Testing Monotonicity

Alexander Belov Eric Blais
CWI University of Waterloo
O O O O O O O O

15-Apr-2016, Cambridge-UK

1/36

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Introduction

Non-Adaptive Lower
Bounds

Adaptivity

Summary

2/36

Property Testing

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

3/36

Property Testing

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

3/36

Property Testing

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

3/36

Property Testing

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

3/36

Property Testing

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

3/36

Property Testing

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

3/36

Property Testing

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

3/36

Property Testing

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

3/36

Property Testing

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

3/36

Property Testing

Introduction with a duck

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

3/36

Property Testing

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower

,E:untd.s.t e Accept hypothesis that are true;
aptivity
Summary
e Reject hypothesis that are too wrong:

Fail on too many occasions.

3/36

Formal Definition

Introduction with a duck E

Population: Boolean function f: {0,1}" — {0, 1}.

Property Testing

Formal Definition

B Inputs <— Objects

onotonicity :)

Clarifications : Variables <— Parameters

Time Line Value of the function <— Property under investigation

Non-Adaptive

Algorithms B Hypothesis: The function f possesses some property P.

Non-Adaptive Lower
Bounds

Adaptivity

Summary

4 /36

Formal Definition

Introduction with a duck E

B Population: Boolean function f: {0,1}" — {0, 1}.

Property Testing

Formal Definition

Inputs <— Objects

Monotonicity : .
Clarifications : Variables <— Parameters
Time Line Value of the function <— Property under investigation

Non-Adaptive

Algorithms B Hypothesis: The function f possesses some property P.

Non-Adaptive Lower
Bounds

Adaptivity

: Given P, construct an algorithm that
S”mm"’”y . M Acceptsif f € P.
. W Rejectsif f is far from P:
for any g € P, relative Hamming distance h(f, g) > &:
f and g differ on > £2" inputs.

4 /36

Formal Definition

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

B Population: Boolean function f: {0,1}" — {0, 1}.

Inputs <— Objects
Variables <—> Parameters
Value of the function <— Property under investigation

B Hypothesis: The function f possesses some property P.

Given P, construct an algorithm that
B Acceptsif f € P.
B Rejectsif f is far from P:
for any g € P, relative Hamming distance h(f, g) > &:
f and g differ on > £2" inputs.

Popular Ps:
B Juntas: the function depends on few variables.

B Monotonicity: improving a parameter improves the property.
4/36

Formal Definition

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

B Population: Boolean function f: {0,1}" — {0, 1}.

Inputs <— Objects
Variables <—> Parameters
Value of the function <— Property under investigation

B Hypothesis: The function f possesses some property P.

Given P, construct an algorithm that
B Acceptsif f € P.
B Rejectsif f is far from P:
for any g € P, relative Hamming distance h(f, g) > &:
f and g differ on > £2" inputs.

Popular Ps:
B Juntas: the function depends on few variables.

B Monotonicity: improving a parameter improves the property.
4/36

Monotonicity

Introduction with a duck § Partlal Order on BOOlean Strlngs

Property Testing
Formal Definition

Monotonicity E X j y: \V/Z E [n] :Ei — 1 —_— yz — 1
Clarifications ; OO 1 O j O 1 1 1

Time Line

Non-Adaptive
Algorithms

Bounds

Non-Adaptive Lower g A fUﬂC’[IOﬂ f: {O’ 1}71, N {0’ 1} |S monotone iff

Adaptivity

v,y €{0,1}": z 2y = f(z) < f(y).

Summary

5/36

Clarifications

Introduction with a duck E

Monotone = Monotonely non-decreasing

Property Testing

;ormj' ?efti”i“on B Interested in query complexity

onotonicity .

Clarifications [J as a function of n and ¢;

Time Line : .

R [1 dependence on n more important;
Algorithrs 0 the size of the input N = 2",

Non-Adaptive Lower

Bounds Restrict to the inputs in the middle of the
Adaptivity cu be :
Summary

2] = 5 % O.(v/n)

6/36

Time Line

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

2000

2015

— [Goldreich, Goldwasser, Lenman, Ron "1998]

Defined the problem, proposed a simple edge tester.

7136

Time Line

inroduction wih a duck I\o [Goldreich, Goldwasser, Lehman, Ron '1998]
Poperty Testng 2000 \ Defined the problem, proposed a simple edge tester.

Formal Definition

Monotonicity

e [Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

Clarifications .
Time Line Samorodnitsky '1999]
e Analysed the edge tester. O(n/c) upper bound.

Non-Adaptive Lower
Bounds

Adaptivity

Summary

2015

7136

Time Line

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

I\o [Goldreich, Goldwasser, Lenman, Ron "1998]

2000
®

2015

Defined the problem, proposed a simple edge tester.

e [Dodis, Goldreich, Lehman, Raskhodnikova, Ron,
Samorodnitsky '1999]
Analysed the edge tester. O(n/e) upper bound.

e [Fischer, Lehman, Newman, Raskhodnikova,
Rubinfeld, Samorodnitsky '2002]
(A(log n) lower bound for non-adaptive algorithms;

7136

Time Line

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

I\o [Goldreich, Goldwasser, Lenman, Ron "1998]

2000
®

2015

Defined the problem, proposed a simple edge tester.

e [Dodis, Goldreich, Lehman, Raskhodnikova, Ron,
Samorodnitsky '1999]
Analysed the edge tester. O(n/e) upper bound.

e [Fischer, Lehman, Newman, Raskhodnikova,
Rubinfeld, Samorodnitsky '2002]
(A(log n) lower bound for non-adaptive algorithms;
(2(loglogn) general lower bound:;

7136

Time Line

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

I\o [Goldreich, Goldwasser, Lenman, Ron "1998]

2000
®

2015

Defined the problem, proposed a simple edge tester.

e [Dodis, Goldreich, Lehman, Raskhodnikova, Ron,
Samorodnitsky '1999]
Analysed the edge tester. O(n/e) upper bound.

e [Fischer, Lehman, Newman, Raskhodnikova,
Rubinfeld, Samorodnitsky '2002]
(A(log n) lower bound for non-adaptive algorithms;
(2(loglogn) general lower bound:;
(A(logloglog N) lower bound, N: size of the input.

7136

Time Line

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

2015 and lower bounds

I\o [Goldreich, Goldwasser, Lenman, Ron "1998]

2000 \ Defined the problem, proposed a simple edge tester.
o

e [Dodis, Goldreich, Lehman, Raskhodnikova, Ron,
Samorodnitsky '1999]
Analysed the edge tester. O(n/e) upper bound.

e [Fischer, Lehman, Newman, Raskhodnikova,
Rubinfeld, Samorodnitsky '2002]

(A(log n) lower bound for non-adaptive algorithms;
()(loglogn) general lower bound:;

(logloglog N') lower bound, N size of the input.

New algorithms

In expectation...

7136

Time Line

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

2015 and lower bounds

I\o [Goldreich, Goldwasser, Lenman, Ron "1998]

2000 \ Defined the problem, proposed a simple edge tester.
o

e [Dodis, Goldreich, Lehman, Raskhodnikova, Ron,
Samorodnitsky '1999]
Analysed the edge tester. O(n/e) upper bound.

e [Fischer, Lehman, Newman, Raskhodnikova,

® Rubinfeld, Samorodnitsky '2002]

(A(log n) lower bound for non-adaptive algorithms;
(2(loglogn) general lower bound:;

()(logloglog N) lower bound, N: size of the input.

New algorithms

In expectation...

7136

Time Line

inroduction wih a duck I\o [Goldreich, Goldwasser, Lehman, Ron '1998]

Eo:mté ;ttf 2000 \ Defined the problem, proposed a simple edge tester.
: [

!:?t;tzti : e [Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

Time Line Samorodnitsky '1999]

Agorme Analysed the edge tester. O(n/c) upper bound.

non Adapive Lower e [Fischer, Lenman, Newman, Raskhodnikova,

o Rubinfeld, Samorodnitsky '2002]

S (2(log n) lower bound for non-adaptive algorithms;

(2(loglogn) general lower bound:;
(A(logloglog N) lower bound, N: size of the input.

[
\. New algorithms

and lower bounds
In expectation...

2015

7136

Time Line: Zoom In

2013 @

Introduction with a duck

Property Testing 2000
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

2015

2016 @

8/36

Time Line: Zoom In

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

STOC'13@

FOCS’'14@

STOC’15@

FOCS'15@

/.

7
.

Proposed a path tester. Complexity: O(n"/873/2).

[Chen, Serv
Q(n'/?) non-adaptive lower bound,

improved the upper bound to O(n?/6z™4).

[Chen, De, Servedio, Tan]

Improved the non-adaptive lower bound to n!'/2=°(1).

Brought complexity of path tester to 5 (g—i) .

8/36

Time Line: Zoom In

Introduction with a duck E

Property Testing
Formal Definition
Monotonicity
Clarifications

Time Line

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

o
stociae— Proposed a path tester. Complexity: O(n"/8e=3/2).
° [NChen, Serv
Q(n'/?) non-adaptive lower bound,
improved the upper bound to O(n?/%s=4).
FOCS'149

e [Chen, De, Servedio, Tan]
/ Improved the non-adaptive lower bound to n'/2=°(),

STOC’15@

FOCS’15Q/ Brought complexity of path tester to 5 (g—i) .

sTocse——® [Belovs, Blais]
Q(n!/*) adaptive lower bound.

8/36

Introduction with a duck

Non-Adaptive
Algorithms

Edge Tester
Algorithm
Analysis
Shifting

Non-Adaptive Algorithms
Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

9/36

Edge Tester

Introduction with a duck I\o [Goldreich, Goldwasser, Lehman, Ron '1998]
R ;2000 \ Defined the problem, proposed a simple edge tester.
:]

EngEff:;m e [Dodis, Goldreich, Lehman, Raskhodnikova, Ron,
anapis oy 1999

PathSThﬁtg edge tester. O(n/e) upper bound.
o an, Newman, Raskhodnikova,
Algorithm morodnitsky '2002]

Summary

er bound for non-adaptive algorithms;
general lower bound;
> V) lower bound, NN size of the input.

Non-Adaptive Lower
Bounds

Adaptivity

Summary

10/ 36

Edge Tester: Algorithm

Introduction with a duck E

Mo : Sample an edge =y of the hypercube
Eege Teter {0, 1}" uniformly at random (x < ¥, at dis-
e tance 1).
Shifting B Accept if the edge is monotone, and reject
R : otherwise.

Hard functions
Algorithm

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

11/36

Edge Tester: Algorithm

Introduction with a duck E

Non-Adaptive
Algorithms

: Sample an edge xy of the hypercube

Edgirgf::;m {0, 1}" uniformly at random (z < ¥, at dis-
Analyeis tance 1).

Shifting B Accept if the edge is monotone, and reject

Path Tester .
otherwise.

Motivation

Hard functions
Algorithm

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

11/36

Edge Tester: Algorithm

Introduction with a duck E

Non-Adaptive

Sample an edge xy of the hypercube

Algorithms :
Edge Tester {0, 1}" uniformly at random (z < ¥, at dis-
Algorithm :
Analysis E tance 1)
Shifting B Accept if the edge is monotone, and reject
Path Tester . :
Motivation O’[heI’WISe
Hard functions
Algorithm
Summary

Theorem. The edge tester

Non-Adaptive Lower

Bounds (a) always accepts a monotone function;
Adaptiviy (b) rejects a non-monotone function with probability €)(e /n).
Summary :

B requires O(n/e) queries to test for monotonicity with (1)
success probability.
B is a non-adaptive tester with one-sided error.

12/ 36

Edge Tester: Analysis

Introduction with a duck E

Non-Adaptive

Algorithms N
Edge Tester - Theorem. The edge tester

Algorithm (a) always accepts a monotone function;

Analysi T

s (b) rejects a non-monotone function with probability (& /).
Path Tester .

votaten follows from

Hard functions

roene Observation. There exists a monotone function at distance < 2K
Summary

oo+ from f:{0,1}" — {0,1}, where K is the number of non-
- : monotone edges of f .

Adaptivity

Summary

Indeed, n2" ! s the total number of edges,
and 2" ! is the number of non-monotone ones.

13 /36

Edge Tester: Shifting

nodilonvivadie i Qbservation. There exists a monotone function at distance < 2K

Non-Adaptive

Agoritms from f: {0,1}" — {0,1}, where K is the number of non-
e Tester . monotone edges of f.

Algorithm

Analysis

Shifting

Path Tester

Motivation . . Forl — 17 e 7n:
R T— Sort the edges along the -th direction
Agorthm (Replace 10-edges by 01-edges.)

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

14/ 36

Edge Tester: Shifting

nodilonvivadie i Qbservation. There exists a monotone function at distance < 2K

Non-Adaptive

Agoritms from f: {0,1}" — {0,1}, where K is the number of non-
e Tester . monotone edges of f.

Algorithm

Analysis

Shifting :
e B Fori=1,...,n:

Hard functions - Sort the edges along the 2-th direction
Algorithm (Replace 10-edges by 01-edges.)

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

14/ 36

Edge Tester: Shifting

nodilonvivadie i Qbservation. There exists a monotone function at distance < 2K

Non-Adaptive

Agoritms from f: {0,1}" — {0,1}, where K is the number of non-
e Tester . monotone edges of f.

Algorithm

Analysis

Shifting :
e B Fori=1,...,n:

Hard functions - Sort the edges along the 2-th direction
Algorithm (Replace 10-edges by 01-edges.)

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

14/ 36

Edge Tester: Shifting

nodilonvivadie i Qbservation. There exists a monotone function at distance < 2K

Non-Adaptive

Agoritms from f: {0,1}" — {0,1}, where K is the number of non-
e Tester . monotone edges of f.

Algorithm

Analysis

Shifting :
e B Fori=1,...,n:

Hard functions - Sort the edges along the 2-th direction
Algorithm (Replace 10-edges by 01-edges.)

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

14/ 36

Edge Tester: Shifting

nodilonvivadie i Qbservation. There exists a monotone function at distance < 2K

Non-Adaptive

Agoritms from f: {0,1}" — {0,1}, where K is the number of non-
e Tester . monotone edges of f.

Algorithm

Analysis

Shifting :
e B Fori=1,...,n:

Hard functions - Sort the edges along the 2-th direction
Algorithm (Replace 10-edges by 01-edges.)

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

14/ 36

Edge Tester: Shifting

nodilonvivadie i Qbservation. There exists a monotone function at distance < 2K

Non-Adaptive

Agoritms from f: {0,1}" — {0,1}, where K is the number of non-
e Tester . monotone edges of f.

Algorithm

Analysis

Shifting :
e B Fori=1,...,n:

Hard functions - Sort the edges along the 2-th direction
Algorithm (Replace 10-edges by 01-edges.)

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

14/ 36

Edge Tester: Shifting

nodilonvivadie i Qbservation. There exists a monotone function at distance < 2K

Non-Adaptive

Agoritms from f: {0,1}" — {0,1}, where K is the number of non-
e Tester . monotone edges of f.

Algorithm

Analysis

Shifting

Path Tester

Motivation . . Forl — 17 e 7n:
R T— Sort the edges along the -th direction
Agorthm (Replace 10-edges by 01-edges.)

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

14/ 36

Edge Tester: Shifting

nodilonvivadie i Qbservation. There exists a monotone function at distance < 2K

Non-Adaptive

Agoritms . from f: {0,1}" — {0,1}, where K is the number of non-
e Tester . monotone edges of f.

Algorithm

Analysis

Shifting

Path Tester é B Fori — 17 ooy N

Motivation

EEATEIOTS Sort the edges along the 1-th direction
Agorthm (Replace 10-edges by 01-edges.)

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Lemma. Shifting in the 1-th direction does not increase the
number of non-monotone edges in the j-th direction.

el gl

Summary

Path Tester

Introduction with a duck § o
Agorhns. . STOC138 Proposed a path tester. Complexity: O(n"/8e=3/2).
Edge Tester ;
Algorithm E P [Chen S
Analysis . ~ ,
: 1
Shifting : 52(71 /5)

Path Tester
Motivation
Hard functions

Algorithm FOCS'14@

Summary

Non-Adaptive Lower

Bounds § STOC'15@
Adaptivity .

FOCS’150/ Brought complexity of path tester to O (*{f—?) :

Summary

sTocse——® [Belovs, Blais]
Q(n!/*) adaptive lower bound.

15/ 36

Path Tester: Motivation

Iniroduction with & duck The edge tester performs badly on the anti-dictator function:

Non-Adaptive
Algorithms

Edge Tester ; f(x) — X;.

Algorithm

Analysis

Shifting

. : W Atdistance 1/2 to monotone.
wovaion© @ Only 2"~! non-monotone edges: Probability 1/n to succeed.

Hard functions
Algorithm

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

16/ 36

Path Tester: Motivation

Iniroduction with & duck The edge tester performs badly on the anti-dictator function:

Non-Adaptive
Algorithms

Edge Tester ; f(x) — X;.

Algorithm

Analysis

Shifting

. : W Atdistance 1/2 to monotone.
wovaion© @ Only 2"~! non-monotone edges: Probability 1/n to succeed.

Hard functions

Algorithm Idea: Test multiple coordinates with one query.
S ’ Query z < y at larger distances.

Non-Adaptive Lower
Bounds

Adaptivity

Summary

16/ 36

Path Tester: Hard functions

nossonunadec t A |inear Threshold Function (LTF)
Agoritms fo{=1,1m o {—1,1}, withm < n.
Edge Tester . Write f(u,v)withu € {—1,1}",andv € {—1,1}"™

Algorithm
Analysis E 1 1
Shifting : f(u v) — 1] iff _ E Ui — ——— E v. > ()
:) 7] —
Path Tester : n . /m .
Motivation § \/_ ¢ J

Hard functions
Algorithm

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

17 /36

Path Tester: Hard functions

Algorithms

Introduction with a duck E 1 1
Non-Adaptive g h(U, U) o \/ﬁ E :UZ o \/m z :U] Z O

Edge Tester .
Algorithm © Suppose (u,v) < (v, v") are at distance k.
S Wewant f(u,v) = Land f(u,v) = 0.

Path Tester
Motivation
Hard functions
Algorithm

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

18 /36

Path Tester: Hard functions

Introduction with a duck E

Non-Adaptive
Algorithms

Edge Tester
Algorithm
Analysis
Shifting

Path Tester
Motivation
Hard functions
Algorithm

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

Suppose (u,v) < (u,v") are at distance k.
We want f(u,v) = 1and f(u',0") = 0.

B |If kis large, this almost never happens, since, almost surely,
h(u',v") — h(u,v)

Y

18 /36

Path Tester: Hard functions

Introduction with a duck E

Non-Adaptive
Algorithms

Edge Tester
Algorithm
Analysis
Shifting

Path Tester
Motivation
Hard functions
Algorithm

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

Suppose (u,v) < (u,v") are at distance k.
We want f(u,v) = 1and f(u',0") = 0.

Success Probability = — - k— = — -

n
vym o oon m \'m

B If kis even smaller, the probability decreases.

18 /36

Path Tester: Algorithm

Introduction with a duck E

Non-Adaptive
Algorithms

Edge Tester

Algorithm

Analysis E] .

Shifting B Pick aparameter k = 1,2,4,8,...,+/n uniformly at
Path Tester § rando m]

Motivation .))

o toroions - B Sample, uniformly at random, z < y at distance k.

Algorithm B Accept if the edge is monotone, and reject otherwise.
Summary .

Non-Adaptive Lower
Bounds

Adaptivity

Summary

Theorem[Knot, Minzer, Safra " 2015]. The pair tester rejects a
non-monotone function with probability Q)(? /\/1).

19/ 36

Summary

Introduction with a duck E

Non-Adaptive
Algorithms

Edge Tester
Algorithm

Analysis Edge Tester Path Tester
Shifting 5 »
Path Toster Classical O(n/e) O(y/n/e?)
Motivation .
Hard functions

Algorithm

S Quantum O(\/n/e) O(n'/*/e)

Bounds

Adaptivity

Summary

O(n'/*/)

20/ 36

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Random LTFs

Adaptivity

Summary

Non-Adaptive Lower Bounds

21/36

Random LTFs

EE— Consider a random LTF f: {—1,1}" — {—1,1}:

Algorithms ,

Non-Acapive Lower f(x) = sgn(vizi + o + -+ - + VpTy),

B;:::zm LTFs where

Adaptivit Yes case No case

Summary o {1, w/ prob. 1/2 L {1, w/ prob. 1/10
‘ " 13, wi/prob. 1/2 " 17/3, wiprob. 9/10

Theorem|Clien, Servedio, Tan]. For any nearly-balanced 1, . . . ,x, € {—1,1}",

- ((fa). o fa)) (g, g(xq))gNNo> — 5(%).

B Gives Q(n1/5) lower bound. n'/2=°) pound is similar. oo /36

Introduction with a duck

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

[] u
Bisection Algorithm AdaptIVIty
Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound

Summary

23 /36

Introduction with a duck

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

B Remember the edge tester.

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound

Summary

24 /36

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound

Summary

Remember the edge tester.

For any monotone

f:{0,1}" — {0, 1},
at most 0(\%) fraction of the edges
are “interesting” (non-constant).

24 /36

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

Remember the edge tester.

For any monotone

f:{0,1}" — {0, 1},
at most 0(\%) fraction of the edges
are “interesting” (non-constant).

Can we get an algorithm that always
query “interesting” edges?

24 /36

Introduction with a duck

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound

Summary

25/ 36

Introduction with a duck E

Non-Adaptive
Algorithms

The Bisection Algorithm

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

Sample z € f~'(0) and y € f~*(1) uniformly at ran-
dom.

While x and y differ in more than 1 variable:
[0 Generate a uniformly random z between x and y

O If f(z) =0, letx < z;otherwise, y < z.

Accept if xy is a monotone edge, and reject otherwise.

x/\M\y

26 /36

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

The Bisection Algorithm

Sample z € f~'(0) and y € f~!(1) uniformly at ran-
dom.

B While x and y differ in more than 1 variable:
[0 Generate a uniformly random z between x and y

O If f(z) =0, letx < z;otherwise, y < z.

B Acceptif zy is a monotone edge, and reject otherwise.

=+ The algorithm only tests non-constant edges.

27 /36

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

The Bisection Algorithm

dom.

B While x and y differ in more than 1 variable:
[0 Generate a uniformly random z between x and y
O If f(z) =0, letx < z;otherwise, y < z.

B Acceptif zy is a monotone edge, and reject otherwise.

Sample z € f~'(0) and y € f~!(1) uniformly at ran-

=+ The algorithm only tests non-constant edges.

= Who knows as to which probability distribution it does it.

27 /36

The Bisection Algorithm

Introduction with a duck E

Non-Adaptive
Algorithms

Sample z € f~'(0) and y € f~!(1) uniformly at ran-
Non-Adaptive Lower ; dOm .
= B While x and y differ in more than 1 variable:

Adaptivi ,
e : [Generate a uniformly random z between x and ¥
Bisecton Algorithm - O If f(z) = 0, let x < z; otherwise, y < 2.

Fooling Bisection E

Haeriom B Acceptif xy is a monotone edge, and reject otherwise.

Distance

Fooled!
Noise Sensitive
Functions

General Lower Bound «

=+ The algorithm only tests non-constant edges.

Summary

= Who knows as to which probability distribution it does it.

+ Tests “nice” LTFs in O(logn) queries.

27 /36

Fooling Bisection Algorithm

Itrocuction with & duck Let f be a monotone Boolean function.

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro § f(X1, L2, X3, L4, I5, L, L7, Xg, L9, I10)

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound

Summary

28 /36

Fooling Bisection Algorithm

Itrocuction with & duck Let f be a monotone Boolean function.

Non-Adaptive

Algorithms Bisection algorithm generates probability distribution on variables.

Non-Adaptive Lower
Bounds

Intro
Bisection Algorithm E pl

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

Adaptivity E
f(L1, X2, X3, L4, L5, Lg, L7, I8, L9, I10)

P2 P3 P4 Ps5 DPe Pr Ps Po P10

28 /36

Fooling Bisection Algorithm

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

Let f be a monotone Boolean function.
Bisection algorithm generates probability distribution on variables.

Q/E(Xy, T2, X3, L4, T, I, L7, T8, X9, :EH))
P1 P2 P3 P4 Ps Pe Pr Pg8 P9 DPio

Negating some variables, we get a non-monotone function

x> f(z°).

28 /36

Fooling Bisection Algorithm

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

Let f be a monotone Boolean function.
Bisection algorithm generates probability distribution on variables.

Q/E(Xy, T2, X3, L4, T, I, L7, T8, X9, :EH))
P1 P2 P3 P4 Ps Pe Pr Pg8 P9 DPio

Negating some variables, we get a non-monotone function

x> f(z°).

1. Probability of the Bisection algorithm rejecting it — ?

28 /36

Fooling Bisection Algorithm

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

Let f be a monotone Boolean function.
Bisection algorithm generates probability distribution on variables.

f(Xy, T2, X3, L4, T, I, L7, T8, X9, 3310)
P1 P2 P3 P4 Ps Pe Pr Pg8 P9 DPio

Negating some variables, we get a non-monotone function

x> f(z°).

1. Probability of the Bisection algorithm rejecting it — ?

Zpi

1€S
28 /36

Fooling Bisection Algorithm: Distance

Introduction with a duck «

2. Distance to monotonicity of

Non-Adaptive
Algorithms

Non-Adaptive L :
Bcc:zndsaplve o : f(X1, X2, X3, L4, X5, Lg, L7, T8, IT9, I10)

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound

Summary

29/ 36

Fooling Bisection Algorithm: Distance

Introduction with a duck E

2. Distance to monotonicity of

Non-Adaptive
Algorithms

Non-Adaptive L §
Bgzndsaptlve o : f(X1, X2, X3, L4, X5, Lg, L7, T8, IT9, I10)

Adaptivity

Intro

eection Aceriom 2 Nojse sensitivity of a function f is defined as

Fooling Bisection
Algorithm

ol NSs(f) = Pr[£(2) # £2%)];

Noise Sensitive
Functions

ceneratovereond - where x ~ {0, 1} and S' C [n], each element with probability 0.

Summary

29/ 36

Fooling Bisection Algorithm: Distance

Introduction with a duck E

2. Distance to monotonicity of

Non-Adaptive
Algorithms

Non-Adaptive L :
ngndsaptlve o : f(X1, X2, X3, L4, X5, Lg, L7, T8, IT9, I10)

Adaptivity

Intro

eection Aceriom 2 Nojse sensitivity of a function f is defined as

Fooling Bisection
Algorithm

ol NS5(f) = Pr[f(e) # 1),

Noise Sensitive
Functions

ceneratovereond - where x ~ {0, 1} and S' C [n], each element with probability 0.

Summary

The distance Is at least

1

3 P i@ # s).

29/ 36

Fooling Bisection Algorithm: Distance

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

The distance of z — f(x°) to monotonicity is at least

1
3 P [f@)# fa)].

Proof. Write 7 = (u,v) foru € {0, 1}"\5 v € {0,1}7.
Let v and sz be the distance to a monotone and a constant function.

30/36

Fooling Bisection Algorithm: Fooled!

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower E f(xl? CEQ, _I'CE37 x47 _I'CC57 Qj6, x77 _I'CU87 .CCQ, xlO)
e : P1 P2 P3s P4 Ps P Pr Ps Do Pio

Adaptivity

Intro

S, . %M 1@ # 5]

Fooling Bisection :
Algorithm M iGS

Distance

3f: NS_L(f)

Noise Sensitive
Functions

S
8
nks

General Lower Bound «

Summary

31/36

Fooling Bisection Algorithm: Fooled!

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

f(L1, L2, L3, T4, X5, Le, L7, L8, L9, 51?10)
Pr P2 P3 P4 P55 DPe Pr Ps P9 Pio

> b vs. % L {f(@") / f(ﬂ?s)}

Exists S such that x — f(z°)

(a) is €2(1) far from monotone;
(b) is rejected by the Bisection algorithm with probability O(1)

B

31/36

Noise Sensitive Functions

nodwctonwinzdude s What are the noise-sensitive monotone functions?

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity (a) lterated Majority

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance E

Fooled!
Noise Sensitive E MA‘]?)
Functions >

General Lower Bound «

32 /36

Noise Sensitive Functions

nodwctonwinzdude s What are the noise-sensitive monotone functions?

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Ao . (b) Talagrand’s Random DNF

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

nasesensive = A disjunction of 2V™ independent random clauses of size V.

Functions

General Lower Bound «

fe@)= N 2c@ and flz)= \/ fo(x).
: a€[y/n] '

33 /36

General Lower Bound

Introduction with a duck ; Let Tal be Talagrand’s Random DNF,

Non-Adaptive

Algorithms § and

Non-Adaptive Lower § Talj: {x —> f ’ f Tal S}
Bounds .

Adaptivity :

Intro

Bisection Algorithm

Fooling Bisection : .

Algorithm : Theorem. Forallq = O(nl/ *log™? n), nearly-balanced
Distance .
" Coxy,...,x, €4{0,1}" and by, ..., b, € {0,1}, we have

Noise Sensitive .

Functions 3

General Lower Bound § PI‘ |:\v/Z f(xz) — bz:|

Summary § fNTaI

< (140(1)) Pr [w: g(z:) = bz} +o(279).

g~Tal*

34 /36

Open Problems

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity : - »
Summary © W Close the gap between Q(n'/4) and O(\/n).

: Can we get more from the bisection algorithm? When is it
effective?

B Prove quantum lower bounds.

[0 Monotonicity on the line — ? f: [n] — [m].

35/36

Introduction with a duck

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Summary

Thank you!

36 /36

	Introduction with a duck
	Property Testing
	Formal Definition
	Monotonicity
	Clarifications
	Time Line

	Non-Adaptive Algorithms
	Edge Tester
	Algorithm
	Analysis
	Shifting
	Path Tester
	Motivation
	Hard functions
	Algorithm
	Summary

	Non-Adaptive Lower Bounds
	Random LTFs

	Adaptivity
	Intro
	
	Fooling Bisection Algorithm
	Fooling Bisection Algorithm
	Fooling Bisection Algorithm
	Distance
	Fooled!
	Noise Sensitive Functions
	General Lower Bound

	Summary

