
1 / 52

Separations in Query Complexity

Based on Pointer Functions

(with a slight hint of quantum complexity)

Alexander Belov

CWI

Joint work with: Andris Ambainis, Kaspars Balodis,

Troy Lee, Miklos Santha, and Juris Smotrovs

(presented at QIP’16, to appear in STOC’16)



Introduction

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

2 / 52





Computational Models: Deterministic

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

4 / 52

D: Deterministic (Decision Tree)

♥♥♥
♥♥♥

♥♥♥
♥♥

0
⑧⑧
⑧⑧
⑧⑧

❄❄
❄❄

❄

0
☞☞
☞☞

1

✷✷
✷✷

x3

x2
PPP

PPP
PPP

PP

1
❄❄

❄❄
❄❄

⑧⑧
⑧⑧
⑧

0
☞☞
☞☞

1

✷✷
✷✷

x2

x3

x1



Computational Models: Deterministic

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

4 / 52

D: Deterministic (Decision Tree)

♥♥♥
♥♥♥

♥♥♥
♥♥

0
⑧⑧
⑧⑧
⑧⑧

❄❄
❄❄

❄

0
☞☞
☞☞

1

✷✷
✷✷

x3

x2
PPP

PPP
PPP

PP

1
❄❄

❄❄
❄❄

⑧⑧
⑧⑧
⑧

0
☞☞
☞☞

1

✷✷
✷✷

x2

x3

x1

MAJ3

x1
✆✆
✆✆
✆

x2 x3

✾✾
✾✾

✾



Computational Models: Deterministic

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

5 / 52

D: Deterministic (Decision Tree)

♥♥♥
♥♥♥

♥♥♥
♥♥

0
⑧⑧
⑧⑧
⑧⑧

❄❄
❄❄

❄

0
☞☞
☞☞

1

✷✷
✷✷

x3

x2
PPP

PPP
PPP

PP

1
❄❄

❄❄
❄❄

⑧⑧
⑧⑧
⑧

0
☞☞
☞☞

1

✷✷
✷✷

x2

x3

x1

Complexity

• on input: Number of queries (length of the path) 2 or 3

• in total: Worst input (depth of the tree) 3



Computational Models: Randomised

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

6 / 52

D: Deterministic (Decision Tree)

R: Randomised (Probability distribution on decision trees)

♥♥♥
♥♥♥

♥♥♥
♥♥

0
⑧⑧
⑧⑧
⑧⑧

❄❄
❄❄

❄

0
☞☞
☞☞

1

✷✷
✷✷

xc

xb
PPP

PPP
PPP

PP

1
❄❄

❄❄
❄❄

⑧⑧
⑧⑧
⑧

0
☞☞
☞☞

1

✷✷
✷✷

xc

xb

xa

a, b, c: uniform random permutation of 1, 2, 3.

Complexity

• on input: Expected number of queries 2 or 8
3

• in total: Worst input 8
3



Computational Model: Randomised

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

7 / 52

D: Deterministic (Decision Tree)

R: Randomised (Probability distribution on decision trees)

R0: Zero-error (Las Vegas)

� always outputs the correct output



Computational Models: Randomised

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

8 / 52

D: Deterministic (Decision Tree)

R: Randomised (Probability distribution on decision trees)

R0: Zero-error (Las Vegas)

� always outputs the correct output

R2: Bounded-error (Monte Carlo)

� rejects a negative input with probability ≥ 2
3

� accepts a positive input with probability ≥ 2
3



Computational Models: Randomised

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

9 / 52

D: Deterministic (Decision Tree)

R: Randomised (Probability distribution on decision trees)

R0: Zero-error (Las Vegas)

� always outputs the correct output

R1: One-sided error

� always rejects a negative input

� accepts a positive input with probability ≥ 1
2

(or vice versa)

R2: Bounded-error (Monte Carlo)

� rejects a negative input with probability ≥ 2
3

� accepts a positive input with probability ≥ 2
3



Computational Models: Quantum

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

10 / 52

D: Deterministic (Decision Tree)

R: Randomised (Probability distribution on decision trees)

R0: Zero-error (Las Vegas)

� always outputs the correct output

R1: One-sided error

� always rejects a negative input

� accepts a positive input with probability ≥ 1
2

(or vice versa)

R2: Bounded-error (Monte Carlo)

� rejects a negative input with probability ≥ 2
3

� accepts a positive input with probability ≥ 2
3

Q: Quantum

QE : Exact

Q2: Bounded-error



Separations

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

11 / 52

Easy for partial functions



Separations

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

11 / 52

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0



Separations

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

11 / 52

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1



Separations

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

11 / 52

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1, QE = 1,



Separations

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

11 / 52

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1, QE = 1, R0 = n/2 + 1

0 0 0 0



Separations

Introduction

Deterministic

Randomised

Quantum

Separations

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

11 / 52

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1, QE = 1, R0 = n/2 + 1

0 0 0 0

Total Functions — ???



Overview of Results

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

12 / 52



Iterated Functions

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

13 / 52

We have just seen D(MAJ3) = 3 and R0(MAJ3) = 8/3.

MAJ3

x1
✆✆
✆✆
✆

x2 x3

✾✾
✾✾

✾



Iterated Functions

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

13 / 52

We have just seen D(MAJ3) = 3 and R0(MAJ3) = 8/3.

Iterate it:

MAJ3

MAJ3
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

x1
✆✆
✆✆
✆

x2 x3

✾✾
✾✾

✾
MAJ3

x4
✆✆
✆✆
✆

x5 x6

✾✾
✾✾

✾
MAJ3

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘

x7
✆✆
✆✆
✆

x8 x9

✾✾
✾✾

✾



Iterated Functions

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

13 / 52

We have just seen D(MAJ3) = 3 and R0(MAJ3) = 8/3.

Iterate it:

MAJ3

MAJ3
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

x1
✆✆
✆✆
✆

x2 x3

✾✾
✾✾

✾
MAJ3

x4
✆✆
✆✆
✆

x5 x6

✾✾
✾✾

✾
MAJ3

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘

x7
✆✆
✆✆
✆

x8 x9

✾✾
✾✾

✾

We get

D(MAJd
3 ) = 3d and R0(MAJd

3 ) ≤ (8/3)d.

(Actually, it is less...)



Previous Record-Holder

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

14 / 52

Iterated NAND: record-holder for R0, R1, R2 versus D

NAND2

NAND2

♥♥♥
♥♥♥

♥♥♥
♥

NAND2

⑧⑧
⑧⑧
⑧

x1
✎✎
✎✎
✎

x2

✴✴
✴✴
✴

NAND2

❄❄
❄❄

❄

x3
✎✎
✎✎
✎

x4

✴✴
✴✴
✴

NAND2

PPP
PPP

PPP
P

NAND2

⑧⑧
⑧⑧
⑧

x4
✎✎
✎✎
✎

x5

✴✴
✴✴
✴

NAND2

❄❄
❄❄

❄

x7
✎✎
✎✎
✎

x8

✴✴
✴✴
✴

We have [Snir’85, Saks & Wigderson’86]:

R0 = R1 = R2 = O(n0.7537...), D = n



State of the Art

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

15 / 52

We have [Snir’85, Saks & Wigderson’86]:

R0 = R1 = R2 = O(n0.7537...), D = n

It is known [Nisan’89]

D = O(R2
1)



Our Main Results

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

16 / 52

It is known [Nisan’89]

D = O(R2
1)

We get functions with:

D = Θ̃(R2
0) R0 = Θ̃(R2

1)

R1 R0 D R1 R0 D



Our Main Results

Introduction

Overview of Results

Iterated Functions

Record-Holder

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

16 / 52

It is known [Nisan’89]

D = O(R2
1)

We get functions with:

D = Θ̃(R2
0) R0 = Θ̃(R2

1)

R1 R0 D R1 R0 D

The last one also saturates [Kulkarni & Tal’13, Midrijānis’05]

R0 = Õ(R2
2)



Göös-Pitassi-Watson

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

17 / 52



Paper

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

18 / 52



Goal

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

19 / 52

� Clique vs. Independent Set in communication complexity

� Reduce to a problem in query complexity: Find a function that

� has large deterministic complexity

� has small unambiguous 1-certificates

There exists a number of 1-certificates such that each

positive input satisfies exactly one of them.



D versus 1-certificates

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

20 / 52

Function on nm Boolean variables

� Accept iff there exists a unique all-1 column

0

1

1

1

1

1

0 01

1

1

0

0 0

0 }
}

n

m

� D = nm
� short 1-certificates (n+m− 1), BUT not unambiguous.



D versus 1-certificates

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

20 / 52

Function on nm Boolean variables

� Accept iff there exists a unique all-1 column

0

1

1

1

1

1

0 01

1

1

0

0 0

0 }
}

n

m

� D = nm
� short 1-certificates (n+m− 1), BUT not unambiguous.

Should specify which zero to take in each column!



Pointers

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

21 / 52

1

1 0

00

1

1

1

1

1

1

00

0

0

� Alphabet: {0, 1} × ([n]× [m] ∪ {⊥})
Not Boolean, but we can encode using O(log(n+m)) bits.

� Accept iff

� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointer;

� following the pointers from r, we traverse through exactly

one zero in each column but b.



Pointers

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

22 / 52

1

1 0

00

1

1

1

1

1

1

00

0

0

� short unambiguous 1-certificates (n+m− 1)



Pointers

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

22 / 52

1

1 0

00

1

1

1

1

1

1

00

0

0

� short unambiguous 1-certificates (n+m− 1)

� Still have D = nm (Adversary argument, next slide)



Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

23 / 52

Adversary finds a bad input for each deterministic decision tree, by

playing along with the decision tree.



Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

23 / 52

Adversary finds a bad input for each deterministic decision tree, by

playing along with the decision tree.

xa



Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

23 / 52

Adversary finds a bad input for each deterministic decision tree, by

playing along with the decision tree.

irrelevant
PPP

PPP
PPP

PP

xb

xa



Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

23 / 52

Adversary finds a bad input for each deterministic decision tree, by

playing along with the decision tree.

irrelevant
PPP

PPP
PPP

PP

irrelevant
⑧⑧
⑧⑧
⑧

xc

xb

xa



Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

23 / 52

Adversary finds a bad input for each deterministic decision tree, by

playing along with the decision tree.

irrelevant
PPP

PPP
PPP

PP

irrelevant
⑧⑧
⑧⑧
⑧

and so on. . .

xc

xb

xa

For each queried variable, the adversary provides the value,

so that the value of the function is unknown as long as possible.



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

24 / 52

� While there are non-queried elements in a column:

� Return 1 .

� When the last element in a column is queried:

� Return 0 , linking it to the last returned 0 .



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

24 / 52

� While there are non-queried elements in a column:

� Return 1 .

� When the last element in a column is queried:

� Return 0 , linking it to the last returned 0 .

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

24 / 52

� While there are non-queried elements in a column:

� Return 1 .

� When the last element in a column is queried:

� Return 0 , linking it to the last returned 0 .

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

24 / 52

� While there are non-queried elements in a column:

� Return 1 .

� When the last element in a column is queried:

� Return 0 , linking it to the last returned 0 .

0

1

1

1

1

1

0

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

24 / 52

� While there are non-queried elements in a column:

� Return 1 .

� When the last element in a column is queried:

� Return 0 , linking it to the last returned 0 .

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

110

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

24 / 52

� While there are non-queried elements in a column:

� Return 1 .

� When the last element in a column is queried:

� Return 0 , linking it to the last returned 0 .

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

24 / 52

� While there are non-queried elements in a column:

� Return 1 .

� When the last element in a column is queried:

� Return 0 , linking it to the last returned 0 .

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

24 / 52

� While there are non-queried elements in a column:

� Return 1 .

� When the last element in a column is queried:

� Return 0 , linking it to the last returned 0 .

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1



Features of Pointers

Introduction

Overview of Results

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Adversary Method

D Lower Bound

Features of Pointers

Our Modifications

R1 versus R0

R0 versus D

Conclusion

25 / 52

Highly elusive

(flexible)

Still traversable

(if know where to start).



Our Modifications

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

Binary Tree

Definition (base)

R1 versus R0

R0 versus D

Conclusion

26 / 52



Binary Tree

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

Binary Tree

Definition (base)

R1 versus R0

R0 versus D

Conclusion

27 / 52

Instead of a list

0

00
1

0

0
0

0

we use a balanced binary tree

1

0 0 0 0 0 0 0

� More elusive

� Random access



Definition (base)

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

Binary Tree

Definition (base)

R1 versus R0

R0 versus D

Conclusion

28 / 52

00

0 1

1

0

1

1

1

1

1

1

0

0

0

Accept iff

� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointers;

� for each j 6= b, following a path T (j) from r gives a zero in the

jth column.



Definition (base)

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

Binary Tree

Definition (base)

R1 versus R0

R0 versus D

Conclusion

28 / 52

00

0 1

1

0

1

1

1

1

1

1

0

0

0

Accept iff

� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointers;

� for each j 6= b, following a path T (j) from r gives a zero in the

jth column.

� Some additional information is contained in the leaves (to be

defined).



R1 versus R0

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

29 / 52



State of the Art

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

30 / 52

� NO separation was known even between R2 and R0.

(Iterated functions are not of much help here.)



Reminder 1: Partial Separation

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

31 / 52

Recall the separation for a partial function

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0



Reminder 2: Definition (base)

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

32 / 52

00

0 1

1

0

1

1

1

1

1

1

0

0

0

Accept iff

� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointers;

� for each j 6= b, following a path T (j) from r gives a zero in the

jth column.

� Some additional information is contained in the leaves (to be

defined).



Definition

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

33 / 52

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

Accept iff

� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointers;

� for each j 6= b, following a path T (j) from r gives a zero in the

jth column.

� exactly m/2 of the leaves back point to the root r.



Totalisation

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

34 / 52

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

A column is good if it contains a leaf back pointing to the root of a

legitimate tree.

� A positive input contains exactly m/2 good columns.

� A negative input contains no good columns.



Totalisation

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

34 / 52

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

A column is good if it contains a leaf back pointing to the root of a

legitimate tree.

� A positive input contains exactly m/2 good columns.

� A negative input contains no good columns.

A total function looks like a partial function!



Check Column: Informal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

35 / 52

Deterministic subroutine

Given a column c ∈ [m], accept iff it

is good.

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0



Check Column: Informal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

35 / 52

Deterministic subroutine

Given a column c ∈ [m], accept iff it

is good.

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

Go through column c, find the back pointer to r, and check the tree.



Check Column: Informal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

35 / 52

Deterministic subroutine

Given a column c ∈ [m], accept iff it

is good.

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

Go through column c, find the back pointer to r, and check the tree.

Wait, column c may contain many bogus pointers — ???



Check Column: Informal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

35 / 52

Deterministic subroutine

Given a column c ∈ [m], accept iff it

is good.

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

Go through column c, find the back pointer to r, and check the tree.

Wait, column c may contain many bogus pointers — ???

On each step, either

� eliminate a column: it is not the all-1 column; or

� eliminate an element in column c: it is not a leaf of the tree.



Check Column: Formal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

36 / 52

Deterministic subroutine

Given a column c ∈ [m], accept iff it

is good.

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

� While there is ≥ 2 non-eliminated columns:

� Let a be a non-eliminated element in c. If none, reject.

� Let r be the back pointer of a, and b be the column of r.

� Let j be a non-eliminated column 6= b.
� If the path T (j) from r ends in a zero in column j,

eliminate column j.

Otherwise, eliminate element a.

� Verify the only non-eliminated column.



R1 Upper Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

37 / 52

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

� On each iteration of the loop, either an element or a column

gets eliminated. At most n+m iterations.

Complexity: Õ(n+m).

Sticking into Deutsch-Jozsa, get R1 and QE upper bound of

Õ(n+m).



R0 Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

38 / 52

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

00

0

0

0

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1 1

1

1

1 1

(Negative) input with exactly one

zero in each column.



R0 Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

38 / 52

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

00

0

0

0

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1 1

1

1

1 1

(Negative) input with exactly one

zero in each column.

� An R0 algorithm can reject

only if it has found m/2 ze-

roes.

1

11

1

1

1

1

1 1 1

1

1

1

1

1 1

1

1

1

0

1

0

0

1

11

1

1

1

1

1

1

=⇒
1

1

1 1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0



R0 Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

38 / 52

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

00

0

0

0

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1 1

1

1

1 1

(Negative) input with exactly one

zero in each column.

� An R0 algorithm can reject

only if it has found m/2 ze-

roes.

Requires Ω(nm) queries.

1

11

1

1

1

1

1 1 1

1

1

1

1

1 1

1

1

1

0

1

0

0

1

11

1

1

1

1

1

1

=⇒
1

1

1 1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0



Summary

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Reminder 1

Reminder 2

Definition

Totalisation

Check Column

R1 Upper Bound

R0 Lower Bound

Summary

R0 versus D

Conclusion

39 / 52

� Upper bound for R1 and QE is Õ(n+m).
� Lower bound for a R0 algorithm is Ω(nm).

Taking n = m, we get a quadratic separation between R1 and R0,

as well as between QE and R0

NB. The previous separation was [Ambainis’12]:

QE = O(R0.8675...
0 )



R0 versus D

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

40 / 52



Reminder: Definition (base)

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

41 / 52

00

0 1

1

0

1

1

1

1

1

1

0

0

0

Accept iff

� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointers;

� for each j 6= b, following a path T (j) from r gives a zero in the

jth column.

� Some additional information is contained in the leaves (to be

defined).



Definition

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

42 / 52

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

Accept iff

� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointers;

� for each j 6= b, following a path T (j) from r gives a zero in the

jth column.

� all the leaves back point to the all-1 column b.



Reminder 2: Adversary Argument

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

43 / 52

� While there are non-queried elements in a column:

� Return 1 .

� When the last element in a column is queried:

� Return 0 , linking it to the last returned 0 .

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

44 / 52

Adversary Method.

Let n = 2m.

If the kth element is queried in a column:

� If k ≤ m, return 1 .

� Otherwise, return 0 with back

pointer to column k −m.

0

1

1

1

1

1

1

1

1 0

0

At the end, the column contains m 1 and m 0 with back pointers

to all columns 1, 2, . . . ,m.



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

44 / 52

Adversary Method.

Let n = 2m.

If the kth element is queried in a column:

� If k ≤ m, return 1 .

� Otherwise, return 0 with back

pointer to column k −m.

0

1

1

1

1

1

1

1

1 0

0

At the end, the column contains m 1 and m 0 with back pointers

to all columns 1, 2, . . . ,m.

� The algorithm does not know the value of the function until it

has queried > m elements in each of m columns.



Deterministic Lower Bound

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

44 / 52

Adversary Method.

Let n = 2m.

If the kth element is queried in a column:

� If k ≤ m, return 1 .

� Otherwise, return 0 with back

pointer to column k −m.

0

1

1

1

1

1

1

1

1 0

0

At the end, the column contains m 1 and m 0 with back pointers

to all columns 1, 2, . . . ,m.

� The algorithm does not know the value of the function until it

has queried > m elements in each of m columns.

Lower bound: Ω(m2).



R0 Upper Bound: Informal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

45 / 52

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

� Each column contains a back pointer to the all-1 column.

BUT which one is the right one—?



R0 Upper Bound: Informal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

45 / 52

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

� Each column contains a back pointer to the all-1 column.

BUT which one is the right one—?

We try each back pointer by quering few elements in the column,

and proceed to a one where no zeroes were found.

� Even if this is not the all-1 column,

we can arrange that it contains fewer zeroes whp.



R0 Upper Bound: Formal

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

46 / 52

Algorithm

� Let c be the first column, and k ← n.

� While k > 1,

� Let c←ProcessColumn(c, k), and k ← k/2.

ProcessColumn(column c, integer k)

� Query all elements in column c.

� If there are no zeroes, verify column c.

� If there are > k zeroes, query all nm variables, and output the

value of the function.

� For each zero a:

� Let j be the back pointer of a.

� Query Õ(n/k) elements in column j. (Probability < 1
(nm)2

that no zero found if there are > k/2 of them).

� If no zero was found, return j.

� Reject



Summary

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

47 / 52

Take n = 2m.

� Lower bound for a D algorithm is Ω(m2).

� Upper bound for a R0 algorithm is Õ(n+m).

We get a quadratic separation between R0 and D.



Summary

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Reminder

Definition

Reminder 2

D Lower Bound

R0 Upper Bound

Summary

Conclusion

47 / 52

Take n = 2m.

� Lower bound for a D algorithm is Ω(m2).

� Upper bound for a R0 algorithm is Õ(n+m).

We get a quadratic separation between R0 and D.

� Also, upper bound for a Q2 algorithm is Õ(
√
n+m).

We get a quartic separation between Q2 and D.

NB. Previous separation was quadratic: Grover’s search.



Conclusion

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

48 / 52



Results

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

49 / 52

R1 = Õ(R
1/2
0 )

QE = Õ(R
1/2
0 )

R0 = Õ(D1/2)

Q2 = Õ(D1/4)

Q2 = Õ(R
1/3
0 )

QE = Õ(R
2/3
2 )

d̃eg = Õ(R
1/4
2 )



Open Problems

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

50 / 52

We have resolved R2 ↔ R0 and R1 ↔ D.

Can we resolve R2 ↔ D too?

Known: R2 = Ω(D1/3) and R2 = Õ(D1/2).

� Can we overcome the “certificate complexity barrier”?

Obtain a function with R2 = o(C)?

� The same about Q2 ↔ D
Known: Q2 = Ω(D1/6) and Q2 = Õ(D1/4).

� and QE ↔ D?

Known: QE = Ω(D1/3) and QE = Õ(D1/2).



Cheat Sheets

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

51 / 52

Aaronson, Ben-David, and Kothari came up with

the Cheat-Sheet technique.



Cheat Sheets

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

51 / 52

Aaronson, Ben-David, and Kothari came up with

the Cheat-Sheet technique.

� also uses pointers

� is incomparable to our results

� prove a number of interesting results, e.g.,

a total Boolean function f with

R2(f) = Ω̃(Q2(f)
2.5).



Cheat Sheets

Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

51 / 52

Aaronson, Ben-David, and Kothari came up with

the Cheat-Sheet technique.

� also uses pointers

� is incomparable to our results

� prove a number of interesting results, e.g.,

a total Boolean function f with

R2(f) = Ω̃(Q2(f)
2.5).

� Actually, R2(f) = Ω̃(Q2(f)
3), if there exists a partial function

g on n variables with

Q2(g) = O(log n) and R2(g) = Ω̃(n).



Introduction

Overview of Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

Cheat Sheets

52 / 52

Any questions?


	Introduction
	
	Computational Models: Deterministic
	Computational Models: Deterministic
	Computational Models: Randomised
	Computational Models: Quantum
	Separations

	Overview of Results
	Iterated Functions
	Previous Record-Holder
	Our Main Results

	Göös-Pitassi-Watson
	Paper
	Goal
	D versus 1-certificates
	Pointers
	Adversary Method
	Adversary Method
	Adversary Method
	Adversary Method
	Adversary Method
	Deterministic Lower Bound
	Deterministic Lower Bound
	Deterministic Lower Bound
	Deterministic Lower Bound
	Deterministic Lower Bound
	Deterministic Lower Bound
	Deterministic Lower Bound
	Deterministic Lower Bound
	Features of Pointers

	Our Modifications
	Binary Tree
	Definition (base)

	R1 versus R0[width=4cm]fight01.eps
	State of the Art
	Reminder 1: Partial Separation
	 Reminder 2: Definition (base)
	Definition
	Totalisation
	Check Column: Informal
	R1 Upper Bound
	R0 Lower Bound
	Summary

	[width=6cm]fight02.epsR0 versus D
	 Reminder: Definition (base)
	Definition
	Reminder 2: Adversary Argument
	Deterministic Lower Bound
	R0 Upper Bound: Informal
	Summary

	Conclusion
	Results
	Open Problems
	Cheat Sheets


	pdstartclock: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 


