
Quantum algorithms for the hidden shift
problem of Boolean functions

Maris Ozols
University of Waterloo, IQC

and NEC Labs

Joint work with: Martin Rötteler (NEC Labs)
Jérémie Roland (NEC Labs)
Andrew Childs (University of Waterloo, IQC)

arXiv:1103.2774 Quantum rejection sampling
arXiv:1103.3017 Quantum algorithm for the Boolean hidden shift problem

19/09/2011 Dagstuhl 1

Motivation

Hidden shift and subgroup problems

19/09/2011 Dagstuhl 2

Hidden
shift

problem

Hidden
subgroup
problem

Dihedral
group

Symmetric
group

Q
Q

QQk

Legendre
symbol

[van Dam et al., 2003]

�
�

��	

?

New algorithms ?
?

Attacks on
cryptosystems

�
�
��3

Factoring
[Shor, 1994]

���:
Discrete
logarithm
[Shor, 1994]

XXXz Pell’s
equation

[Hallgren, 2002]
Z
ZZ~

?

Lattice
problems
[Regev, 2002]?

?

Graph
isomorphism

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn
2 → Z2 and access to a

black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0

x0 + s

fs(x)

s

19/09/2011 Dagstuhl 3

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn
2 → Z2 and access to a

black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1n

f(x)

x0

x0 + s

fs(x)

s

19/09/2011 Dagstuhl 3

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn
2 → Z2 and access to a

black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

19/09/2011 Dagstuhl 3

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn
2 → Z2 and access to a

black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

19/09/2011 Dagstuhl 3

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉

= 1√
2n

∑
x∈Zn

2
(−1)w·xF (x)

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

19/09/2011 Dagstuhl 4

H := 1√
2

(
1 1
1 −1

)

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉

= 1√
2n

∑
x∈Zn

2
(−1)w·xF (x)

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

19/09/2011 Dagstuhl 4

H := 1√
2

(
1 1
1 −1

)

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉 = 1√
2n

∑
x∈Zn

2
(−1)w·xF (x)

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

19/09/2011 Dagstuhl 4

H := 1√
2

(
1 1
1 −1

)

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉 = 1√
2n

∑
x∈Zn

2
(−1)w·xF (x)

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

19/09/2011 Dagstuhl 4

H := 1√
2

(
1 1
1 −1

)

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I D|Φ(s)〉 =

∑
w∈Zn

2
(−1)s·w|F̂ (w)||w〉

where D := diag
(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04]

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)

19/09/2011 Dagstuhl 5

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I D|Φ(s)〉 =

∑
w∈Zn

2
(−1)s·w|F̂ (w)||w〉

where D := diag
(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04]

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)

19/09/2011 Dagstuhl 5

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉

I D|Φ(s)〉 =
∑

w∈Zn
2
(−1)s·w|F̂ (w)||w〉

where D := diag
(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04]

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)

19/09/2011 Dagstuhl 5

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I D|Φ(s)〉 =

∑
w∈Zn

2
(−1)s·w|F̂ (w)||w〉

where D := diag
(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04]

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)

19/09/2011 Dagstuhl 5

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I D|Φ(s)〉 =

∑
w∈Zn

2
(−1)s·w|F̂ (w)||w〉

where D := diag
(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04]

I If f is bent then H⊗nD|Φ(s)〉 = |s〉

I Complexity: Θ(1)

19/09/2011 Dagstuhl 5

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I D|Φ(s)〉 =

∑
w∈Zn

2
(−1)s·w|F̂ (w)||w〉

where D := diag
(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04]

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)

19/09/2011 Dagstuhl 5

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

Three approaches:

1. Grover-like [Grover’00] / quantum rejection sampling [ORR’11]

2. Pretty good measurement

3. Simon-like [Rötteler’10, GRR’11]

19/09/2011 Dagstuhl 6

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

Three approaches:

1. Grover-like [Grover’00] / quantum rejection sampling [ORR’11]

2. Pretty good measurement

3. Simon-like [Rötteler’10, GRR’11]

19/09/2011 Dagstuhl 6

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

Three approaches:

1. Grover-like [Grover’00] / quantum rejection sampling [ORR’11]

2. Pretty good measurement

3. Simon-like [Rötteler’10, GRR’11]

19/09/2011 Dagstuhl 6

J Easy (bent function)

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

Three approaches:

1. Grover-like [Grover’00] / quantum rejection sampling [ORR’11]

2. Pretty good measurement

3. Simon-like [Rötteler’10, GRR’11]

19/09/2011 Dagstuhl 6

J Easy (bent function)

Hard (delta function) I

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

Three approaches:

1. Grover-like [Grover’00] / quantum rejection sampling [ORR’11]

2. Pretty good measurement

3. Simon-like [Rötteler’10, GRR’11]

19/09/2011 Dagstuhl 6

J Easy (bent function)

Hard (delta function) I

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

Three approaches:

1. Grover-like [Grover’00] / quantum rejection sampling [ORR’11]

2. Pretty good measurement

3. Simon-like [Rötteler’10, GRR’11]

19/09/2011 Dagstuhl 6

J Easy (bent function)

Hard (delta function) I

Algorithm 1: Grover-like / quantum rejection sampling

∑
w∈Zn

2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn

2

(−1)s·w
1√
2n
|w〉

I Pick ε ∈ R2n such that ∀w : 0 ≤ εw ≤ |F̂ (w)|
I Apply Rε : |w〉|0〉 7→ |w〉 1

F̂ (w)

(»
F̂ (w)2 − ε2w|0〉+ εw|1〉

)
I If we would measure the last qubit, we would get outcome

“1” w.p. ‖ε‖22 and the post-measurement state would be

1

‖ε‖2

∑
w∈Zn

2

(−1)s·wεw|w〉

I Instead of measuring, amplify the amplitude on |1〉
I Complexity: O(1/‖ε‖2)
I Take εw = F̂min to get s with certainty in O

Ä
1√

2nF̂min

ä
queries

19/09/2011 Dagstuhl 7

Algorithm 1: Grover-like / quantum rejection sampling

∑
w∈Zn

2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn

2

(−1)s·w
1√
2n
|w〉

I Pick ε ∈ R2n such that ∀w : 0 ≤ εw ≤ |F̂ (w)|

I Apply Rε : |w〉|0〉 7→ |w〉 1
F̂ (w)

(»
F̂ (w)2 − ε2w|0〉+ εw|1〉

)
I If we would measure the last qubit, we would get outcome

“1” w.p. ‖ε‖22 and the post-measurement state would be

1

‖ε‖2

∑
w∈Zn

2

(−1)s·wεw|w〉

I Instead of measuring, amplify the amplitude on |1〉
I Complexity: O(1/‖ε‖2)
I Take εw = F̂min to get s with certainty in O

Ä
1√

2nF̂min

ä
queries

19/09/2011 Dagstuhl 7

Algorithm 1: Grover-like / quantum rejection sampling

∑
w∈Zn

2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn

2

(−1)s·w
1√
2n
|w〉

I Pick ε ∈ R2n such that ∀w : 0 ≤ εw ≤ |F̂ (w)|
I Apply Rε : |w〉|0〉 7→ |w〉 1

F̂ (w)

(»
F̂ (w)2 − ε2w|0〉+ εw|1〉

)

I If we would measure the last qubit, we would get outcome
“1” w.p. ‖ε‖22 and the post-measurement state would be

1

‖ε‖2

∑
w∈Zn

2

(−1)s·wεw|w〉

I Instead of measuring, amplify the amplitude on |1〉
I Complexity: O(1/‖ε‖2)
I Take εw = F̂min to get s with certainty in O

Ä
1√

2nF̂min

ä
queries

19/09/2011 Dagstuhl 7

Algorithm 1: Grover-like / quantum rejection sampling

∑
w∈Zn

2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn

2

(−1)s·w
1√
2n
|w〉

I Pick ε ∈ R2n such that ∀w : 0 ≤ εw ≤ |F̂ (w)|
I Apply Rε : |w〉|0〉 7→ |w〉 1

F̂ (w)

(»
F̂ (w)2 − ε2w|0〉+ εw|1〉

)
I If we would measure the last qubit, we would get outcome

“1” w.p. ‖ε‖22 and the post-measurement state would be

1

‖ε‖2

∑
w∈Zn

2

(−1)s·wεw|w〉

I Instead of measuring, amplify the amplitude on |1〉
I Complexity: O(1/‖ε‖2)
I Take εw = F̂min to get s with certainty in O

Ä
1√

2nF̂min

ä
queries

19/09/2011 Dagstuhl 7

Algorithm 1: Grover-like / quantum rejection sampling

∑
w∈Zn

2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn

2

(−1)s·w
1√
2n
|w〉

I Pick ε ∈ R2n such that ∀w : 0 ≤ εw ≤ |F̂ (w)|
I Apply Rε : |w〉|0〉 7→ |w〉 1

F̂ (w)

(»
F̂ (w)2 − ε2w|0〉+ εw|1〉

)
I If we would measure the last qubit, we would get outcome

“1” w.p. ‖ε‖22 and the post-measurement state would be

1

‖ε‖2

∑
w∈Zn

2

(−1)s·wεw|w〉

I Instead of measuring, amplify the amplitude on |1〉

I Complexity: O(1/‖ε‖2)
I Take εw = F̂min to get s with certainty in O

Ä
1√

2nF̂min

ä
queries

19/09/2011 Dagstuhl 7

Algorithm 1: Grover-like / quantum rejection sampling

∑
w∈Zn

2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn

2

(−1)s·w
1√
2n
|w〉

I Pick ε ∈ R2n such that ∀w : 0 ≤ εw ≤ |F̂ (w)|
I Apply Rε : |w〉|0〉 7→ |w〉 1

F̂ (w)

(»
F̂ (w)2 − ε2w|0〉+ εw|1〉

)
I If we would measure the last qubit, we would get outcome

“1” w.p. ‖ε‖22 and the post-measurement state would be

1

‖ε‖2

∑
w∈Zn

2

(−1)s·wεw|w〉

I Instead of measuring, amplify the amplitude on |1〉
I Complexity: O(1/‖ε‖2)

I Take εw = F̂min to get s with certainty in O
Ä

1√
2nF̂min

ä
queries

19/09/2011 Dagstuhl 7

Algorithm 1: Grover-like / quantum rejection sampling

∑
w∈Zn

2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn

2

(−1)s·w
1√
2n
|w〉

I Pick ε ∈ R2n such that ∀w : 0 ≤ εw ≤ |F̂ (w)|
I Apply Rε : |w〉|0〉 7→ |w〉 1

F̂ (w)

(»
F̂ (w)2 − ε2w|0〉+ εw|1〉

)
I If we would measure the last qubit, we would get outcome

“1” w.p. ‖ε‖22 and the post-measurement state would be

1

‖ε‖2

∑
w∈Zn

2

(−1)s·wεw|w〉

I Instead of measuring, amplify the amplitude on |1〉
I Complexity: O(1/‖ε‖2)
I Take εw = F̂min to get s with certainty in O

Ä
1√

2nF̂min

ä
queries

19/09/2011 Dagstuhl 7

Algorithm 1: “Demo”

Algorithm

1. Prepare |Φ(s)〉
2. Perform an ε-rotation

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

19/09/2011 Dagstuhl 8

Algorithm 1: “Demo”

Algorithm

1. Prepare |Φ(s)〉

2. Perform an ε-rotation

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

19/09/2011 Dagstuhl 8

Algorithm 1: “Demo”

Algorithm

1. Prepare |Φ(s)〉
2. Perform an ε-rotation

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

19/09/2011 Dagstuhl 8

Algorithm 1: “Demo”

Algorithm

1. Prepare |Φ(s)〉
2. Perform an ε-rotation

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

19/09/2011 Dagstuhl 8

Algorithm 1: “Demo”

Algorithm

1. Prepare |Φ(s)〉
2. Perform an ε-rotation

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

19/09/2011 Dagstuhl 8

Algorithm 1: “Demo”

Algorithm

1. Prepare |Φ(s)〉
2. Perform an ε-rotation

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

19/09/2011 Dagstuhl 8

Algorithm 1: “Demo”

Algorithm

1. Prepare |Φ(s)〉
2. Perform an ε-rotation

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

19/09/2011 Dagstuhl 8

Algorithm 1: “Demo”

Algorithm

1. Prepare |Φ(s)〉
2. Perform an ε-rotation

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

19/09/2011 Dagstuhl 8

Algorithm 1: “Demo”

Algorithm

1. Prepare |Φ(s)〉
2. Perform an ε-rotation

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

19/09/2011 Dagstuhl 8

Algorithm 1: “Demo”

Algorithm

1. Prepare |Φ(s)〉
2. Perform an ε-rotation

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

19/09/2011 Dagstuhl 8

Algorithm 1: Pros / cons

Performance

I Delta functions: O(
√

2n)

I Bent functions: O(1)

Issues

I What if F̂min = 0?

I Undetectable anti-shifts: f(x+ s) = f(x) + 1

19/09/2011 Dagstuhl 9

Algorithm 1: Approximate version

I Instead of the flat state

I Fix success probability p

I Optimal choice of ε is given by the “water filling” vector εp
such that µT · εp/‖εp‖2 ≥

√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

19/09/2011 Dagstuhl 10

Algorithm 1: Approximate version

I Instead of the flat state

I Fix success probability p

I Optimal choice of ε is given by the “water filling” vector εp
such that µT · εp/‖εp‖2 ≥

√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

19/09/2011 Dagstuhl 10

Algorithm 1: Approximate version

I Instead of the flat state aim for approximately flat state

I Fix success probability p

I Optimal choice of ε is given by the “water filling” vector εp
such that µT · εp/‖εp‖2 ≥

√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

19/09/2011 Dagstuhl 10

Algorithm 1: Approximate version

I Instead of the flat state aim for approximately flat state

I Fix success probability p

I Optimal choice of ε is given by the “water filling” vector εp
such that µT · εp/‖εp‖2 ≥

√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

19/09/2011 Dagstuhl 10

Algorithm 1: Approximate version

I Instead of the flat state aim for approximately flat state

I Fix success probability p

I Optimal choice of ε is given by the “water filling” vector εp
such that µT · εp/‖εp‖2 ≥

√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

19/09/2011 Dagstuhl 10

Algorithm 1: Approximate version

I Instead of the flat state aim for approximately flat state

I Fix success probability p

I Optimal choice of ε is given by the “water filling” vector εp
such that µT · εp/‖εp‖2 ≥

√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

19/09/2011 Dagstuhl 10

Algorithm 1: Approximate version

I Instead of the flat state aim for approximately flat state

I Fix success probability p

I Optimal choice of ε is given by the “water filling” vector εp
such that µT · εp/‖εp‖2 ≥

√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

19/09/2011 Dagstuhl 10

Algorithm 1: Approximate version

I Instead of the flat state aim for approximately flat state

I Fix success probability p

I Optimal choice of ε is given by the “water filling” vector εp
such that µT · εp/‖εp‖2 ≥

√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

19/09/2011 Dagstuhl 10

Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.

.

.

.

.

.

.

.

.

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

ä⊗t
After stage 2: |Φt(s)〉 :=

∑
w∈Zn

2
(−1)s·w|F t

w〉|w〉

PGM: |Et
s〉 := 1√

2n

∑
w∈Zn

2
(−1)s·w |Ft

w〉
‖|Ft

w〉‖2
|w〉

E.g., for t = 1: |E1
s 〉 := 1√

2n

∑
w∈Zn

2
(−1)s·w F̂ (w)

|F̂ (w)| |w〉

19/09/2011 Dagstuhl 11

Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.

.

.

.

.

.

.

.

.

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

ä⊗t

After stage 2: |Φt(s)〉 :=
∑

w∈Zn
2
(−1)s·w|F t

w〉|w〉

PGM: |Et
s〉 := 1√

2n

∑
w∈Zn

2
(−1)s·w |Ft

w〉
‖|Ft

w〉‖2
|w〉

E.g., for t = 1: |E1
s 〉 := 1√

2n

∑
w∈Zn

2
(−1)s·w F̂ (w)

|F̂ (w)| |w〉

19/09/2011 Dagstuhl 11

Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.

.

.

.

.

.

.

.

.

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

ä⊗t
After stage 2: |Φt(s)〉 :=

∑
w∈Zn

2
(−1)s·w|F t

w〉|w〉

PGM: |Et
s〉 := 1√

2n

∑
w∈Zn

2
(−1)s·w |Ft

w〉
‖|Ft

w〉‖2
|w〉

E.g., for t = 1: |E1
s 〉 := 1√

2n

∑
w∈Zn

2
(−1)s·w F̂ (w)

|F̂ (w)| |w〉

19/09/2011 Dagstuhl 11

Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.

.

.

.

.

.

.

.

.

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

ä⊗t
After stage 2: |Φt(s)〉 :=

∑
w∈Zn

2
(−1)s·w|F t

w〉|w〉

PGM: |Et
s〉 := 1√

2n

∑
w∈Zn

2
(−1)s·w |Ft

w〉
‖|Ft

w〉‖2
|w〉

E.g., for t = 1: |E1
s 〉 := 1√

2n

∑
w∈Zn

2
(−1)s·w F̂ (w)

|F̂ (w)| |w〉

19/09/2011 Dagstuhl 11

Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.

.

.

.

.

.

.

.

.

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

ä⊗t
After stage 2: |Φt(s)〉 :=

∑
w∈Zn

2
(−1)s·w|F t

w〉|w〉

PGM: |Et
s〉 := 1√

2n

∑
w∈Zn

2
(−1)s·w |Ft

w〉
‖|Ft

w〉‖2
|w〉

E.g., for t = 1: |E1
s 〉 := 1√

2n

∑
w∈Zn

2
(−1)s·w F̂ (w)

|F̂ (w)| |w〉

19/09/2011 Dagstuhl 11

Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑

w∈Zn
2
(−1)s·w|F t

w〉|w〉

where ‖|F t
w〉‖22 =

î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F)t (w)

I Convolution: (F ∗ F)(w) =
∑

x∈Zn
2
F (x)F (w − x)

19/09/2011 Dagstuhl 12

Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑

w∈Zn
2
(−1)s·w|F t

w〉|w〉

where ‖|F t
w〉‖22 =

î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F)t (w)

I Convolution: (F ∗ F)(w) =
∑

x∈Zn
2
F (x)F (w − x)

19/09/2011 Dagstuhl 12

Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑

w∈Zn
2
(−1)s·w|F t

w〉|w〉

where ‖|F t
w〉‖22 =

î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F)t (w)

I Convolution: (F ∗ F)(w) =
∑

x∈Zn
2
F (x)F (w − x)

19/09/2011 Dagstuhl 12

Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑

w∈Zn
2
(−1)s·w|F t

w〉|w〉

where ‖|F t
w〉‖22 =

î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F)t (w)

I Convolution: (F ∗ F)(w) =
∑

x∈Zn
2
F (x)F (w − x)

19/09/2011 Dagstuhl 12

(F ∗ F)(w)

Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑

w∈Zn
2
(−1)s·w|F t

w〉|w〉

where ‖|F t
w〉‖22 =

î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F)t (w)

I Convolution: (F ∗ F)(w) =
∑

x∈Zn
2
F (x)F (w − x)

19/09/2011 Dagstuhl 12

1√
2n
⁄�(F ∗ F)t (w)

Algorithm 2: Pros / cons

Performance

I Bent functions: O(1)

I Random functions: O(1)

I No issues with undetectable anti-shifts

Issues

I Delta functions: O(2n), no speedup

Note

I For some t ≤ n there will be no zero amplitudes!

19/09/2011 Dagstuhl 13

Algorithm 3: Simon-like

I Oracle Ofks : |k〉|w〉 7→ (−1)f(x+ks)|k〉|w〉

|0〉

|0〉⊗n

H H

H⊗n H⊗nOfks

k

|Ψ(s)〉 :=
∑
w∈Zn

2

F̂ (w)|s · w〉|w〉

I Complexity: O(n/
√
If)

I Where If (w) is the influence of w ∈ Zn
2 on f :

If (w) := Pr
x

î
f(x) 6= f(x+ w)

ó
and If := minw If (w)

19/09/2011 Dagstuhl 14

Algorithm 3: Simon-like

I Oracle Ofks : |k〉|w〉 7→ (−1)f(x+ks)|k〉|w〉

|0〉

|0〉⊗n

H H

H⊗n H⊗nOfks

k

|Ψ(s)〉 :=
∑
w∈Zn

2

F̂ (w)|s · w〉|w〉

I Complexity: O(n/
√
If)

I Where If (w) is the influence of w ∈ Zn
2 on f :

If (w) := Pr
x

î
f(x) 6= f(x+ w)

ó
and If := minw If (w)

19/09/2011 Dagstuhl 14

Algorithm 3: Simon-like

I Oracle Ofks : |k〉|w〉 7→ (−1)f(x+ks)|k〉|w〉

|0〉

|0〉⊗n

H H

H⊗n H⊗nOfks

k

|Ψ(s)〉 :=
∑
w∈Zn

2

F̂ (w)|s · w〉|w〉

I Complexity: O(n/
√
If)

I Where If (w) is the influence of w ∈ Zn
2 on f :

If (w) := Pr
x

î
f(x) 6= f(x+ w)

ó
and If := minw If (w)

19/09/2011 Dagstuhl 14

Comparison

delta bent random

Grover-like O(
√

2n) O(1) O(1)
PGM O(2n) O(1) O(1)

Simon-like O(n
√

2n) O(n) O(n)

19/09/2011 Dagstuhl 15

Open problems

I What is the best quantum algorithm for solving BHSP?

I Quantum query lower bound?
I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)

I What is the classical query complexity of this problem?

I Generalize from Z2 to Zd

I Applications

19/09/2011 Dagstuhl 16

Open problems

I What is the best quantum algorithm for solving BHSP?

I Quantum query lower bound?

I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)

I What is the classical query complexity of this problem?

I Generalize from Z2 to Zd

I Applications

19/09/2011 Dagstuhl 16

Open problems

I What is the best quantum algorithm for solving BHSP?

I Quantum query lower bound?
I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I Generalize from Z2 to Zd

I Applications

19/09/2011 Dagstuhl 16

Open problems

I What is the best quantum algorithm for solving BHSP?

I Quantum query lower bound?
I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I Generalize from Z2 to Zd

I Applications

19/09/2011 Dagstuhl 16

Open problems

I What is the best quantum algorithm for solving BHSP?

I Quantum query lower bound?
I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)

I What is the classical query complexity of this problem?

I Generalize from Z2 to Zd

I Applications

19/09/2011 Dagstuhl 16

Open problems

I What is the best quantum algorithm for solving BHSP?

I Quantum query lower bound?
I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I Generalize from Z2 to Zd

I Applications

19/09/2011 Dagstuhl 16

Open problems

I What is the best quantum algorithm for solving BHSP?

I Quantum query lower bound?
I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I Generalize from Z2 to Zd

I Applications

19/09/2011 Dagstuhl 16

Open problems

I What is the best quantum algorithm for solving BHSP?

I Quantum query lower bound?
I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I Generalize from Z2 to Zd

I Applications

19/09/2011 Dagstuhl 16

Thank you for your attention!

19/09/2011 Dagstuhl 17

Classical rejection sampling

Classical resampling problem

I Given: Ability to sample from distribution p

I Task: Sample from distribution q

Classical algorithm

P
ξ(k)

k A

ξ(k)
accept/reject

k

19/09/2011 Dagstuhl 18

Quantum rejection sampling

Quantum resampling problem

I Given: Oracle O : |0〉 7→∑n
k=1 πk|ξk〉|k〉

I Task: Perform transformation

n∑
k=1

πk|ξk〉|k〉 7→
n∑

k=1

σk|ξk〉|k〉

I Note: Amplitudes πk and σk are known, but states |ξk〉 are
not known

19/09/2011 Dagstuhl 19

	Introduction
	Quantum algorithms

