
1 / 36

Testing Monotonicity

Alexander Belov

CWI

Eric Blais

University of Waterloo

15-Apr-2016, Cambridge-UK

Introduction

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

2 / 36

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Birds can fly

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Birds can fly

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Birds can fly

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Birds can fly

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Birds can fly

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Birds can fly

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Birds can fly

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Birds can fly

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Birds can fly

Property Testing

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

3 / 36

Birds can fly

• Accept hypothesis that are true;

• Reject hypothesis that are too wrong:

Fail on too many occasions.

Formal Definition

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

4 / 36

� Population: Boolean function f : {0, 1}n → {0, 1}.
Inputs ←→ Objects

Variables ←→ Parameters

Value of the function ←→ Property under investigation

� Hypothesis: The function f possesses some property P .

Formal Definition

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

4 / 36

� Population: Boolean function f : {0, 1}n → {0, 1}.
Inputs ←→ Objects

Variables ←→ Parameters

Value of the function ←→ Property under investigation

� Hypothesis: The function f possesses some property P .

Given P , construct an algorithm that

� Accepts if f ∈ P .

� Rejects if f is far from P :

for any g ∈ P , relative Hamming distance h(f, g) ≥ ε:

f and g differ on ≥ ε2n inputs.

Formal Definition

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

4 / 36

� Population: Boolean function f : {0, 1}n → {0, 1}.
Inputs ←→ Objects

Variables ←→ Parameters

Value of the function ←→ Property under investigation

� Hypothesis: The function f possesses some property P .

Given P , construct an algorithm that

� Accepts if f ∈ P .

� Rejects if f is far from P :

for any g ∈ P , relative Hamming distance h(f, g) ≥ ε:

f and g differ on ≥ ε2n inputs.

Popular Ps:

� Juntas: the function depends on few variables.

� Monotonicity: improving a parameter improves the property.

Formal Definition

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

4 / 36

� Population: Boolean function f : {0, 1}n → {0, 1}.
Inputs ←→ Objects

Variables ←→ Parameters

Value of the function ←→ Property under investigation

� Hypothesis: The function f possesses some property P .

Given P , construct an algorithm that

� Accepts if f ∈ P .

� Rejects if f is far from P :

for any g ∈ P , relative Hamming distance h(f, g) ≥ ε:

f and g differ on ≥ ε2n inputs.

Popular Ps:

� Juntas: the function depends on few variables.

� Monotonicity: improving a parameter improves the property.

Monotonicity

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

5 / 36

Partial order on Boolean strings:

x � y : ∀i ∈ [n] : xi = 1 =⇒ yi = 1.
0010 � 0111

A function f : {0, 1}n → {0, 1} is monotone iff

∀x, y ∈ {0, 1}n : x � y =⇒ f(x) ≤ f(y).

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

Clarifications

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

6 / 36

� Monotone = Monotonely non-decreasing

� Interested in query complexity

� as a function of n and ε;

� dependence on n more important;

� the size of the input N = 2n.

� Restrict to the inputs in the middle of the

cube:

|x| = n

2
±Oε(

√
n)

·x

Time Line

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

7 / 36

��

2000

2015

• •❩❩❩❩❩❩❩ [Goldreich, Goldwasser, Lehman, Ron ’1998]

Defined the problem, proposed a simple edge tester.

Time Line

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

7 / 36

��

2000

2015

•
• •❩❩❩❩❩❩❩ [Goldreich, Goldwasser, Lehman, Ron ’1998]

Defined the problem, proposed a simple edge tester.

•

❉❉❉❉❉❉❉❉
[Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

Samorodnitsky ’1999]

Analysed the edge tester. O(n/ε) upper bound.

Time Line

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

7 / 36

��

2000

2015

•
•
•

•❩❩❩❩❩❩❩ [Goldreich, Goldwasser, Lehman, Ron ’1998]

Defined the problem, proposed a simple edge tester.

•

❉❉❉❉❉❉❉❉
[Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

Samorodnitsky ’1999]

Analysed the edge tester. O(n/ε) upper bound.

•

✷✷✷✷✷✷✷✷✷✷✷✷✷
[Fischer, Lehman, Newman, Raskhodnikova,

Rubinfeld, Samorodnitsky ’2002]

Ω(log n) lower bound for non-adaptive algorithms;

Time Line

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

7 / 36

��

2000

2015

•
•
•

•❩❩❩❩❩❩❩ [Goldreich, Goldwasser, Lehman, Ron ’1998]

Defined the problem, proposed a simple edge tester.

•

❉❉❉❉❉❉❉❉
[Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

Samorodnitsky ’1999]

Analysed the edge tester. O(n/ε) upper bound.

•

✷✷✷✷✷✷✷✷✷✷✷✷✷
[Fischer, Lehman, Newman, Raskhodnikova,

Rubinfeld, Samorodnitsky ’2002]

Ω(log n) lower bound for non-adaptive algorithms;

Ω(log log n) general lower bound;

Time Line

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

7 / 36

��

2000

2015

•
•
•

•❩❩❩❩❩❩❩ [Goldreich, Goldwasser, Lehman, Ron ’1998]

Defined the problem, proposed a simple edge tester.

•

❉❉❉❉❉❉❉❉
[Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

Samorodnitsky ’1999]

Analysed the edge tester. O(n/ε) upper bound.

•

✷✷✷✷✷✷✷✷✷✷✷✷✷
[Fischer, Lehman, Newman, Raskhodnikova,

Rubinfeld, Samorodnitsky ’2002]

Ω(log n) lower bound for non-adaptive algorithms;

Ω(log log n) general lower bound;

Ω(log log logN) lower bound, N : size of the input.

Time Line

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

7 / 36

��

2000

2015

•
•
•

•

•❩❩❩❩❩❩❩ [Goldreich, Goldwasser, Lehman, Ron ’1998]

Defined the problem, proposed a simple edge tester.

•

❉❉❉❉❉❉❉❉
[Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

Samorodnitsky ’1999]

Analysed the edge tester. O(n/ε) upper bound.

•

✷✷✷✷✷✷✷✷✷✷✷✷✷
[Fischer, Lehman, Newman, Raskhodnikova,

Rubinfeld, Samorodnitsky ’2002]

Ω(log n) lower bound for non-adaptive algorithms;

Ω(log log n) general lower bound;

Ω(log log logN) lower bound, N : size of the input.

•

✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷ New algorithms

and lower bounds

in expectation...

Time Line

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

7 / 36

��

2000

2015

•
•
•

•

•❩❩❩❩❩❩❩ [Goldreich, Goldwasser, Lehman, Ron ’1998]

Defined the problem, proposed a simple edge tester.

•

❉❉❉❉❉❉❉❉
[Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

Samorodnitsky ’1999]

Analysed the edge tester. O(n/ε) upper bound.

•

✷✷✷✷✷✷✷✷✷✷✷✷✷
[Fischer, Lehman, Newman, Raskhodnikova,

Rubinfeld, Samorodnitsky ’2002]

Ω(log n) lower bound for non-adaptive algorithms;

Ω(log log n) general lower bound;

Ω(log log logN) lower bound, N : size of the input.

•

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ New algorithms

and lower bounds

in expectation...

Time Line

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

7 / 36

��

2000

2015

•
•
•

•

•❩❩❩❩❩❩❩ [Goldreich, Goldwasser, Lehman, Ron ’1998]

Defined the problem, proposed a simple edge tester.

•

❉❉❉❉❉❉❉❉
[Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

Samorodnitsky ’1999]

Analysed the edge tester. O(n/ε) upper bound.

•

✷✷✷✷✷✷✷✷✷✷✷✷✷
[Fischer, Lehman, Newman, Raskhodnikova,

Rubinfeld, Samorodnitsky ’2002]

Ω(log n) lower bound for non-adaptive algorithms;

Ω(log log n) general lower bound;

Ω(log log logN) lower bound, N : size of the input.

•

❚❚❚❚❚❚❚❚❚❚❚❚❚❚ New algorithms

and lower bounds

in expectation...

Time Line: Zoom In

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

8 / 36

��

2000

2015

•

•
��

2013

2016

•

•

Time Line: Zoom In

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

8 / 36��

•STOC’13

•FOCS’14

•STOC’15

•FOCS’15

•
❥❥❥❥

❥❥❥ [Chakrabarty, Seshadhri]

Proposed a path tester. Complexity: Õ(n7/8ε−3/2).

•

✡✡
✡✡
✡✡
✡✡
✡✡
✡✡

[Chen, Servedio, Tan]

Ω̃(n1/5) non-adaptive lower bound,

improved the upper bound to Õ(n5/6ε−4).

•

③③
③③
③③
③③

[Chen, De, Servedio, Tan]

Improved the non-adaptive lower bound to n1/2−o(1).

•
♦♦♦

♦♦♦
♦ [Khot, Minzer, Safra]

Brought complexity of path tester to Õ
(√

n
ε2

)
.

Time Line: Zoom In

Introduction with a duck

Property Testing

Formal Definition

Monotonicity

Clarifications

Time Line

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

8 / 36��

•STOC’13

•FOCS’14

•STOC’15

•FOCS’15

•STOC’16

•
❥❥❥❥

❥❥❥ [Chakrabarty, Seshadhri]

Proposed a path tester. Complexity: Õ(n7/8ε−3/2).

•

✡✡
✡✡
✡✡
✡✡
✡✡
✡✡

[Chen, Servedio, Tan]

Ω̃(n1/5) non-adaptive lower bound,

improved the upper bound to Õ(n5/6ε−4).

•

③③
③③
③③
③③

[Chen, De, Servedio, Tan]

Improved the non-adaptive lower bound to n1/2−o(1).

•
♦♦♦

♦♦♦
♦ [Khot, Minzer, Safra]

Brought complexity of path tester to Õ
(√

n
ε2

)
.

•❞❞❞❞❞❞❞ [Belovs, Blais]

Ω̃(n1/4) adaptive lower bound.

Non-Adaptive Algorithms

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

9 / 36

Edge Tester

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

10 / 36

��

2000

2015

•
•
•

•❩❩❩❩❩❩❩ [Goldreich, Goldwasser, Lehman, Ron ’1998]

Defined the problem, proposed a simple edge tester.

•

❉❉❉❉❉❉❉❉
[Dodis, Goldreich, Lehman, Raskhodnikova, Ron,

Samorodnitsky ’1999]

Analysed the edge tester. O(n/ε) upper bound.

•

✷✷✷✷✷✷✷✷✷✷✷✷✷
[Fischer, Lehman, Newman, Raskhodnikova,

Rubinfeld, Samorodnitsky ’2002]

Ω(log n) lower bound for non-adaptive algorithms;

Ω(log log n) general lower bound;

Ω(log log logN) lower bound, N : size of the input.

Edge Tester

Edge Tester: Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

11 / 36

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

x

y

� Sample an edge xy of the hypercube

{0, 1}n uniformly at random (x ≺ y, at dis-

tance 1).

� Accept if the edge is monotone, and reject

otherwise.

Edge Tester: Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

11 / 36

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

x

y

� Sample an edge xy of the hypercube

{0, 1}n uniformly at random (x ≺ y, at dis-

tance 1).

� Accept if the edge is monotone, and reject

otherwise.

·✎✎·yx

Edge Tester: Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

12 / 36

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

x

y

� Sample an edge xy of the hypercube

{0, 1}n uniformly at random (x ≺ y, at dis-

tance 1).

� Accept if the edge is monotone, and reject

otherwise.

Theorem. The edge tester

(a) always accepts a monotone function;

(b) rejects a non-monotone function with probability Ω(ε/n).

� requires O(n/ε) queries to test for monotonicity with Ω(1)
success probability.

� is a non-adaptive tester with one-sided error.

Edge Tester: Analysis

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

13 / 36

Theorem. The edge tester

(a) always accepts a monotone function;

(b) rejects a non-monotone function with probability Ω(ε/n).

follows from

Observation. There exists a monotone function at distance≤ 2K
from f : {0, 1}n → {0, 1}, where K is the number of non-

monotone edges of f .

Indeed, n2n−1 is the total number of edges,

and ε2n−1 is the number of non-monotone ones.

Edge Tester: Shifting

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

14 / 36

Observation. There exists a monotone function at distance≤ 2K
from f : {0, 1}n → {0, 1}, where K is the number of non-

monotone edges of f .

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

� For i = 1, . . . , n:

Sort the edges along the i-th direction

(Replace 10-edges by 01-edges.)

Edge Tester: Shifting

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

14 / 36

Observation. There exists a monotone function at distance≤ 2K
from f : {0, 1}n → {0, 1}, where K is the number of non-

monotone edges of f .

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

� For i = 1, . . . , n:

Sort the edges along the i-th direction

(Replace 10-edges by 01-edges.)

Edge Tester: Shifting

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

14 / 36

Observation. There exists a monotone function at distance≤ 2K
from f : {0, 1}n → {0, 1}, where K is the number of non-

monotone edges of f .

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

❄❄❄❄
❄❄❄❄
❄❄❄❄

� For i = 1, . . . , n:

Sort the edges along the i-th direction

(Replace 10-edges by 01-edges.)

Edge Tester: Shifting

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

14 / 36

Observation. There exists a monotone function at distance≤ 2K
from f : {0, 1}n → {0, 1}, where K is the number of non-

monotone edges of f .

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

� For i = 1, . . . , n:

Sort the edges along the i-th direction

(Replace 10-edges by 01-edges.)

Edge Tester: Shifting

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

14 / 36

Observation. There exists a monotone function at distance≤ 2K
from f : {0, 1}n → {0, 1}, where K is the number of non-

monotone edges of f .

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

� For i = 1, . . . , n:

Sort the edges along the i-th direction

(Replace 10-edges by 01-edges.)

Edge Tester: Shifting

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

14 / 36

Observation. There exists a monotone function at distance≤ 2K
from f : {0, 1}n → {0, 1}, where K is the number of non-

monotone edges of f .

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧⑧⑧
⑧⑧⑧⑧
⑧⑧⑧⑧

⑧⑧⑧⑧
⑧⑧⑧⑧
⑧⑧⑧⑧

⑧⑧⑧⑧
⑧⑧⑧⑧
⑧⑧⑧⑧

⑧⑧⑧⑧
⑧⑧⑧⑧
⑧⑧⑧⑧ � For i = 1, . . . , n:

Sort the edges along the i-th direction

(Replace 10-edges by 01-edges.)

Edge Tester: Shifting

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

14 / 36

Observation. There exists a monotone function at distance≤ 2K
from f : {0, 1}n → {0, 1}, where K is the number of non-

monotone edges of f .

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

� For i = 1, . . . , n:

Sort the edges along the i-th direction

(Replace 10-edges by 01-edges.)

Edge Tester: Shifting

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

14 / 36

Observation. There exists a monotone function at distance≤ 2K
from f : {0, 1}n → {0, 1}, where K is the number of non-

monotone edges of f .

(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+,

(/).*-+,

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧ ❄❄

❄❄

⑧⑧
⑧⑧

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❄❄

❄❄

� For i = 1, . . . , n:

Sort the edges along the i-th direction

(Replace 10-edges by 01-edges.)

Lemma. Shifting in the i-th direction does not increase the

number of non-monotone edges in the j-th direction.

(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,rr

rr

(/).*-+,
(/).*-+,

(/).*-+,rr
rr

=⇒
(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,rr

rr

(/).*-+,
(/).*-+,

(/).*-+,rr
rr

(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,rr

rr

(/).*-+,
(/).*-+,

(/).*-+,rr
rr

=⇒
(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,rr

rr

(/).*-+,
(/).*-+,

(/).*-+,rr
rr

Path Tester

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

15 / 36��

•STOC’13

•FOCS’14

•STOC’15

•FOCS’15

•STOC’16

•
❥❥❥❥

❥❥❥ [Chakrabarty, Seshadhri]

Proposed a path tester. Complexity: Õ(n7/8ε−3/2).

•

✡✡
✡✡
✡✡
✡✡
✡✡
✡✡

[Chen, Servedio, Tan]

Ω̃(n1/5) non-adaptive lower bound,

improved the upper bound to Õ(n5/6ε−4).

•

③③
③③
③③
③③

[Chen, De, Servedio, Tan]

Improved the non-adaptive lower bound to n1/2−o(1).

•
♦♦♦

♦♦♦
♦ [Khot, Minzer, Safra]

Brought complexity of path tester to Õ
(√

n
ε2

)
.

•❞❞❞❞❞❞❞ [Belovs, Blais]

Ω̃(n1/4) adaptive lower bound.

Path Tester

Path Tester: Motivation

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

16 / 36

The edge tester performs badly on the anti-dictator function:

f(x) = ¬xi.

� At distance 1/2 to monotone.

� Only 2n−1 non-monotone edges: Probability 1/n to succeed.

Path Tester: Motivation

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

16 / 36

The edge tester performs badly on the anti-dictator function:

f(x) = ¬xi.

� At distance 1/2 to monotone.

� Only 2n−1 non-monotone edges: Probability 1/n to succeed.

Idea: Test multiple coordinates with one query.

Query x ≺ y at larger distances.

·y

·x

Path Tester: Hard functions

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

17 / 36

A Linear Threshold Function (LTF)

f : {−1, 1}n+m → {−1, 1}, with m≪ n.

Write f(u, v) with u ∈ {−1, 1}n, and v ∈ {−1, 1}m.

f(u, v) = 1 iff
1√
n

∑

i

ui −
1√
m

∑

j

vj ≥ 0

·u
·v

·u
·v

Path Tester: Hard functions

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

18 / 36

h(u, v) =
1√
n

∑

i

ui −
1√
m

∑

j

vj ≥ 0

Suppose (u, v) ≺ (u′, v′) are at distance k.

We want f(u, v) = 1 and f(u′, v′) = 0.

·u ·v

Path Tester: Hard functions

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

18 / 36

h(u, v) =
1√
n

∑

i

ui −
1√
m

∑

j

vj ≥ 0

Suppose (u, v) ≺ (u′, v′) are at distance k.

We want f(u, v) = 1 and f(u′, v′) = 0.

� If k is large, this almost never happens, since, almost surely,

h(u′, v′)− h(u, v)

≈ 1√
n
· k − 1√

m
· km

n
= k

(
1√
n
−
√
m

n

)
> 0.

·u ·v

Path Tester: Hard functions

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

18 / 36

h(u, v) =
1√
n

∑

i

ui −
1√
m

∑

j

vj ≥ 0

Suppose (u, v) ≺ (u′, v′) are at distance k.

We want f(u, v) = 1 and f(u′, v′) = 0.

� If k = 1
10

√
n
m

, then, with probability Ω(1), f(u, ·) = f(u′, ·).

Success Probability =
1√
m
· km

n
=

1√
m
·
√

n

m

m

n
=

1√
n
.

� If k is even smaller, the probability decreases.

·u ·v

Path Tester: Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

19 / 36

� Pick a parameter k = 1, 2, 4, 8, . . . ,
√
n uniformly at

random.

� Sample, uniformly at random, x ≺ y at distance k.

� Accept if the edge is monotone, and reject otherwise.

Theorem[Knot, Minzer, Safra ’ 2015]. The pair tester rejects a

non-monotone function with probability Ω̃(ε2/
√
n).

Summary

Introduction with a duck

Non-Adaptive

Algorithms

Edge Tester

Algorithm

Analysis

Shifting

Path Tester

Motivation

Hard functions

Algorithm

Summary

Non-Adaptive Lower

Bounds

Adaptivity

Summary

20 / 36

Edge Tester

O(n/ε)Classical

O
(√

n/ε
)��

Quantum

Õ
(
n1/4/

√
ε
)��❄

❄❄
❄❄

❄❄
❄❄

Path Tester

Õ(
√
n/ε2)

Õ
(
n1/4/ε

)��

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

Non-Adaptive Lower Bounds

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Random LTFs

Adaptivity

Summary

21 / 36

Random LTFs

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Random LTFs

Adaptivity

Summary

22 / 36

Consider a random LTF f : {−1, 1}n → {−1, 1}:

f(x) = sgn(ν1x1 + ν2x2 + · · ·+ νnxn),

where

Yes case No case

νi =

{
1, w/ prob. 1/2

3, w/ prob. 1/2
νi =

{
−1, w/ prob. 1/10

7/3, w/ prob. 9/10

Theorem[Chen, Servedio, Tan]. For any nearly-balanced x1, . . . , xq ∈ {−1, 1}n,

dTVD

((
f(x1), . . . , f(xq)

)
f∼Yes

,
(
g(x1), . . . , g(xq)

)
g∼No

)
= Õ

(
q5/4

n1/4

)
.

� Gives Ω̃(n1/5) lower bound. n1/2−o(1) bound is similar.

Adaptivity

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

23 / 36

Intro

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

24 / 36

� Remember the edge tester.

Intro

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

24 / 36

� Remember the edge tester.

� For any monotone

f : {0, 1}n → {0, 1},
at most O(1√

n
) fraction of the edges

are “interesting” (non-constant).

Intro

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

24 / 36

� Remember the edge tester.

� For any monotone

f : {0, 1}n → {0, 1},
at most O(1√

n
) fraction of the edges

are “interesting” (non-constant).

� Can we get an algorithm that always

query “interesting” edges?

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

25 / 36

Bisection Algorithm

The Bisection Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

26 / 36

� Sample x ∈ f−1(0) and y ∈ f−1(1) uniformly at ran-

dom.

� While x and y differ in more than 1 variable:

� Generate a uniformly random z between x and y
� If f(z) = 0, let x← z; otherwise, y ← z.

� Accept if xy is a monotone edge, and reject otherwise.

·· ·ii ·y
ss·

��

·x

00

The Bisection Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

27 / 36

� Sample x ∈ f−1(0) and y ∈ f−1(1) uniformly at ran-

dom.

� While x and y differ in more than 1 variable:

� Generate a uniformly random z between x and y
� If f(z) = 0, let x← z; otherwise, y ← z.

� Accept if xy is a monotone edge, and reject otherwise.

+ The algorithm only tests non-constant edges.

The Bisection Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

27 / 36

� Sample x ∈ f−1(0) and y ∈ f−1(1) uniformly at ran-

dom.

� While x and y differ in more than 1 variable:

� Generate a uniformly random z between x and y
� If f(z) = 0, let x← z; otherwise, y ← z.

� Accept if xy is a monotone edge, and reject otherwise.

+ The algorithm only tests non-constant edges.

– Who knows as to which probability distribution it does it.

The Bisection Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

27 / 36

� Sample x ∈ f−1(0) and y ∈ f−1(1) uniformly at ran-

dom.

� While x and y differ in more than 1 variable:

� Generate a uniformly random z between x and y
� If f(z) = 0, let x← z; otherwise, y ← z.

� Accept if xy is a monotone edge, and reject otherwise.

+ The algorithm only tests non-constant edges.

– Who knows as to which probability distribution it does it.

+ Tests “nice” LTFs in O(log n) queries.

Fooling Bisection Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

28 / 36

Let f be a monotone Boolean function.

f (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)

Fooling Bisection Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

28 / 36

Let f be a monotone Boolean function.

Bisection algorithm generates probability distribution on variables.

f (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Fooling Bisection Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

28 / 36

Let f be a monotone Boolean function.

Bisection algorithm generates probability distribution on variables.

f (x1, x2, ¬x3, x4, ¬x5, x6, x7, ¬x8, x9, x10)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Negating some variables, we get a non-monotone function

x 7→ f(xS).

Fooling Bisection Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

28 / 36

Let f be a monotone Boolean function.

Bisection algorithm generates probability distribution on variables.

f (x1, x2, ¬x3, x4, ¬x5, x6, x7, ¬x8, x9, x10)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Negating some variables, we get a non-monotone function

x 7→ f(xS).

1. Probability of the Bisection algorithm rejecting it — ?

Fooling Bisection Algorithm

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

28 / 36

Let f be a monotone Boolean function.

Bisection algorithm generates probability distribution on variables.

f (x1, x2, ¬x3, x4, ¬x5, x6, x7, ¬x8, x9, x10)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Negating some variables, we get a non-monotone function

x 7→ f(xS).

1. Probability of the Bisection algorithm rejecting it — ?

∑

i∈S
pi

Fooling Bisection Algorithm: Distance

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

29 / 36

2. Distance to monotonicity of

f (x1, x2, ¬x3, x4, ¬x5, x6, x7, ¬x8, x9, x10)

Fooling Bisection Algorithm: Distance

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

29 / 36

2. Distance to monotonicity of

f (x1, x2, ¬x3, x4, ¬x5, x6, x7, ¬x8, x9, x10)

Noise sensitivity of a function f is defined as

NSδ(f) = Pr
x, S

[
f(x) 6= f(xS)

]
,

where x ∼ {0, 1}n and S ⊆ [n], each element with probability δ.

Fooling Bisection Algorithm: Distance

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

29 / 36

2. Distance to monotonicity of

f (x1, x2, ¬x3, x4, ¬x5, x6, x7, ¬x8, x9, x10)

Noise sensitivity of a function f is defined as

NSδ(f) = Pr
x, S

[
f(x) 6= f(xS)

]
,

where x ∼ {0, 1}n and S ⊆ [n], each element with probability δ.

The distance is at least

1

2
Pr

x∼{0,1}n

[
f(x) 6= f(xS)

]
.

Fooling Bisection Algorithm: Distance

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

30 / 36

The distance of x 7→ f(xS) to monotonicity is at least

1

2
Pr

x∼{0,1}n

[
f(x) 6= f(xS)

]
.

Proof. Write x = (u, v) for u ∈ {0, 1}[n]\S , v ∈ {0, 1}S .

Let µ and κ be the distance to a monotone and a constant function.

µ(f) ≥ Euµ
(
f(u, ·)

)
= Euκ

(
f(u, ·)

)

≥ 1

2
Eu Pr

v

[
f(u, v) 6= f(u, vS)

]
=

1

2
Pr
x

[
f(x) 6= f(xS)

]
.

Fooling Bisection Algorithm: Fooled!

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

31 / 36

f (x1, x2, ¬x3, x4, ¬x5, x6, x7, ¬x8, x9, x10)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

∑

i∈S
pi vs.

1

2
Pr

x∼{0,1}n

[
f(x) 6= f(xS)

]

∃f : NS 1√
n
(f) = Pr

x, S

[
f(x) 6= f(xS)

]
= Ω(1).

Fooling Bisection Algorithm: Fooled!

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

31 / 36

f (x1, x2, ¬x3, x4, ¬x5, x6, x7, ¬x8, x9, x10)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

∑

i∈S
pi vs.

1

2
Pr

x∼{0,1}n

[
f(x) 6= f(xS)

]

∃f : NS 1√
n
(f) = Pr

x, S

[
f(x) 6= f(xS)

]
= Ω(1).

Exists S such that x 7→ f(xS)

(a) is Ω(1) far from monotone;

(b) is rejected by the Bisection algorithm with probability O
(

1√
n

)
.

Noise Sensitive Functions

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

32 / 36

What are the noise-sensitive monotone functions?

(a) Iterated Majority

MAJ3

MAJ3
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

x1
✆✆
✆✆
✆

x2 x3

✾✾
✾✾

✾
MAJ3

x4
✆✆
✆✆
✆

x5 x6

✾✾
✾✾

✾
MAJ3

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘

x7
✆✆
✆✆
✆

x8 x9

✾✾
✾✾

✾

Noise Sensitive Functions

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

33 / 36

What are the noise-sensitive monotone functions?

(b) Talagrand’s Random DNF

A disjunction of 2
√
n independent random clauses of size

√
n.

fC(x) =
∧

a∈[√n]

xC(a) and f(x) =
∨

j∈[2
√
n]

fCj
(x).

General Lower Bound

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Intro

Bisection Algorithm

Fooling Bisection

Algorithm

Distance

Fooled!

Noise Sensitive

Functions

General Lower Bound

Summary

34 / 36

Let Tal be Talagrand’s Random DNF,

and

Tal
± =

{
x 7→ f(xS)

∣∣ f ∼ Tal, S
}
.

Theorem. For all q = O(n1/4 log−2 n), nearly-balanced

x1, . . . , xq ∈ {0, 1}n and b1, . . . , bq ∈ {0, 1}, we have

Pr
f∼Tal

[
∀i : f(xi) = bi

]

≤ (1 + o(1)) Pr
g∼Tal

±

[
∀i : g(xi) = bi

]
+ o(2−q).

Open Problems

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

35 / 36

� Close the gap between Ω̃(n1/4) and Õ(
√
n).

� Can we get more from the bisection algorithm? When is it

effective?

� Prove quantum lower bounds.

� Monotonicity on the line — ? f : [n]→ [m].

Introduction with a duck

Non-Adaptive

Algorithms

Non-Adaptive Lower

Bounds

Adaptivity

Summary

36 / 36

Thank you!

	Introduction with a duck
	Property Testing
	Formal Definition
	Monotonicity
	Clarifications
	Time Line

	Non-Adaptive Algorithms
	Edge Tester
	Algorithm
	Analysis
	Shifting
	Path Tester
	Motivation
	Hard functions
	Algorithm
	Summary

	Non-Adaptive Lower Bounds
	Random LTFs

	Adaptivity
	Intro
	
	Fooling Bisection Algorithm
	Fooling Bisection Algorithm
	Fooling Bisection Algorithm
	Distance
	Fooled!
	Noise Sensitive Functions
	General Lower Bound

	Summary

