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Quantum algorithms for searching



Spatial search on a graph

Setup

I Graph with vertex set X

I Marked vertices: unknown M ⊆ X
I Vertex register: current position

I Edges: legal moves

The problem

I Move the robot to a
marked vertex x ∈M

I Complexity: # moves
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Search via random walk

Markov chain on the graph

Stochastic matrix P = (pxy)

I pxy 6= 0 only if (x, y) is an edge

I stationary distribution: π = πP

Algorithm

I Start from random x ∼ π
I Apply P until x is marked

Hitting time

HT(P,M) = expected # steps of P to reach any x ∈M
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Classical intuition

Absorbing walk

I Turn all outgoing transitions from marked vertices into
self-loops: P =

Ä
PUU PUM
PMU PMM

ä
⇒ P ′ =

Ä
PUU PUM
0 I

ä
I Stationary distribution: πM = “π restricted to M”

Interpolation

I P (s) = (1− s)P + sP ′

I Stationary distribution: π(s) ∼
Ä
(1− s)πU πM

ä
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The algorithm

Adiabatic version

I Define a Hamiltonian H(s)
corresponding to P (s)

I Interpolate s from 0 to 1

Circuit version

I Use Szegedy’s method to define a unitary W (P (s))

I W (P (s)) has a unique 1-eigenvector |π(s)〉
I Use phase estimation to measure in the eigenbasis of W (P (s))

Algorithm

1. Prepare |π〉

2. Project onto |π(s∗)〉 = |πU 〉+|πM 〉√
2

3. Measure current vertex
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The main result

Theorem
Let P be a reversible, ergodic Markov chain on a set X and
M ⊆ X be a set of marked elements. A quantum algorithm can
find an element in M within

»
HT(P,M) steps



Quantum rejection sampling



Classical rejection sampling

Classical resampling problem

I Given: Ability to sample from distribution p

I Task: Sample from distribution s

I Note: Distributions p and s are known

, but samples are pairs
(k, ξ(k)) where ξ(k) is not accessible

P
ξ(k)

k A

ξ(k)
accept/reject

k

Classical algorithm

I Accept k with probability γ
sk
pk

I Complexity: Θ(1/γ) where 1/γ = maxk
sk
pk
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Quantum rejection sampling

Quantum resampling problem

I Given: Oracle O : |0〉 7→∑n
k=1 πk|ξk〉|k〉

I Task: Perform transformation

n∑
k=1

πk|ξk〉|k〉 7→
n∑
k=1

σk|ξk〉|k〉

I Note: Amplitudes πk and σk are known, but states |ξk〉 are
not known

Theorem
The quantum query complexity of the π → σ quantum resampling

problem is Θ(1/γ) where 1/γ = maxk

∣∣∣∣σkπk
∣∣∣∣

Proof idea: Algorithm is based on amplitude amplification, but the
lower bound is based on a hybrid argument
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Applications

Implicit use

I synthesis of quantum states [Grover, 2000]

I linear systems of equations [Harrow, Hassidim and Lloyd 2009]

I fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

I speed up quantum Metropolis sampling algorithm by
[Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]

I new quantum algorithm for the hidden shift problem of any
Boolean function

New applications by others

I preparing PEPS states [Schwarz, Temme, Verstraete, 2011]



Boolean hidden shift problem



Motivation

Hidden shift and subgroup problems

Hidden
shift

problems

Hidden
subgroup
problems

Dihedral
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XXXz Pell’s
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Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn2 → Z2 and access to a
black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0

x0 + s

fs(x)

s
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Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉

Function f is bent if ∀w : |F̂ (w)| = 1√
2n
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Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑
w∈Zn2 (−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I If f is bent then ∀w : |F̂ (w)| = 1√
2n

and thus

H⊗n diag
(
|F̂ (w)|
F̂ (w)

)
|Φ(s)〉 = |s〉

I Complexity: Θ(1)
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Other Boolean functions?

Known

I delta functions are hard

I bent functions are easy

Problem
What is the quantum query complexity of the hidden shift problem
for an arbitrary Boolean function?

Three approaches

1. Grover-like [Grover’00] / quantum rejection sampling [ORR’11]

2. Pretty good measurement

3. Simon-like [Rötteler’10, GRR’11]
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Algorithm 1: Grover-like / quantum rejection sampling

Quantum resampling

∑
w∈Zn2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn2

(−1)s·w
1√
2n
|w〉

Complexity: O(1/γ) where 1/γ = maxw
σw
πw

=
1√
2n
· 1

F̂min

Performance

I Delta functions: O(
√

2n)

I Bent functions: O(1)

Issues

I What if F̂min = 0?

I Undetectable anti-shifts: f(x+ s) = f(x) + 1
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Algorithm 1: Approximate version

I Aim for approximately flat state

I Fix success probability p

I Optimal target amplitudes are given by the “water filling”
vector εp such that µT · εp

‖εp‖2 ≥
√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)
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Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.
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.
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. . . . . .
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. . . . . .

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn2 (−1)s·wF̂ (w)|w〉
ä⊗t

After stage 2: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

PGM: |Ets〉 := 1√
2n

∑
w∈Zn2 (−1)s·w |Ftw〉

‖|Ftw〉‖2
|w〉

Success probability:∣∣∣〈Ets|Φt(s)〉
∣∣∣2 =

1

2n

( ∑
w∈Zn2

 
1√
2n
⁄�(F ∗ F )t (w)

)2
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Algorithm 2: Pros / cons

Performance

I Bent functions: O(1)

I Random functions: O(1)

I No issues with undetectable anti-shifts

Issues

I Delta functions: O(2n), no speedup

Note

I For some t ≤ n all amplitudes will be non-zero!



Algorithm 3: Simon-like

I Oracle Ofks : |k〉|w〉 7→ (−1)f(x+ks)|k〉|w〉
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H H

H⊗n H⊗nOfks

k

|Ψ(s)〉 :=
∑
w∈Zn2

F̂ (w)|s · w〉|w〉

I Complexity: O(n/
√
If )

I Where If (w) is the influence of w ∈ Zn2 on f :

If (w) := Pr
x

î
f(x) 6= f(x+ w)

ó
and If := minw If (w)
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Summary

Comparison

delta bent random F̂ (w) = 0 issues

Grover-like O(
√

2n) O(1) O(1) yes
PGM O(2n) O(1) O(1) no

Simon-like O(n
√

2n) O(n) O(n) no

Conclusions

I PGM and Simon-like are suboptimal in some cases

I the Grover-like algorithm fails when lots of Fourier coefficients
are equal to zero



Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case

I Decision trees?

I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)

I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?
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...any questions?



Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

where ‖|F tw〉‖22 =
î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F )t (w)

I Convolution: (F ∗ F )(w) =
∑
x∈Zn2 F (x)F (w − x)
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