outcome f(z() after measuring the 2nd register we get, the state that
is left over is

1 .
ﬁzmo +Jr), (58)
3=0
where k € {[%L L%J} Applying QFT ™! we get
2" —1k—1 _
l(fﬂo+j7’)|
e~ Y). (59)
y=0 j5=0
If r {27, then
1 2 Try:k'
Pr(y) = 5,7y (60)

an San 7r2{17



5 Grover’s quantum search algorithm

6 Computational complexity

In what follows DTM stands for a Deterministic Turing Machine.

Definition. A promise problem is a pair A = (Ayes, Ano), Where Ayes, Ano C
{0,1}* and Ayes N Apo = 0.

‘ Compute ‘ Verify
Deterministic | P, PSPACE NP
Probabilistic BPP, PP MA
Quantum BQP, BPP | QMA

Table 1: The success probabilities of numerical QRACs.

I PICTURE !!
Most of the following definitions start with “A promise problem A = (Ayes; Ano)
is in [complexity class] if and only if...”.

Definition (P). ...there exists a DTM .# that runs in polynomial time such
that

o Vi€ Ayes: M(x) =1,
o Vr € Apo: M (x)=0.
Definition (PSPACE). Similar to P, except .# runs in polynomial space.

Definition (NP). ...there exists a DTM .# that runs in polynomial time and
a polynomial p such that

o Vx € Ayes Jy € {0, 1}P02D . (2, y) = 1 (completeness),
o V€ Ay Vy € {0, 132020 - 7 (x,y) = 0 (soundness).

Definition (PP). ...there exists a DTM .# that runs in polynomial time and
a polynomial p such that

o Vz € Ayes : |[{r € {0, 13700+ 47 (2, r) = 1}| j2r(=D > 1,
o Va € Ano: [{r € {0, 137050 : 77 (2, r) = 1}| j2r(=D < 1.

Definition (BPP). Similar to PP, except the probabilities are “...> 27 and
“oo < %”, respectively.

Definition (MA). ...there exists a DTM .# that runs in polynomial time and
polynomials p and ¢ such that

o Vz € Ayes Iy € {0,1320=D : |{r € {0,1}20=D . #(2,y,r) =1} > 2 (com-
pleteness),

10



o Vo € Ap Wy € {0,1}20=D : |{r € {0,1}902D . 7 (2, y,r) =1} < L (sound-
ness).

Definition (BQP). ... there exists a polynomial-time generated family of quan-
tum circuits @ = {Q,, : n € N}, where each circuit @,, takes n input qubits and
produces one output qubit, such that

o V& € Ayes : Pr[Q), accepts x| > 2,
o Vo € Ay : Pr[Q,) accepts z] < %
Definition (QMA). ... there exists a polynomial-time generated family of quan-

tum circuits @ = {Q@, : n € N}, where each circuit Q,, takes n + p(n) input
qubits and produces one output qubit, such that

o Va € Ayes Ip € D(2PU2D) Pr[Q,| accepts (z,p)] > 2 (completeness),
e Vo € Ay, Vp € D(2PUD) . Pr[Q|, accepts (z,p)] < 3 (soundness),

where D(d) stands for the set of all d x d density matrices.

7 Quantum error correction and fault tolerance

Action via conjugation:

H:X—Z H:Z— X H:Y —-Y (61)
S: XY S:Y s —X S:Zw— 2 (62)
CNOT: X @1 X @ X (63)
CNOT: I®X > I®X (64)
CNOT:Z®1Iw Z®1 (65)
CNOT:I®Z+ Z®Z (66)

7.1 Quantum error correction

Theorem (Quantum error-correction condition). Let C' be a quantum code and
Il the projector onto the code subspace, and € = {E;} a quantum operation.
An operation for correcting € on C exists if and only if

Mo E Elle = a;llo (67)
for some Hermitian matrix o.

Theorem (Discretization of errors). Let C' be a quantum code and R be the
error-correction operation to recover from € = {E;} constructed in the proof of
the previous theorem. If F = {F;} where F; = Y . m;;E; for some complex
matriz m, then R also corrects for F on the code C'.

11



7.1.1 The Shor code

10) > [+)%% %uoom 4 [111))®8 = [o) (68)

®3 1 —
1) = =) = m(|000> —[111))%% = |11) (69)
8 Quantum information theory and basic com-

munication protocols

8.1 Resource tradeoffs

Let = € {0,1}. The ability to perform the corresponding transformation for any
basis vector is a resource:

e qubit: |z), — |z) 5,
e chit: |z), — |z)g|x) 5,
e cobit: |z), = |z) 4|T) 5.

Trivial inequalities:
1 qubit > 1 cobit > 1 cbit. (70)

(Alice can perform a CNOT to create a coherent copy of the state in standard
basis, and send one half to Bob. Alice can discard her half of the coherent bit
to get a classical bit.) Ability to transmit coherent bits can be used to generate
entanglement by using |4) as input:

1 cobit > 1 ebit. (71)
Irreversible transformations:
e 1 qubit + 1 ebit > 2 cbits (superdense coding),
e 2 cbits + 1 ebit > 1 qubit (teleportation).
Reversible transformations given a catalyst ebit:
o (1 qubit 4 1 ebit) > (2 cobits),

e (2 cobits) +1 ebit > (1 qubit+1 ebit) + 1 ebit (send over a coherent copy
without measuring it).

(Before running the superdense coding protocol, Alice makes local copies of
her two classical bits; this does not require the catalyst ebit. Alice performs a
unitary that maps Bell basis to standard basis (see circuit in Eq. (2)) on the
qubit in an unknown state and her half of the ebit; instead of measuring and
transmitting two classical bits, she uses coherent communication; conditional
on the two received coherent bits, Bob corrects his half of the ebit; they end up

12



generating two ebits from the coherent communication, and Bob also ends up
having the unknown state.) Conclusion:

(2 cobits) 4+ 1 ebit = (1 qubit + 1 ebit) + 1 ebit (72)

where the ebit is used as a catalyst.

8.2 Nayak’s bound

Theorem. If X € {0,1}™ is drawn uniformly at random, encoded in n qubits,
and recovered to Y, the probability that X =Y is at most 2" /2™.

Proof. Let {Il, : € {0,1}™} be an orthonormal measurement in (C?)®" i.e.,
a set of projectors that sum to identity, and |¢,) € (C?)®™ the encoding of x.
Then

1
PrX =Y]= oo > [Malea)’ (73)
ze{0,1}™
1
=g > Tr(lalés)(00]) (74)
ze{0,1}™
= gim Y. T(LIc) (75)
ze{0,1}™
= 5 Tl (76)
27’L
~om (77)
O

13



