Separations in Query Complexity Based on Pointer Functions (with a slight hint of quantum complexity)

Alexander Belov CWI

Joint work with: Andris Ambainis, Kaspars Balodis, Troy Lee, Miklos Santha, and Juris Smotrovs

(presented at QIP'16, to appear in STOC'16)

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Introduction

Computational Models: Deterministic

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

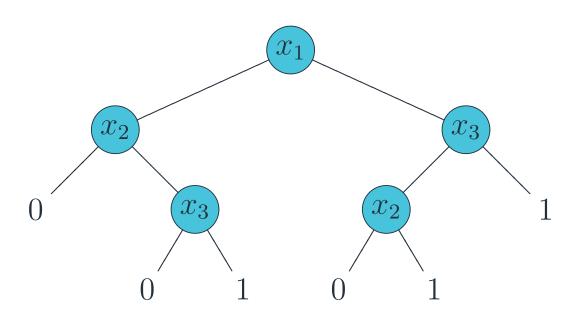
Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

D: Deterministic (Decision Tree)



Computational Models: Deterministic

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

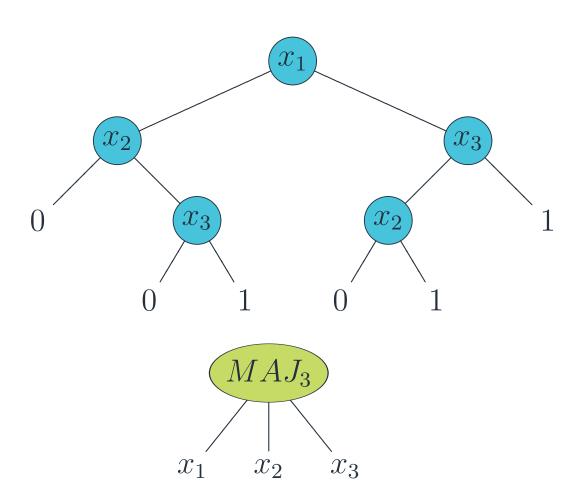
Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

D: Deterministic (Decision Tree)



Computational Models: Deterministic

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

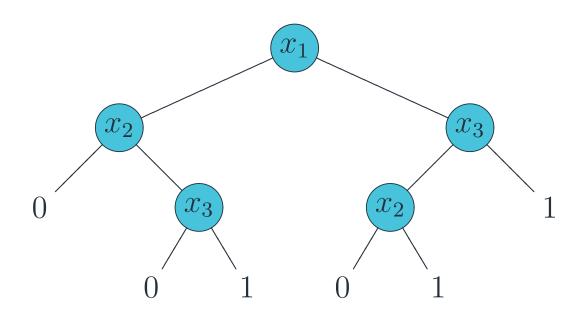
Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

D: Deterministic (Decision Tree)



Complexity

on input: Number of queries

(length of the path)

2 or 3

• in total:

Worst input

(depth of the tree)

3

Computational Models: Randomised

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

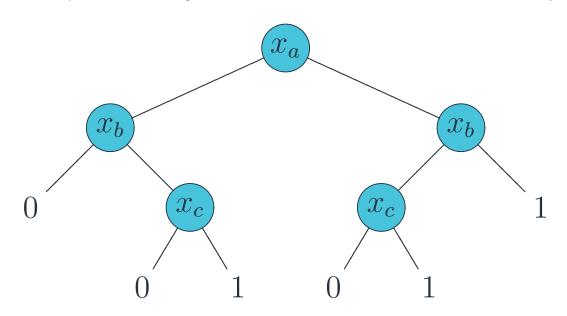
 R_1 versus R_0

 R_0 versus D

Conclusion

D: Deterministic (Decision Tree)

R: Randomised (Probability distribution on decision trees)



a,b,c: uniform random permutation of 1,2,3.

Complexity

• on input: Expected number of queries 2 or $\frac{8}{3}$

• in total: Worst input $\frac{8}{3}$

Computational Model: Randomised

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

D: Deterministic (Decision Tree)

R: Randomised (Probability distribution on decision trees)

 R_0 : Zero-error (Las Vegas)

always outputs the correct output

Computational Models: Randomised

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Deterministic (Decision Tree)

Randomised (Probability distribution on decision trees)

 R_0 : Zero-error (Las Vegas)

always outputs the correct output

R_2 : Bounded-error (Monte Carlo)

- rejects a negative input with probability $\geq \frac{2}{3}$ accepts a positive input with probability $\geq \frac{2}{3}$

Computational Models: Randomised

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

D: Deterministic (Decision Tree)

R: Randomised (Probability distribution on decision trees)

 R_0 : Zero-error (Las Vegas)

always outputs the correct output

 R_1 : One-sided error

- always rejects a negative input
- accepts a positive input with probability $\geq \frac{1}{2}$ (or vice versa)

 R_2 : Bounded-error (Monte Carlo)

- lacksquare rejects a negative input with probability $\geq rac{2}{3}$
- accepts a positive input with probability $\geq \frac{3}{3}$

Computational Models: Quantum

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Deterministic (Decision Tree)

Randomised (Probability distribution on decision trees)

 R_0 : Zero-error (Las Vegas)

always outputs the correct output

 R_1 : One-sided error

- always rejects a negative input
- accepts a positive input with probability $\geq \frac{1}{2}$ (or vice versa)

 R_2 : Bounded-error (Monte Carlo)

- rejects a negative input with probability $\geq \frac{2}{3}$ accepts a positive input with probability $\geq \frac{2}{3}$

Quantum

 Q_E : Exact

Bounded-error

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Easy for **partial** functions

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Easy for **partial** functions

Example: Deutsch-Jozsa problem (almost)

Reject iff all input variables are zeroes

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Easy for **partial** functions

Example: Deutsch-Jozsa problem (almost)

Reject iff all input variables are zeroes

$$R_1 = 1$$

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Easy for **partial** functions

Example: Deutsch-Jozsa problem (almost)

Reject iff all input variables are zeroes

$$R_1 = 1, \quad Q_E = 1,$$

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Easy for **partial** functions

Example: Deutsch-Jozsa problem (almost)

Reject iff all input variables are zeroes

$$R_1 = 1, \quad Q_E = 1,$$

$$R_0 = n/2 + 1$$

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

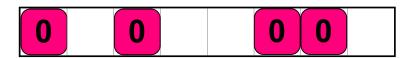
Easy for **partial** functions

Example: Deutsch-Jozsa problem (almost)

Reject iff all input variables are zeroes

Accort iff exactly half of the variables are once

Total Functions — ???



Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Overview of Results

Iterated Functions

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

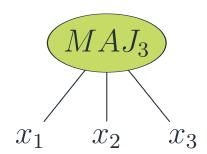
Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

We have just seen $D(MAJ_3) = 3$ and $R_0(MAJ_3) = 8/3$.



Iterated Functions

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

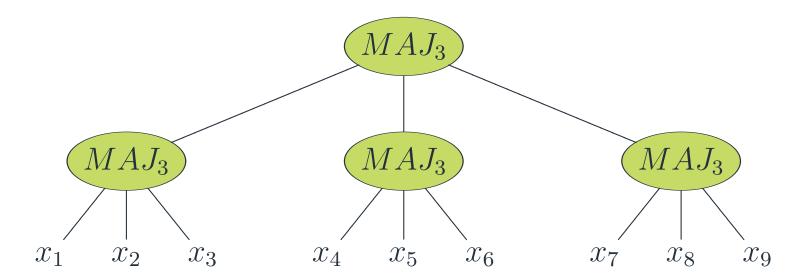
Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

We have just seen $D(MAJ_3)=3$ and $R_0(MAJ_3)=8/3$. Iterate it:



Iterated Functions

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

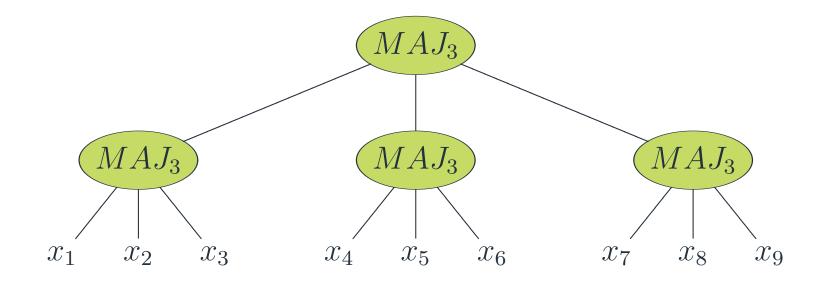
Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

We have just seen $D(MAJ_3)=3$ and $R_0(MAJ_3)=8/3$. Iterate it:



We get

$$D(MAJ_3^d) = 3^d \qquad \text{and} \qquad R_0(MAJ_3^d) \leq (8/3)^d.$$
 (Actually, it is less...)

Previous Record-Holder

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

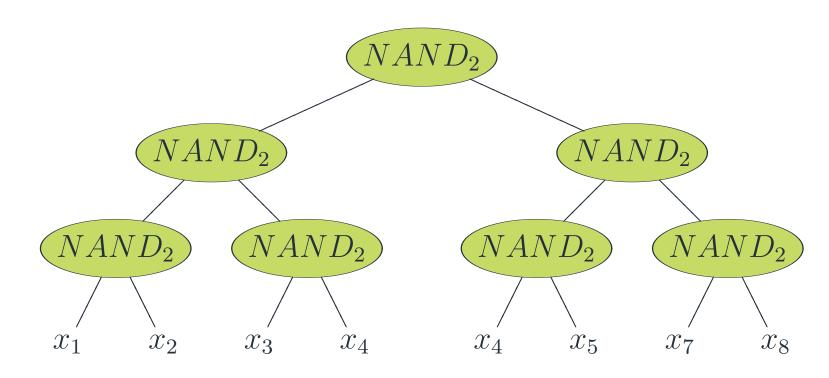
Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Iterated NAND: record-holder for R_0, R_1, R_2 versus D



We have [Snir'85, Saks & Wigderson'86]:

$$R_0 = R_1 = R_2 = O(n^{0.7537...}), \qquad D = n$$

State of the Art

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

We have [Snir'85, Saks & Wigderson'86]:

$$R_0 = R_1 = R_2 = O(n^{0.7537...}), \qquad D = n$$

It is known [Nisan'89]

$$D = O(R_1^2)$$

Our Main Results

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

It is known [Nisan'89]

$$D = O(R_1^2)$$

We get functions with:

$$D = \widetilde{\Theta}(R_0^2)$$

$$R_0 = \widetilde{\Theta}(R_1^2)$$

Our Main Results

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

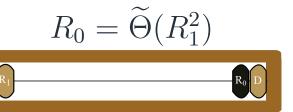
Conclusion

It is known [Nisan'89]

$$D = O(R_1^2)$$

We get functions with:

$$D = \widetilde{\Theta}(R_0^2)$$



The last one also saturates [Kulkarni & Tal'13, Midrijānis'05]

$$R_0 = \widetilde{O}(R_2^2)$$

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

 ${\cal D}$ Lower Bound

Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Göös-Pitassi-Watson

Paper

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

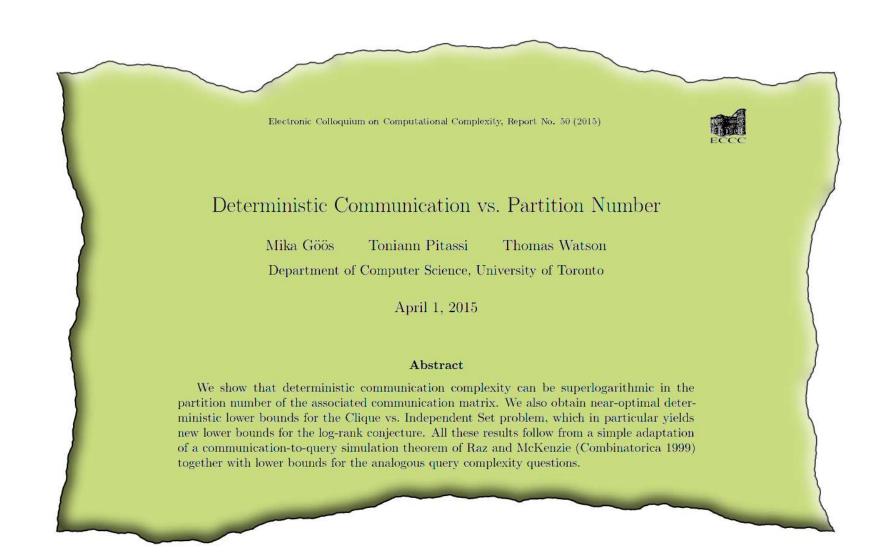
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion



Introduction Overview of Results Göös-Pitassi-Watson Paper Clique vs. Independent Set in communication complexity Goal D versus 1-certificates **Pointers** Adversary Method D Lower Bound Reduce to a problem in query complexity: Find a function that Features of Pointers has large deterministic complexity Our Modifications has small unambiguous 1-certificates R_1 versus R_0 R_0 versus DThere exists a number of 1-certificates such that each Conclusion positive input satisfies exactly one of them.

D versus 1-certificates

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

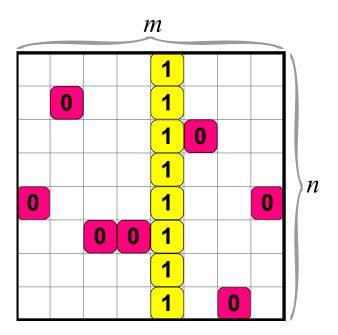
 R_1 versus R_0

 R_0 versus D

Conclusion

Function on *nm* Boolean variables

Accept iff there exists a unique all-1 column



- \blacksquare D = nm
- short 1-certificates (n+m-1), **BUT not** unambiguous.

D versus 1-certificates

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

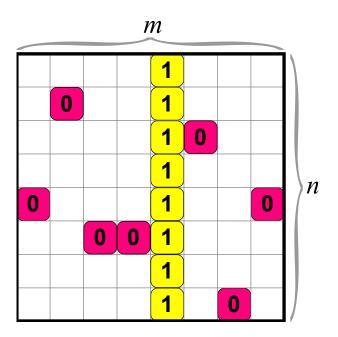
 R_1 versus R_0

 R_0 versus D

Conclusion

Function on *nm* Boolean variables

Accept iff there exists a unique all-1 column



- \blacksquare D = nm
- short 1-certificates (n + m 1), **BUT not** unambiguous. Should specify which zero to take in each column!

Pointers

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

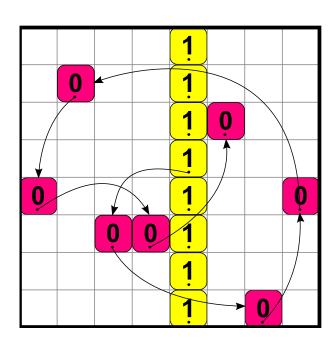
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion



- Alphabet: $\{0,1\} \times ([n] \times [m] \cup \{\bot\})$ Not Boolean, but we can encode using $O(\log(n+m))$ bits.
- Accept iff
 - \Box There is a (unique) all-1 column b;
 - \square in b, there is a unique element r with non-zero pointer;
 - following the pointers from r, we traverse through exactly one zero in each column but b.

Pointers

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

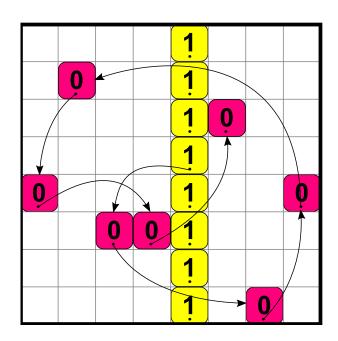
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion



short unambiguous 1-certificates (n+m-1)

Pointers

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

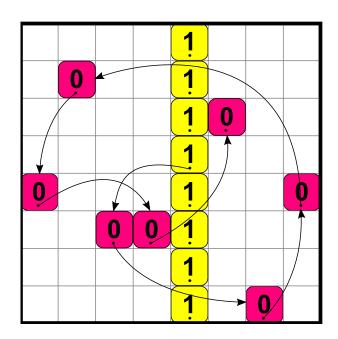
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion



- short unambiguous 1-certificates (n+m-1)
- Still have D = nm (Adversary argument, next slide)

Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

 ${\cal D}$ Lower Bound

Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Adversary finds a bad input for each deterministic decision tree, by playing along with the decision tree.

Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Adversary finds a bad input for each deterministic decision tree, by playing along with the decision tree.

Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

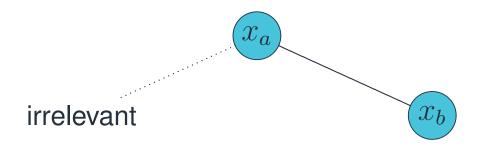
Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Adversary finds a bad input for each deterministic decision tree, by playing along with the decision tree.



Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

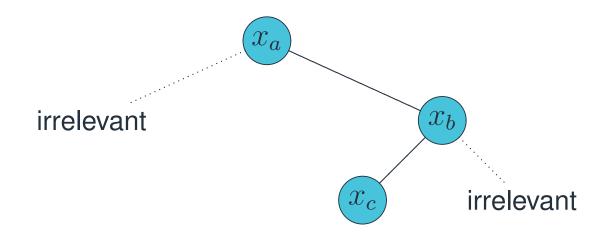
Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Adversary finds a bad input for each deterministic decision tree, by playing along with the decision tree.



Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

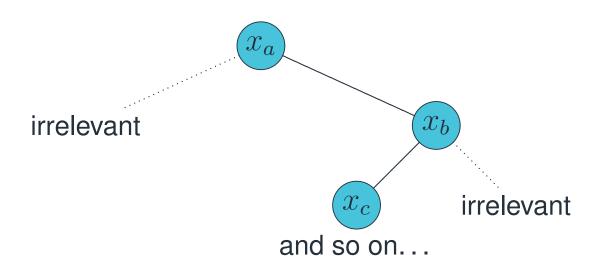
Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Adversary finds a bad input for each deterministic decision tree, by playing along with the decision tree.



For each queried variable, the adversary provides the value, so that the value of the function is unknown as long as possible.

ì							ictio				
	In	٠	r	\cap		ш	н	Ο.	h	0	r
		ш	ш	U	и	ш	л,	l e			

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

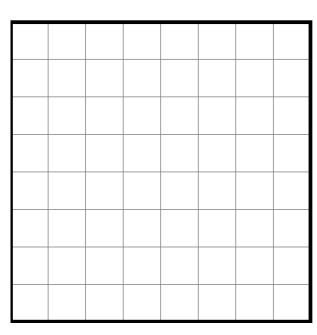
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

- While there are non-queried elements in a column:
 - □ Return 1.
- When the last element in a column is queried:
 - \square Return \bigcirc , linking it to the last returned \bigcirc .



Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

- While there are non-queried elements in a column:
 - □ Return 1.
- When the last element in a column is queried:
 - \square Return \bigcirc , linking it to the last returned \bigcirc .

				_			
	[1]		[1]		[1]		[1
			$\left(1\right)$		$ig(oldsymbol{1} ig)$	$ig(oldsymbol{1} ig)$	
1			1	1			
					1		
				1	1		
					1		
		1	1		1	(1)	
1			1		1		1

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

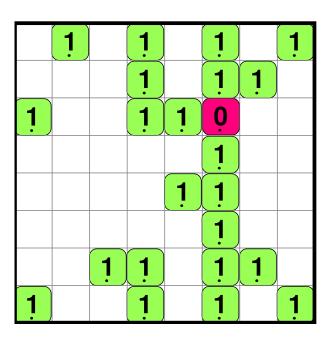
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

- While there are non-queried elements in a column:
 - \square Return $\stackrel{1}{\square}$.
- When the last element in a column is queried:
 - \square Return \bigcirc , linking it to the last returned \bigcirc .



Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

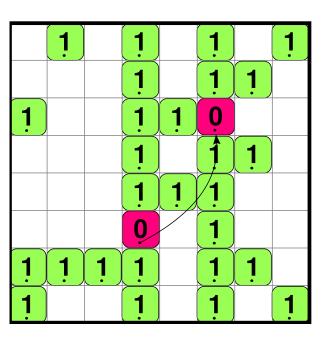
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

- While there are non-queried elements in a column:
 - \square Return !
- When the last element in a column is queried:
 - \square Return \bigcirc , linking it to the last returned \bigcirc .



Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

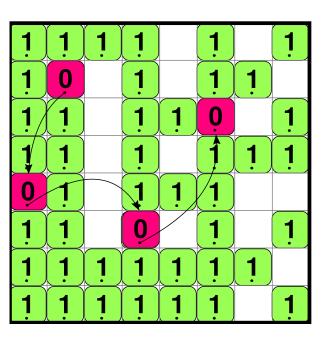
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

- While there are non-queried elements in a column:
 - \square Return !
- When the last element in a column is queried:
 - \square Return \bigcirc , linking it to the last returned \bigcirc .



Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

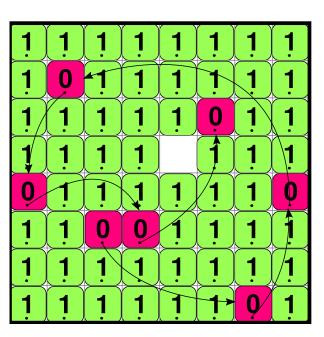
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

- While there are non-queried elements in a column:
 - \square Return $\stackrel{1}{\square}$.
- When the last element in a column is queried:
 - \square Return \bigcirc , linking it to the last returned \bigcirc .



Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

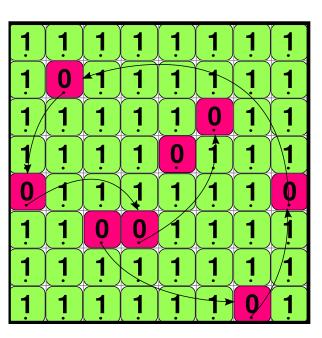
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

- While there are non-queried elements in a column:
 - □ Return 1.
- When the last element in a column is queried:
 - \square Return \bigcirc , linking it to the last returned \bigcirc .



Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

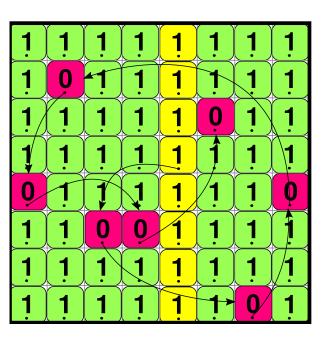
Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

- While there are non-queried elements in a column:
 - \square Return $\stackrel{1}{\square}$.
- When the last element in a column is queried:
 - \square Return \bigcirc , linking it to the last returned \bigcirc .



Features of Pointers

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

 ${\cal D}$ Lower Bound

Features of Pointers

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Highly elusive (flexible)

Still traversable (if know where to start).

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

Binary Tree

Definition (base)

 R_1 versus R_0

 R_0 versus D

Conclusion

Our Modifications

Binary Tree

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

Binary Tree

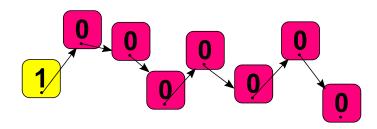
Definition (base)

 R_1 versus R_0

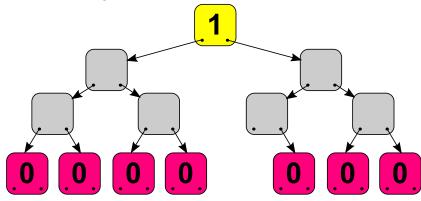
 R_0 versus D

Conclusion

Instead of a list



we use a balanced binary tree



- More elusive
- Random access

Definition (base)

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

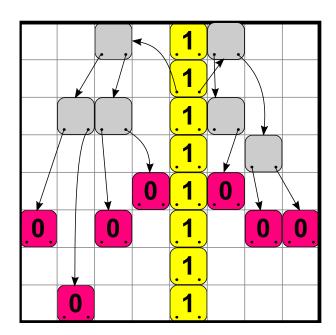
Binary Tree

Definition (base)

 R_1 versus R_0

 R_0 versus D

Conclusion



Accept iff

- There is a (unique) all-1 column b;
- in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path T(j) from r gives a zero in the jth column.

Definition (base)

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

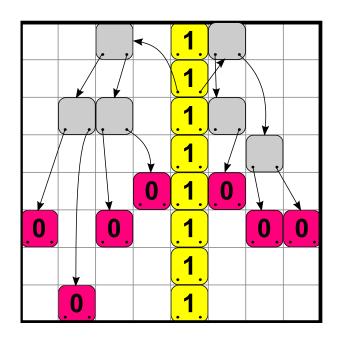
Binary Tree

Definition (base)

 R_1 versus R_0

 R_0 versus D

Conclusion



Accept iff

- There is a (unique) all-1 column b;
- \blacksquare in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path T(j) from r gives a zero in the jth column.
- Some additional information is contained in the leaves (to be defined).

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

 R_1 Upper Bound

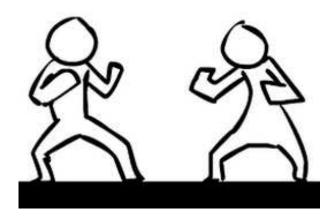
 R_0 Lower Bound

Summary

 R_0 versus D

Conclusion

R_1 versus R_0



State of the Art

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

 R_1 Upper Bound

 R_0 Lower Bound

Summary

 R_0 versus D

Conclusion

NO separation was known even between R_2 and R_0 .

(Iterated functions are not of much help here.)

Reminder 1: Partial Separation

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

 R_1 Upper Bound

 R_0 Lower Bound

Summary

 R_0 versus D

Conclusion

Recall the separation for a partial function

■ Reject iff all input variables are zeroes

Accept iff exactly half of the variables are ones

Reminder 2: Definition (base)

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

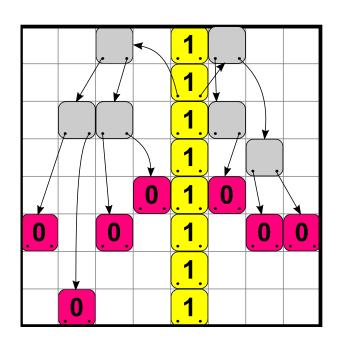
 R_1 Upper Bound

 R_0 Lower Bound

Summary

 R_0 versus D

Conclusion



Accept iff

- There is a (unique) all-1 column b;
- \blacksquare in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path T(j) from r gives a zero in the jth column.
- Some additional information is contained in the leaves (to be defined).

Definition

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

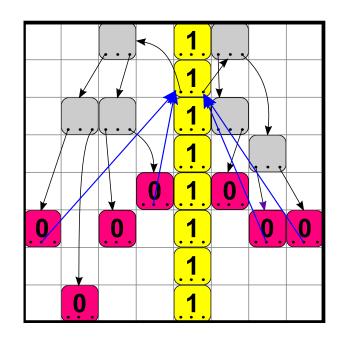
 R_1 Upper Bound

 R_0 Lower Bound

Summary

 R_0 versus D

Conclusion



Accept iff

- There is a (unique) all-1 column b;
- \blacksquare in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path T(j) from r gives a zero in the jth column.
- \blacksquare exactly m/2 of the leaves back point to the root r.

Totalisation

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

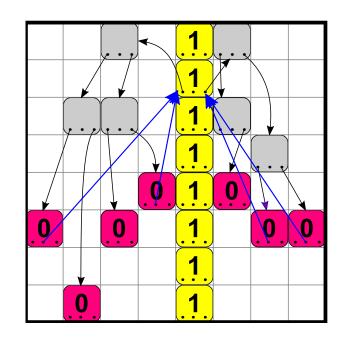
 R_1 Upper Bound

 R_0 Lower Bound

Summary

 R_0 versus D

Conclusion



A column is good if it contains a leaf back pointing to the root of a legitimate tree.

- A positive input contains exactly m/2 good columns.
- A negative input contains no good columns.

Totalisation

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

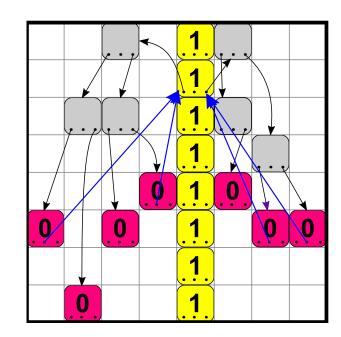
 R_1 Upper Bound

 R_0 Lower Bound

Summary

 R_0 versus D

Conclusion



A column is good if it contains a leaf back pointing to the root of a legitimate tree.

- A positive input contains exactly m/2 good columns.
- A negative input contains no good columns.

A total function looks like a partial function!

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

 R_1 Upper Bound

 R_0 Lower Bound

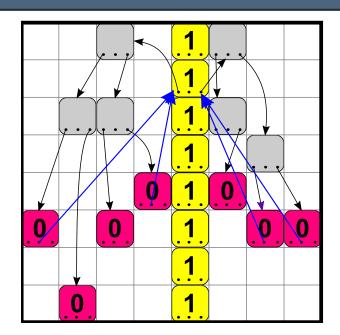
Summary

 R_0 versus D

Conclusion

Deterministic subroutine

Given a column $c \in [m]$, accept iff it is good.



Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

 R_1 Upper Bound

 R_0 Lower Bound

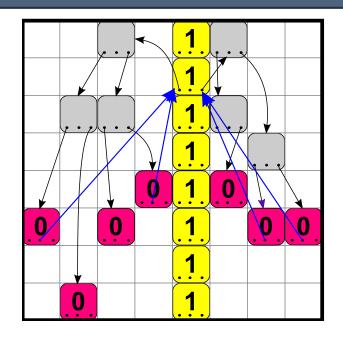
Summary

 R_0 versus D

Conclusion

Deterministic subroutine

Given a column $c \in [m]$, accept iff it is good.



Go through column c, find the back pointer to r, and check the tree.

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

 R_1 Upper Bound

 R_0 Lower Bound

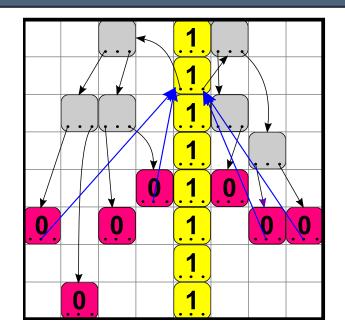
Summary

 R_0 versus D

Conclusion

Deterministic subroutine

Given a column $c \in [m]$, accept iff it is good.



Go through column c, find the back pointer to r, and check the tree.

Wait, column *c* may contain many bogus pointers — ???

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

 R_1 Upper Bound

 R_0 Lower Bound

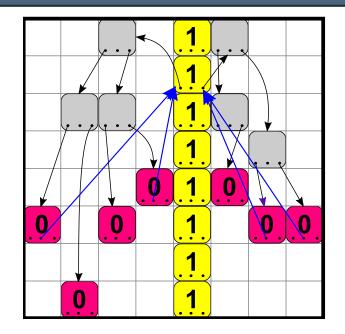
Summary

 R_0 versus D

Conclusion

Deterministic subroutine

Given a column $c \in [m]$, accept iff it is good.



Go through column c, find the back pointer to r, and check the tree.

Wait, column *c* may contain many bogus pointers — ???

On each step, either

- eliminate a column: it is not the all-1 column; or
- eliminate an element in column c: it is not a leaf of the tree.

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

 R_1 Upper Bound

 $R_{\rm O}$ Lower Bound

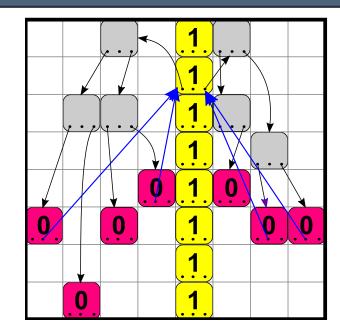
Summary

 R_0 versus D

Conclusion

Deterministic subroutine

Given a column $c \in [m]$, accept iff it is good.



- **While** there is ≥ 2 non-eliminated columns:
 - \Box Let a be a non-eliminated element in c. If none, reject.
 - \square Let r be the back pointer of a, and b be the column of r.
 - \square Let j be a non-eliminated column $\neq b$.
 - □ If the path T(j) from r ends in a zero in column j, eliminate column j.

Otherwise, eliminate element a.

Verify the only non-eliminated column.

R_1 Upper Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

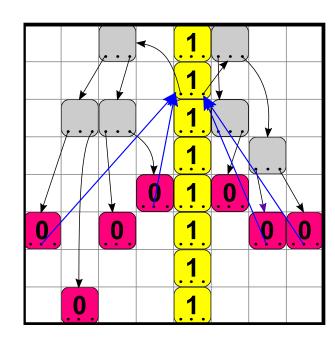
 R_1 Upper Bound

 R_0 Lower Bound

Summary

 R_0 versus D

Conclusion



On each iteration of the loop, either an element or a column gets eliminated. At most n+m iterations.

Complexity: O(n+m).

Sticking into Deutsch-Jozsa, get R_1 and Q_E upper bound of

$$\widetilde{O}(n+m)$$
.

R_0 Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

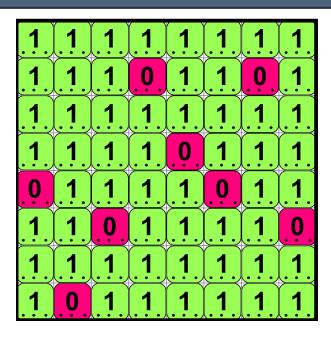
 R_1 Upper Bound

 R_{O} Lower Bound

Summary

 R_0 versus D

Conclusion



(Negative) input with exactly one zero in each column.

R_0 Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

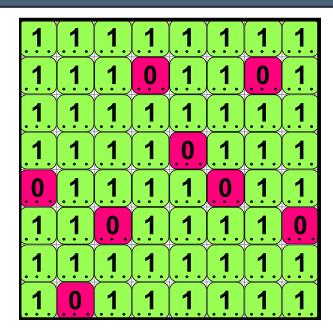
 R_1 Upper Bound

 R_0 Lower Bound

Summary

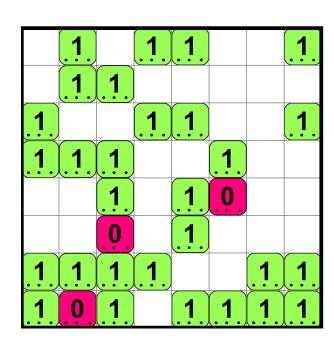
 R_0 versus D

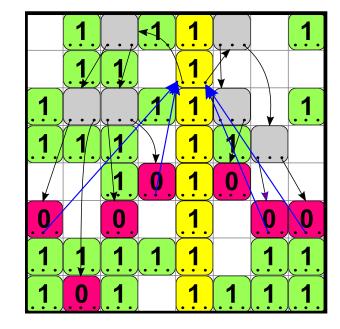
Conclusion



(Negative) input with exactly one zero in each column.

An R_0 algorithm can reject only if it has found m/2 zeroes.





R_0 Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

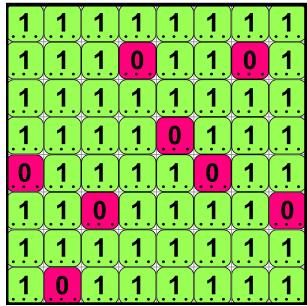
 R_1 Upper Bound

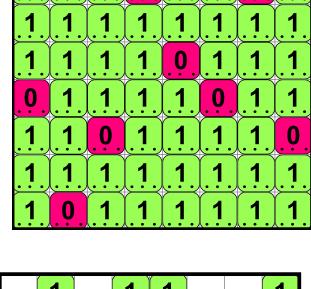
 R_0 Lower Bound

Summary

 R_0 versus D

Conclusion

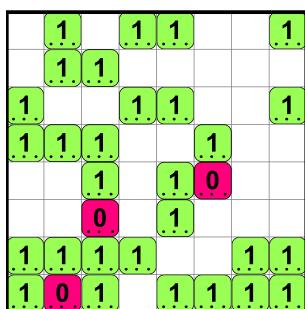


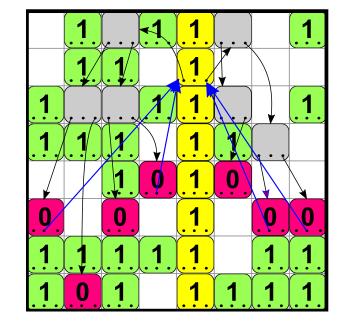


(Negative) input with exactly one zero in each column.

An R_0 algorithm can reject only if it has found m/2 zeroes.

Requires $\Omega(nm)$ queries.





Summary

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

 R_1 Upper Bound

 R_0 Lower Bound

Summary

 R_0 versus D

Conclusion

- Upper bound for R_1 and Q_E is $\widetilde{O}(n+m)$.
- Lower bound for a R_0 algorithm is $\Omega(nm)$.

Taking n=m, we get a quadratic separation between R_1 and R_0 , as well as between Q_E and R_0

NB. The previous separation was [Ambainis'12]:

$$Q_E = O(R_0^{0.8675...})$$

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus ${\cal D}$

Reminder

Definition

Reminder 2

 ${\cal D}$ Lower Bound

 R_0 Upper Bound

Summary

 R_0 versus ${\cal D}$

Reminder: Definition (base)

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

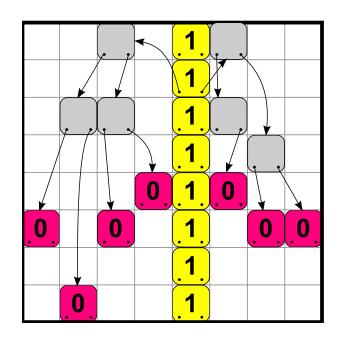
Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

Conclusion



Accept iff

- There is a (unique) all-1 column b;
- in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path T(j) from r gives a zero in the jth column.
- Some additional information is contained in the leaves (to be defined).

Definition

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

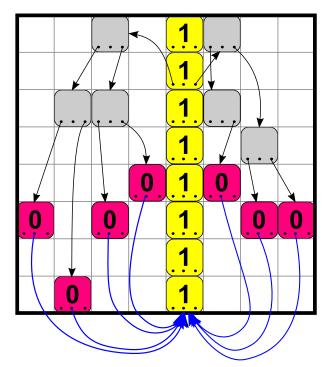
Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

Conclusion



Accept iff

- There is a (unique) all-1 column b;
- in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path T(j) from r gives a zero in the jth column.
- \blacksquare all the leaves back point to the all-1 column b.

Reminder 2: Adversary Argument

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

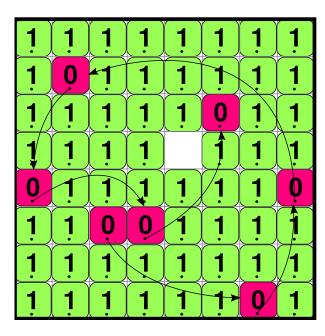
Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

- While there are non-queried elements in a column:
 - □ Return 1.
- When the last element in a column is queried:
 - \Box Return \bigcirc , linking it to the last returned \bigcirc .



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

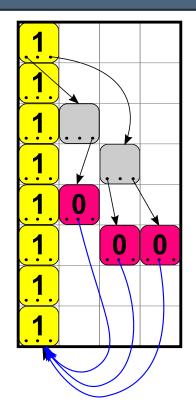
Conclusion

Adversary Method.

Let n=2m.

If the kth element is queried in a column:

- If $k \leq m$, return !.
- Otherwise, return 0 with back pointer to column k-m.



At the end, the column contains m 1 and m with back pointers to all columns $1, 2, \ldots, m$.

Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

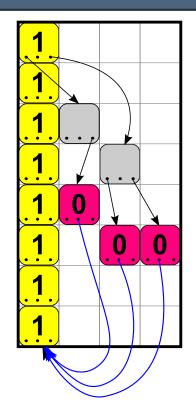
Conclusion

Adversary Method.

Let n=2m.

If the kth element is queried in a column:

- If $k \leq m$, return 1.
- Otherwise, return 0 with back pointer to column k-m.



At the end, the column contains m 1 and m 2 with back pointers to all columns $1, 2, \ldots, m$.

The algorithm does not know the value of the function until it has queried > m elements in each of m columns.

Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

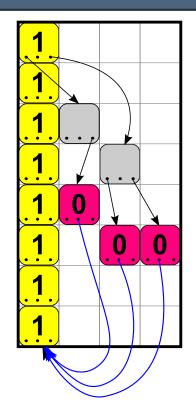
Conclusion

Adversary Method.

Let n=2m.

If the kth element is queried in a column:

- If $k \leq m$, return !.
- Otherwise, return 0 with back pointer to column k-m.



At the end, the column contains m 1 and m with back pointers to all columns $1, 2, \ldots, m$.

The algorithm does not know the value of the function until it has queried > m elements in each of m columns.

Lower bound: $\Omega(m^2)$.

R_0 Upper Bound: Informal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

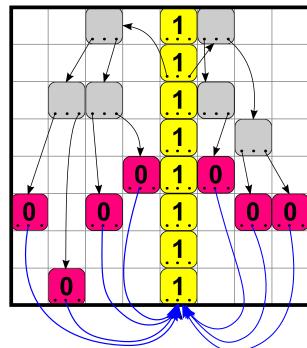
Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

Conclusion



■ Each column contains a back pointer to the all-1 column. BUT which one is the right one—?

R_0 Upper Bound: Informal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

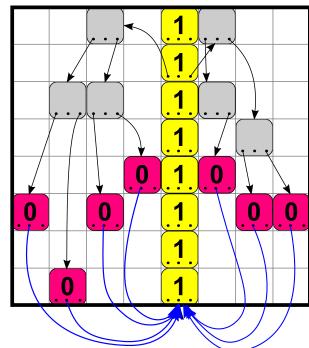
Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

Conclusion



Each column contains a back pointer to the all-1 column. BUT which one is the right one—?

We try each back pointer by quering few elements in the column, and proceed to a one where no zeroes were found.

Even if this is not the all-1 column,we can arrange that it contains fewer zeroes whp.

R_0 Upper Bound: Formal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

Conclusion

Algorithm

- lacksquare Let c be the first column, and $k \leftarrow n$.
- \blacksquare While k > 1,
 - \square Let $c \leftarrow \mathsf{ProcessColumn}(c,k)$, and $k \leftarrow k/2$.

ProcessColumn(column *c*, integer *k*)

- \blacksquare Query all elements in column c.
- If there are no zeroes, verify column c.
- If there are > k zeroes, query all nm variables, and output the value of the function.
- **For** each zero a:
 - \Box Let j be the back pointer of a.
 - Query O(n/k) elements in column j. (Probability $<\frac{1}{(nm)^2}$ that no zero found if there are >k/2 of them).
 - \square If no zero was found, return j.
- Reject

Summary

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

Conclusion

Take n=2m.

- Lower bound for a D algorithm is $\Omega(m^2)$.
- Upper bound for a R_0 algorithm is O(n+m).

We get a quadratic separation between R_0 and D.

Summary

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

 R_0 Upper Bound

Summary

Conclusion

Take n=2m.

- Lower bound for a D algorithm is $\Omega(m^2)$.
- Upper bound for a R_0 algorithm is O(n+m).

We get a quadratic separation between R_0 and D.

Also, upper bound for a Q_2 algorithm is $\widetilde{O}(\sqrt{n+m})$.

We get a quartic separation between Q_2 and D.

NB. Previous separation was quadratic: Grover's search.

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

Conclusion

Results

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

$$R_1 = \widetilde{O}(R_0^{1/2})$$

$$Q_E = \widetilde{O}(R_0^{1/2})$$

$$R_0 = \widetilde{O}(D^{1/2})$$

$$Q_2 = \widetilde{O}(D^{1/4})$$

 $Q_2 = \widetilde{O}(R_0^{1/3})$

 $Q_E = \widetilde{O}(R_2^{2/3})$

 $\widetilde{\deg} = \widetilde{O}(R_2^{1/4})$

Open Problems

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

We have resolved $R_2 \leftrightarrow R_0$ and $R_1 \leftrightarrow D$.

Can we resolve $R_2 \leftrightarrow D$ too?

Known: $R_2 = \Omega(D^{1/3})$ and $R_2 = \widetilde{O}(D^{1/2})$.

- Can we overcome the "certificate complexity barrier"? Obtain a function with $R_2 = o(C)$?
- $\blacksquare \quad \text{The same about } Q_2 \leftrightarrow D$

Known: $Q_2 = \Omega(D^{1/6})$ and $Q_2 = \widetilde{O}(D^{1/4})$.

 \blacksquare and $Q_E \leftrightarrow D$?

Known: $Q_E = \Omega(D^{1/3})$ and $Q_E = \widetilde{O}(D^{1/2})$.

Cheat Sheets

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

Aaronson, Ben-David, and Kothari came up with the Cheat-Sheet technique.

Cheat Sheets

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

Aaronson, Ben-David, and Kothari came up with the Cheat-Sheet technique.

- also uses pointers
- is incomparable to our results
- prove a number of interesting results, e.g., a total Boolean function f with

$$R_2(f) = \widetilde{\Omega}(Q_2(f)^{2.5}).$$

Cheat Sheets

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

Aaronson, Ben-David, and Kothari came up with the Cheat-Sheet technique.

- also uses pointers
- is incomparable to our results
- prove a number of interesting results, e.g., a total Boolean function f with

$$R_2(f) = \widetilde{\Omega}(Q_2(f)^{2.5}).$$

Actually, $R_2(f) = \widetilde{\Omega}(Q_2(f)^3)$, if there exists a partial function g on n variables with

$$Q_2(g) = O(\log n)$$
 and $R_2(g) = \widetilde{\Omega}(n)$.

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

Any questions?

