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,E:untd.s.t e Accept hypothesis that are true;
aptivity
Summary
e Reject hypothesis that are too wrong:

Fail on too many occasions.
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Monotonicity

Introduction with a duck § Partlal Order on BOOlean Strlngs
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Monotonicity E X j y: \V/Z E [n] :Ei — 1 —_— yz — 1
Clarifications ; OO 1 O j O 1 1 1

Time Line

Non-Adaptive
Algorithms

Bounds

Non-Adaptive Lower g A fUﬂC’[IOﬂ f: {O’ 1}71, N {0’ 1} |S monotone iff

Adaptivity

v,y €{0,1}": z 2y = f(z) < f(y).

Summary
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Clarifications

Introduction with a duck E

Monotone = Monotonely non-decreasing

Property Testing

;ormj' ?efti”i“on B Interested in query complexity

onotonicity .

Clarifications [J as a function of n and ¢;

Time Line : .

R [1 dependence on n more important;
Algorithrs 0 the size of the input N = 2",

Non-Adaptive Lower

Bounds Restrict to the inputs in the middle of the
Adaptivity cu be :
Summary

2] = 5 % O.(v/n)
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2000

2015

— [Goldreich, Goldwasser, Lenman, Ron "1998]

Defined the problem, proposed a simple edge tester.
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I\o [Goldreich, Goldwasser, Lenman, Ron "1998]

2000 \ Defined the problem, proposed a simple edge tester.
o

e [Dodis, Goldreich, Lehman, Raskhodnikova, Ron,
Samorodnitsky '1999]
Analysed the edge tester. O(n/e) upper bound.

e [Fischer, Lehman, Newman, Raskhodnikova,
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In expectation...
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STOC’15@
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/.

7
.

Proposed a path tester. Complexity: O(n"/873/2).

[Chen, Serv
Q(n'/?) non-adaptive lower bound,

improved the upper bound to O(n?/6z™4).

[Chen, De, Servedio, Tan]

Improved the non-adaptive lower bound to n!'/2=°(1).

Brought complexity of path tester to 5 (g—i) .
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Edge Tester

Introduction with a duck I\o [Goldreich, Goldwasser, Lehman, Ron '1998]
R ;2000 \ Defined the problem, proposed a simple edge tester.
: ]

EngEff:;m e [Dodis, Goldreich, Lehman, Raskhodnikova, Ron,
anapis oy 1999

PathSThﬁtg edge tester. O(n/e) upper bound.
o an, Newman, Raskhodnikova,
Algorithm morodnitsky '2002]

Summary

er bound for non-adaptive algorithms;
general lower bound;
> V) lower bound, NN size of the input.
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Adaptivity
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Edge Tester: Algorithm

Introduction with a duck E

Mo : Sample an edge =y of the hypercube
Eege Teter {0, 1}" uniformly at random (x < ¥, at dis-
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Shifting B Accept if the edge is monotone, and reject
R : otherwise.
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Algorithm
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Edge Tester: Algorithm

Introduction with a duck E

Non-Adaptive

Sample an edge xy of the hypercube

Algorithms :
Edge Tester {0, 1}" uniformly at random (z < ¥, at dis-
Algorithm :
Analysis E tance 1)
Shifting B Accept if the edge is monotone, and reject
Path Tester . :
Motivation O’[heI’WISe
Hard functions
Algorithm
Summary

Theorem. The edge tester

Non-Adaptive Lower

Bounds (a) always accepts a monotone function;
Adaptiviy (b) rejects a non-monotone function with probability €)(e /n).
Summary :

B requires O(n/e) queries to test for monotonicity with (1)
success probability.
B is a non-adaptive tester with one-sided error.
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Edge Tester: Analysis

Introduction with a duck E

Non-Adaptive

Algorithms N
Edge Tester - Theorem. The edge tester

Algorithm (a) always accepts a monotone function;

Analysi . . . . T

s (b) rejects a non-monotone function with probability (& /).
Path Tester .

votaten follows from

Hard functions

roene Observation. There exists a monotone function at distance < 2K
Summary

oo+ from f:{0,1}" — {0,1}, where K is the number of non-
- :  monotone edges of f .

Adaptivity

Summary

Indeed, n2" ! s the total number of edges,
and 2" ! is the number of non-monotone ones.
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Edge Tester: Shifting

nodilonvivadie i Qbservation.  There exists a monotone function at distance < 2K

Non-Adaptive

Agoritms . from f: {0,1}" — {0,1}, where K is the number of non-
e Tester . monotone edges of f.

Algorithm

Analysis

Shifting

Path Tester é B Fori — 17 ooy N

Motivation

EEATEIOTS Sort the edges along the 1-th direction
Agorthm (Replace 10-edges by 01-edges.)

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Lemma. Shifting in the 1-th direction does not increase the
number of non-monotone edges in the j-th direction.

el gl

Summary




Path Tester

Introduction with a duck § o
Agorhns. . STOC138 Proposed a path tester. Complexity: O(n"/8e=3/2).
Edge Tester ;
Algorithm E P [Chen S
Analysis . ~ ,
: 1
Shifting : 52(71 /5)

Path Tester
Motivation
Hard functions

Algorithm FOCS'14@

Summary

Non-Adaptive Lower

Bounds § STOC'15@
Adaptivity .

FOCS’150/ Brought complexity of path tester to O (*{f—?) :

Summary

sTocse——® [Belovs, Blais]
Q(n!/*) adaptive lower bound.
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Algorithm
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Algorithms

Edge Tester ; f(x) — X;.

Algorithm

Analysis

Shifting

. : W Atdistance 1/2 to monotone.
wovaion© @ Only 2"~! non-monotone edges: Probability 1/n to succeed.

Hard functions

Algorithm Idea: Test multiple coordinates with one query.
S ’ Query z < y at larger distances.

Non-Adaptive Lower
Bounds

Adaptivity

Summary
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Path Tester: Hard functions

nossonunadec t A |inear Threshold Function (LTF)
Agoritms fo{=1,1m o {—1,1}, withm < n.
Edge Tester . Write f(u,v)withu € {—1,1}",andv € {—1,1}"™

Algorithm
Analysis E 1 1
Shifting : f(u v) — 1] iff _ E Ui — ——— E v. > ()
: ) 7 ] —
Path Tester : n . /m .
Motivation § \/_ ¢ J

Hard functions
Algorithm

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary
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Path Tester: Hard functions

Algorithms

Introduction with a duck E 1 1
Non-Adaptive g h(U, U) o \/ﬁ E :UZ o \/m z :U] Z O

Edge Tester .
Algorithm © Suppose (u,v) < (v, v") are at distance k.
S Wewant f(u,v) = Land f(u,v) = 0.

Path Tester
Motivation
Hard functions
Algorithm

Summary

Non-Adaptive Lower
Bounds
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Non-Adaptive
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Shifting
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Motivation
Hard functions
Algorithm

Summary

Non-Adaptive Lower
Bounds

Adaptivity

Summary

Suppose (u,v) < (u,v") are at distance k.
We want f(u,v) = 1and f(u',0") = 0.

B |If kis large, this almost never happens, since, almost surely,
h(u',v") — h(u,v)

Y
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Non-Adaptive
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Edge Tester
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Analysis
Shifting

Path Tester
Motivation
Hard functions
Algorithm

Summary

Non-Adaptive Lower
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Summary

Suppose (u,v) < (u,v") are at distance k.
We want f(u,v) = 1and f(u',0") = 0.

Success Probability = — - k— = — -

n
vym o oon m \'m

B If kis even smaller, the probability decreases.
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Path Tester: Algorithm

Introduction with a duck E

Non-Adaptive
Algorithms

Edge Tester

Algorithm

Analysis E ] .

Shifting B Pick aparameter k = 1,2,4,8,...,+/n uniformly at
Path Tester § rando m ]

Motivation . ) )

o toroions - B Sample, uniformly at random, z < y at distance k.

Algorithm B Accept if the edge is monotone, and reject otherwise.
Summary .

Non-Adaptive Lower
Bounds

Adaptivity

Summary

Theorem[Knot, Minzer, Safra " 2015]. The pair tester rejects a
non-monotone function with probability Q)(? /\/1).
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Summary

Introduction with a duck E

Non-Adaptive
Algorithms

Edge Tester
Algorithm

Analysis Edge Tester Path Tester
Shifting 5 »
Path Toster Classical O(n/e) O(y/n/e?)
Motivation .
Hard functions

Algorithm

S Quantum O(\/n/e) O(n'/*/e)

Bounds

Adaptivity

Summary

O(n'/*/ )
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Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Random LTFs

Adaptivity

Summary

Non-Adaptive Lower Bounds
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Random LTFs

EE— Consider a random LTF f: {—1,1}" — {—1,1}:

Algorithms ,

Non-Acapive Lower f(x) = sgn(vizi + o + -+ - + VpTy),

B;:::zm LTFs where

Adaptivit Yes case No case

Summary o {1, w/ prob. 1/2 L {1, w/ prob. 1/10
‘ " 13, wi/prob. 1/2 " 17/3, wiprob. 9/10

Theorem|Clien, Servedio, Tan]. For any nearly-balanced 1, . . . ,x, € {—1,1}",

- (( fa). o fa)) (g, g(xq))gNNo> — 5(%).

B Gives Q(n1/5) lower bound. n'/2=°) pound is similar. oo /36
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Non-Adaptive Lower
Bounds

Adaptivity

Intro

[ ] u
Bisection Algorithm AdaptIVIty
Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound

Summary

23 /36



Introduction with a duck
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Algorithms

Non-Adaptive Lower
Bounds

B Remember the edge tester.

Adaptivity

Intro

Bisection Algorithm
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Algorithm
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Noise Sensitive
Functions

General Lower Bound

Summary
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Summary

Remember the edge tester.

For any monotone

f:{0,1}" — {0, 1},
at most 0(\%) fraction of the edges
are “interesting” (non-constant).
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For any monotone

f:{0,1}" — {0, 1},
at most 0(\%) fraction of the edges
are “interesting” (non-constant).

Can we get an algorithm that always
query “interesting” edges?
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Sample z € f~'(0) and y € f~*(1) uniformly at ran-
dom.

While x and y differ in more than 1 variable:
[0  Generate a uniformly random z between x and y

O If f(z) =0, letx < z;otherwise, y < z.

Accept if xy is a monotone edge, and reject otherwise.
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=+ The algorithm only tests non-constant edges.

Summary

= Who knows as to which probability distribution it does it.

+ Tests “nice” LTFs in O(logn) queries.
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Let f be a monotone Boolean function.
Bisection algorithm generates probability distribution on variables.

Q/E( Xy, T2, X3, L4, T, I, L7, T8, X9, :EH))
P1 P2 P3 P4 Ps Pe Pr Pg8 P9 DPio

Negating some variables, we get a non-monotone function

x> f(z°).

28 /36



Fooling Bisection Algorithm

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

Let f be a monotone Boolean function.
Bisection algorithm generates probability distribution on variables.

Q/E( Xy, T2, X3, L4, T, I, L7, T8, X9, :EH))
P1 P2 P3 P4 Ps Pe Pr Pg8 P9 DPio

Negating some variables, we get a non-monotone function

x> f(z°).

1. Probability of the Bisection algorithm rejecting it — ?

28 /36



Fooling Bisection Algorithm

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

Let f be a monotone Boolean function.
Bisection algorithm generates probability distribution on variables.

f( Xy, T2, X3, L4, T, I, L7, T8, X9, 3310)
P1 P2 P3 P4 Ps Pe Pr Pg8 P9 DPio

Negating some variables, we get a non-monotone function

x> f(z°).

1. Probability of the Bisection algorithm rejecting it — ?

Zpi

1€S
28 /36



Fooling Bisection Algorithm: Distance

Introduction with a duck «

2. Distance to monotonicity of

Non-Adaptive
Algorithms

Non-Adaptive L :
Bcc:zndsaplve o : f( X1, X2, X3, L4, X5, Lg, L7, T8, IT9, I10 )

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound

Summary

29/ 36



Fooling Bisection Algorithm: Distance

Introduction with a duck E

2. Distance to monotonicity of

Non-Adaptive
Algorithms

Non-Adaptive L §
Bgzndsaptlve o : f( X1, X2, X3, L4, X5, Lg, L7, T8, IT9, I10 )

Adaptivity

Intro

eection Aceriom 2 Nojse sensitivity of a function f is defined as

Fooling Bisection
Algorithm

ol NSs(f) = Pr[£(2) # £2%)];

Noise Sensitive
Functions

ceneratovereond - where x ~ {0, 1} and S' C [n], each element with probability 0.

Summary

29/ 36



Fooling Bisection Algorithm: Distance

Introduction with a duck E

2. Distance to monotonicity of

Non-Adaptive
Algorithms

Non-Adaptive L :
ngndsaptlve o : f( X1, X2, X3, L4, X5, Lg, L7, T8, IT9, I10 )

Adaptivity

Intro

eection Aceriom 2 Nojse sensitivity of a function f is defined as

Fooling Bisection
Algorithm

ol NS5(f) = Pr[f(e) # 1),

Noise Sensitive
Functions

ceneratovereond - where x ~ {0, 1} and S' C [n], each element with probability 0.

Summary

The distance Is at least

1

3 P i@ # s ).

29/ 36



Fooling Bisection Algorithm: Distance

Introduction with a duck E

Non-Adaptive
Algorithms

Non-Adaptive Lower
Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection
Algorithm

Distance

Fooled!

Noise Sensitive
Functions

General Lower Bound «

Summary

The distance of z — f(x°) to monotonicity is at least

1
3 P [f@)# fa)].

Proof. Write 7 = (u,v) foru € {0, 1}"\5 v € {0,1}7.
Let v and sz be the distance to a monotone and a constant function.
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f( L1, L2, L3, T4, X5, Le, L7, L8, L9, 51?10)
Pr P2 P3 P4 P55 DPe Pr Ps P9 Pio

> b vs. % L {f(@") / f(ﬂ?s)}

Exists S such that x — f(z°)

(a) is €2(1) far from monotone;
(b) is rejected by the Bisection algorithm with probability O( 1 )

B
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: Can we get more from the bisection algorithm? When is it
effective?

B Prove quantum lower bounds.

[0 Monotonicity on the line — ? f: [n] — [m].
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