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Overview of Results 5 m always outputs the correct output
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We have just seen D(M AJ3) = 3 and Ro(M AJ3) = 8/3.
Ilterate it:

MAJ,
(MAJ MAJ; (A
T1 i) X3 X4 Iy s T X8 X9

D(MAJ)=3% and Ry(MAJY) < (8/3)%

(Actually, it is less...)
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Previous Record-Holder

Iterated NAND: record-holder for Ry, R, Ro versus D

X1 X9 X3 L4 L4

We have [Snir'85, Saks & Wigderson’86]:
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Our Main Results

It is known [Nisan’89]

We get functions with:

D = O(R2) Ry = O(RY)

The last one also saturates [Kulkarni & Tal'13, Midrijanis’05]
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Elecironic Colloquium on Computational Complexity, Beport No. 30 {2015)

Deterministic Communication vs. Partition Number

Mika Goos Toniann Pitassi Thomas Watson

Department of Computer Science. University of Toronto

April 1, 2015

Abstract

We show that deterministic communication complexity can be superlogarithmic in the
partition number of the associated communication matrix. We also obtain near-optimal deter-
ministic lower bounds for the Clique vs. Independent Set problem. which in particular vields
new lower bounds for the log-rank conjecture. All these results follow from a simple adaptation
of a communication-to-query simulation theorem of Raz and McKenzie (Combinatorica 1999)
together with lower bounds for the analogous query complexity questions.
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B Clique vs. Independent Set in communication complexity

B Reduce to a problem in query complexity: Find a function that

]
[

has large deterministic complexity
has small unambiguous 1-certificates

There exists a number of 1-certificates such that each
positive input satisfies exactly one of them.
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B Accept iff there exists a unique all-1 column
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L]
L]

B D=nm
B short 1-certificates (n + m — 1), BUT not unambiguous.
Should specify which zero to take in each column!
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Alphabet: {0,1} x ([n] x [m] U {L1})

Not Boolean, but we can encode using O(log(n + m)) bits.

Accept iff
[0 There is a (unique) all-1 column b;
0 in b, there is a unique element r with non-zero pointer;

[1 following the pointers from r, we traverse through exacitly

one zero in each column but b.
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B short unambiguous 1-certificates (n + m — 1)
B Stillhave D = nm (Adversary argument, next slide)
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Adversary finds a bad input for each deterministic decision tree, by
playing along with the decision tree.

irrelevant

irrelevant
and so on...

For each queried variable, the adversary provides the value,
so that the value of the function is unknown as long as possible.
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Accept iff
B Thereis a (unique) all-1 column b;

B in b, there is a unique element r with non-zero pointers;
B for each j # b, following a path T'(j) from 7 gives a zero in the
4th column.
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o) Lawer Bound B Thereis a (unique) all-1 column b;

Summary
Fe T B in b, there is a unique element r with non-zero pointers;
S B for each j # b, following a path T'(j) from 7 gives a zero in the

4th column.
B exactly m/2 of the leaves back point to the root 7.

33/52



Totalisation

> |

Introduction

S
>‘
— Yo

A

Overview of Results . /

c\

Go0s-Pitassi-Watson

Y-

Our Modifications

(o

Rq versus Rg

State of the Art

Reminder 1

Reminder 2

Definition . Ii.l
Totalisation :

Check Column

Y-
N

N
I
N
Yo N
S5 G . G R N KRS G DS N E g K5, G LS. §
AN .

R Upper Bound A column is good if it contains a leaf back pointing to the root of a
fotonerBound 2 Jagitimate tree.

Summary

Ry versus D : W A positive input contains exactly m /2 good columns.
Conclusion : W A negative input contains no good columns.
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R Upper Bound A column is good if it contains a leaf back pointing to the root of a
fotonerBound 2 Jagitimate tree.

Summary

Ry versus D : W A positive input contains exactly m /2 good columns.
Conclusion : W A negative input contains no good columns.

A total function looks like a partial function!
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R versus Ro . Deterministic subroutine

State of the Art E

Reminde 1 : Given a column ¢ € |m/|, accept iff it
Reminder 2 § |S gOOd

Definition .

Totalisation

Check Golumn Go through column ¢, find the back pointer to r, and check the tree.

R1 Upper Bound

Summary

ffotowerBonnd - Wait, column ¢ may contain many bogus pointers — ???

R versus D . On each step, either

Conclusion

B climinate a column: it is not the all-1 column; or
B climinate an element in column c: it is not a leaf of the tree.
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Reminder 1 : Given a column ¢ € |m], accept iff it

Reminder 2 E |S gOOd

Definition

Totalisation

B While there is > 2 non-eliminated columns:

Check Column
R1 Upper Bound

[0 Let a be a non-eliminated element in c. If none, reject.
Let r be the back pointer of a, and b be the column of r.
Let § be a non-eliminated column =£ b.

If the path T°(j) from 7 ends in a zero in column 7,
eliminate column ;.

Otherwise, eliminate element a.

R Lower Bound

Summary

Rq versus D

1 0O O

Conclusion

B Verify the only non-eliminated column. 36/ 59
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BT et B On each iteration of the loop, either an element or a column

R Lower Bound

Summary gets eliminated. At most n + m iterations.
Rq versus D § CompleX|ty O(TL —I_ m>
Conclusion :

Sticking into Deutsch-Jozsa, get /71 and () g upper bound of

~

O(n + m).
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Ry Lower Bound

(Negative) input with exactly one

zero in each column.
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GooOs-Pitassi-Watson

B An R, algorithm can reject
only if it has found m/2 ze-
roes.

Our Modifications

Rq versus Rg

State of the Art

Reminder 1

Requires €2(nm) queries.

Reminder 2

Definition

Totalisation
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Summary
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Our Modifications B Upper bound for R1 and QE IS 6(71 + m)
e . W Lower bound for a 2 algorithm is Q(nm).

State of the Art

Reminder 1 E ) . ]

Femindor 2 :  Taking n = m, we get a quadratic separation between /; and Ry,
TR : as well as between () and R

Totalisation :

Check Column

R Upper Bound NB. The previous separation was [Ambainis’12]:

R Lower Bound

Summary é QE — O(R88675)

Rq versus D

Conclusion
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Reminder: Definition (base)
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Accept iff

There is a (unique) all-1 column b;
in b, there is a unique element r with non-zero pointers;

for each j # b, following a path T'(j) from r gives a zero in the

4th column.

Some additional information is contained in the leaves (to be

defined).
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D Lower Bound

Roumersona© Accept iff
STl : W Thereis a (unique) all-1 column b:
S : H in b, there is a unique element 7 with non-zero pointers;
B for each j # b, following a path T'(j) from r gives a zero in the
4th column.
B all the leaves back point to the all-1 column b.
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Rq versus Rg
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Introduction e
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Gods-Pitassi-Watson § Adversary MethOd .1.<\. P 2\
Our Modifications Let n = 2m. 1 )
R versus Rg If the kth element is queried in a column: 1
Rq versus D . ]
Reminder E . If k S m, return @ >'1 %
el m Otherwise, return @ with back 1 ) /
Reminder 2 $ . 1
Diowerbownd - pointer to column £ — m. L \ )
R Upper Bound E w
Summary §
Conlusion © At the end, the column contains m ) and m @ with back pointers

toallcolumns 1,2,... m.
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Rq versus Rg

R versus D

Reminder
Definition
Reminder 2

D Lower Bound
R Upper Bound

Summary

Conclusion

K
>°1.<>A \\
Adversary Method. A 2
Let n = 2m. 1)
If the kth element is queried in a column: 1
B Ifk <m,return 1, >-1-<
B Otherwise, return 9 with back >.1.<
pointer to column k — m. A \ ) /

At the end, the column contains m (1) and m @ with back pointers
toallcolumns 1,2,... m.

B The algorithm does not know the value of the function until it
has queried > m elements in each of m columns.
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Deterministic Lower Bound

Introduction >\1 =

Overview of Results : \.1 I\ \
Goss PassiWatson _ Adversary Method. 1 2

Our Modifications Let n = 2m. 1 j (]
R versus Ry If the kth element is queried in a column: 1

Fif;merZZSD B Ifk <m,return 1, >-1-<

efniior B Otherwise, return 0 with back ;1 y
] pointer to column k — m. 1) V]
R Upper Bound w
Summary E

Conclusion At the end, the column contains m (1) and m @ with back pointers

toallcolumns 1,2,... m.

B The algorithm does not know the value of the function until it
has queried > m elements in each of m columns.

Lower bound: 2(m?).
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D Lower Bound
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Summary
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Ry Upper Bound: Informal

B Each column contains a back pointer to the all-1 column.
BUT which one is the right one—?
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Definition
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Reminder 2

D Lower Bound

R Upper Bound E . .
Summary : W Each column contains a back pointer to the all-1 column.
Conclusion BUT which one is the right one—?

We try each back pointer by quering few elements in the column,
and proceed to a one where no zeroes were found.

B Even if this is not the all-1 column,

we can arrange that it contains fewer zeroes whp.
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Introduction

Overview of Results

Go0s-Pitassi-Watson

Our Modifications

Rq versus Rg

R versus D

Reminder
Definition
Reminder 2

D Lower Bound
R Upper Bound

Summary

Conclusion

Algorithm

Let ¢ be the first column, and k& < n.

While £ > 1,
0 Let ¢ +—ProcessColumn(c, k), and k < k/2.

ProcessColumn(column ¢, integer k)

Query all elements in column c.

If there are no zeroes, verify column c.

If there are > k zeroes, query all nm variables, and output the
value of the function.

For each zero a:
[0 Let 7 be the back pointer of a.
A 1

0 Query O(n/k) elements in column j. (Probability < ——

(nm)?
that no zero found if there are > k /2 of them).
[0 If no zero was found, return .

Reject
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B Lower bound for a D algorithm is Q(m?).
B Upper bound for a R algorithmis O(n + m).
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Rq versus Rg
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Summary
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Summary

Introduction

Overview of Results § Take n — 2m

Go0s-Pitassi-Watson

B Lower bound for a D algorithm is Q(m?).
B Upper bound for a R algorithmis O(n + m).

Our Modifications

Rq versus Rg

g versus D © We get a quadratic separation between 17 and D.

Reminder
Definition
Reminder 2

D Lower Bound B Also, upper bound for a ()5 algorithm is 5(\/n +m).

R Upper Bound

Summary We get a quartic separation between ()5 and D.

Conclusion

NB. Previous separation was quadratic: Grover’s search.
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We have resolved Ry <> Rpand R; < D.

Our Modifications

Rq versus Rg

Can we resolve Ry <+ D too? N
Known: Ry = Q(D'/3) and Ry = O(D/?).

R versus D

Conclusion

Results
Open Problems

S . W Can we overcome the “certificate complexity barrier”?

Obtain a function with Ry = o(C')?

B The same about ()5 <> D N
Known: Qo = Q(D/%) and Q, = O(DY*).
B and Qg < D? N
Known: Qp = Q(D'/3) and Qr = O(DY?).
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Rq versus Rg

R versus D

Conclusion

Results
Open Problems

Cheat Sheets

Aaronson, Ben-David, and Kothari came up with
the Cheat-Sheet technique.

also uses pointers

IS Incomparable to our results

prove a number of interesting results, e.g.,
a total Boolean function f with

Ro(f) = Q(Qa(f)**).

Actually, Ro(f) = Q(Q2(f)?), if there exists a partial function
g on n variables with

Q2(g) = O(logn) and  Ry(g) = Q(n).
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