
1 / 23

Quantum Algorithms for Learning

Symmetric Juntas via Adversary Bound

Alexander Belov
MIT

June 11, 2014

The 29th CCC, Vancouver

Introduction

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

2 / 23

Problem Formulation

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

3 / 23

Fixed: Symmetric Boolean function h : {0, 1}k → {0, 1}.

Given: Oracle access to fA : {0, 1}n → {0, 1} with n ≫ k
defined by

fA(x) = h(xA)

for some k-subset A.

Task: Learn the function, i.e., find A.

Problem Formulation

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

3 / 23

Fixed: Symmetric Boolean function h : {0, 1}k → {0, 1}.

Given: Oracle access to fA : {0, 1}n → {0, 1} with n ≫ k
defined by

fA(x) = h(xA)

for some k-subset A.

Task: Learn the function, i.e., find A.

� We identify x ∈ {0, 1}n with the subset S ⊆ [n].

� Different from usual junta learning:

� function h is fixed,
� no PAC learning.

Problem Formulation

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

3 / 23

Fixed: Symmetric Boolean function h : {0, 1}k → {0, 1}.

Given: Oracle access to fA : {0, 1}n → {0, 1} with n ≫ k
defined by

fA(x) = h(xA)

for some k-subset A.

Task: Learn the function, i.e., find A.

� There are
(
n
k

)
possible outcomes.

Requires
log
(
n
k

)
= Ω

(
k log n

k

)
randomised queries.

Examples

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

4 / 23

Bernstein-Vazirani problem (1993)

Solve the case of h = XOR in 1 quantum query exactly.

NB: Before Shor’s and Grover’s algorithms!

Examples

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

4 / 23

Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.

Examples

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

4 / 23

Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.

&&MM
MMM

MMM
MMM

MMM
MMM

MMM

��
##
##
##
##
#

����
��
��
��
�

yytt
tt
tt
tt
tt
tt
tt
tt
tt

uulll
lll

lll
lll

lll
lll

lll
lll

lll
l

Examples

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

4 / 23

Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.

((PP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

P

!!C
CC

CC
CC

CC
CC

CC

��
..
..
..
..
.

����
��
��
��
��
�

vvnnn
nnn

nnn
nnn

nnn
nnn

nnn
nnn

n

Examples

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

4 / 23

Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.

︸ ︸ ︸ ︸

Examples

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

4 / 23

Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.

︸ ︸ ︸ ︸

︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸

Examples

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

4 / 23

Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.

︸ ︸ ︸ ︸

︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸

︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸

Examples

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

4 / 23

Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.

︸ ︸ ︸ ︸

︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸

︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸

Examples

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

4 / 23

Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.

︸ ︸ ︸ ︸

︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸

︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸

Gives O(k log n) algorithm. Can be reduced to O
(
k log n

k

)
.

More on Group Testing

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

5 / 23

Quantum Lower Bound due to Ambainis and Montanaro (2013)

Consider the case n = k + 1.

More on Group Testing

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

5 / 23

Quantum Lower Bound due to Ambainis and Montanaro (2013)

Consider the case n = k + 1.

� If we query S = ∅, the answer is always 0.
� If we query S with |S| > 1, the answer is always 1.

Equivalent to the search for the unmarked element.
Requires Ω(

√
k) quantum queries.

More on Group Testing

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

5 / 23

Quantum Lower Bound due to Ambainis and Montanaro (2013)

Consider the case n = k + 1.

� If we query S = ∅, the answer is always 0.
� If we query S with |S| > 1, the answer is always 1.

Equivalent to the search for the unmarked element.
Requires Ω(

√
k) quantum queries.

Previous Quantum Upper Bound: O(k).

Our Results

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

6 / 23

� We prove a tight O(
√
k) upper bound for group testing.

� We give an alternative formulation for a general h.

� We construct a O(k1/4) quantum query algorithm when

� h = EXACTLY-HALF (tight);
� h = MAJORITY.

Group Testing

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

7 / 23

Main Tool

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

8 / 23

Adversary Bound: Ambainis (2000); Høyer et al. (2006);
Reichardt et al. (2010)

Tight characterisation of quantum query complexity.
C: the family of all k-subsets of [n].

minimise max
A∈C

∑

S⊆[n]

XS[[A,A]]

subject to
∑

S : fA(S) 6=fB(S)

XS[[A,B]] = 1 for all A 6= B in C;

XS is a p.s.d. C × C matrix for all S ⊆ [n],

Probabilistic Language

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

9 / 23

XS = Pr[S]







Pr[S] = p|S|(1− p)n−|S| for some 0 < p < 1

� Which subsets A do we include?

Hard Case

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

10 / 23

We have constraint

∑

S : fA(S) 6=fB(S)

XS[[A,B]] = 1.

“Hardest” when A and B differ in 1 element:

(/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+, (/).*-+,
︷ ︸︸ ︷

︸ ︷︷ ︸

A

B

Hard Case: Constraint

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

11 / 23

∑

S : fA(S) 6=fB(S)

XS[[A,B]] is the probability of fA(S) 6= fB(S):

(/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+, (/).*-+,
︷ ︸︸ ︷

︸ ︷︷ ︸

A

B

� It equals 2p(1− p)k.
� In XS we include A satisfying |A ∩ S| ≤ 1.

Hard Case: Objective Value

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

12 / 23

XS = Pr[S]







|A∩S|≤1

|A∩S|≤1

∑

S⊆[n]

XS[[A,A]] =
∑

S:|S∩A|=0

XS[[A,A]] +
∑

S:|S∩A|=1

XS[[A,A]]

= Pr
S
[S ∩ A = ∅] + Pr

S
[|S ∩ A| = 1]

= (1− p)k + kp(1− p)k−1.

(/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+,
︷ ︸︸ ︷

A

(/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+,
︷ ︸︸ ︷

A

Hard Case: Analysis

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

13 / 23

XS = Pr[S]







|A∩S|≤1

|A∩S|≤1

Objective:
(1− p)k

kp(1− p)k−1

Constraint: 2p(1− p)k

Hard Case: Analysis

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

13 / 23

XS = α Pr[S]







|A∩S|≤1

|A∩S|≤1

Objective:
(1− p)k

iiiiiiiii

kp(1− p)k−1
eeeeeeeeeeeeee

1− p

kp

Constraint: 2p(1− p)k
ggggggggggg 2p(1− p)

Hard Case: Analysis

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

13 / 23

XS = α







A∩S=∅

A∩S=∅

|A∩S|=1

|A∩S|=1

β Pr[S] Pr[S]

Pr[S] Pr[S]
β

Objective:
(1− p)k

iiiiiiiii

kp(1− p)k−1
eeeeeeeeeeeeee

1− p √

kp(1− p)
--[[[[[

kp
11ccccccc

Constraint: 2p(1− p)k
ggggggggggg 2p(1− p)

By plugging p = 1/2 and rescaling, we get complexity O(
√
k).

General Case

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

14 / 23

BUT!
What if A and B differ in ℓ > 1 elements?

(/).*-+, · · · (/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+, (/).*-+, · · · (/).*-+,
︷ ︸︸ ︷

︸ ︷︷ ︸︸ ︸

A

Bℓ

General Case

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

14 / 23

BUT!
What if A and B differ in ℓ > 1 elements?

(/).*-+, · · · (/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+, (/).*-+, · · · (/).*-+,
︷ ︸︸ ︷

︸ ︷︷ ︸︸ ︸

A

Bℓ

The probability is 2ℓp(1− p)k+ℓ−1.

General Case: Analysis

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

15 / 23

XS = Pr[S]







|A∩S|≤1

|A∩S|≤1

Objective:
(1− p)k

kp(1− p)k−1

Constraint: 2ℓp(1− p)k+ℓ−1

General Case: Analysis

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

15 / 23

XS = α







A∩S=∅

A∩S=∅

|A∩S|=1

|A∩S|=1

β Pr[S] Pr[S]

Pr[S] Pr[S]
β

Objective:
(1− p)k

iiiiiiiii

kp(1− p)k−1
eeeeeeeeeeeeee

1/(2p) √
k

4p(1−p)
--[[[[[[[[

k/(2(1− p))
11ccccc

Constraint: 2ℓp(1− p)k+ℓ−1
dddddddddddddddd ℓ(1− p)ℓ−1

General Case: Analysis

Introduction

Group Testing

Main Tool

Probabilistic Language

Hard Case

Constraint

Objective Value

Analysis

General Case

Analysis

Other Functions

Conclusion

16 / 23

Objective:
(1− p)k

iiiiiiiii

kp(1− p)k−1
eeeeeeeeeeeeee

1/(2p) √
k

4p(1−p)
--[[[[[[[[

k/(2(1− p))
11ccccc

Constraint: 2ℓp(1− p)k+ℓ−1
dddddddddddddddd ℓ(1− p)ℓ−1

Now we integrate by p from 0 to 1:

XS =

∫ 1

0

XS(p)dp

√
k

2

∫ 1

0

dp
√

p(1− p)
=

π
√
k

2

∫ 1

0

ℓ(1− p)ℓ−1dp = 1.

Other Functions

Introduction

Group Testing

Other Functions

Scheme

Equivalent Formulation

Applications

Conclusion

17 / 23

Scheme

Introduction

Group Testing

Other Functions

Scheme

Equivalent Formulation

Applications

Conclusion

18 / 23

Previous analysis works because we considered two values of
|A ∩ S| only.

Alternative scheme:

� Adversary lower bound
� Equivalent formulation via representation theory
� Semidefinite duality
� Solution of the dual problem

Equivalent Formulation

Introduction

Group Testing

Other Functions

Scheme

Equivalent Formulation

Applications

Conclusion

19 / 23

maximise max{d0, d1, . . . , dk−1, dk = 0}
subject to
for all integers 0 < m ≤ k, 0 ≤ t ≤ k −m, and real 0 < p < 1 :

Orthonormal basis of Rm+1 defined by normalised Krawtchouk
polynomials:

κℓ = normalised
(√(

m

x

)

px(1− p)m−x

ℓ∑

i=0

(−1)ipℓ−i(1− p)i
(
x

i

)(
m− x

ℓ− i

))

x

Equivalent Formulation

Introduction

Group Testing

Other Functions

Scheme

Equivalent Formulation

Applications

Conclusion

20 / 23

maximise max{d0, d1, . . . , dk−1, dk = 0}
subject to
for all integers 0 < m ≤ k, 0 ≤ t ≤ k −m, and real 0 < p < 1 :

m∑

i=0

dk−iκm−iκ
∗
m−i







Equivalent Formulation

Introduction

Group Testing

Other Functions

Scheme

Equivalent Formulation

Applications

Conclusion

20 / 23

maximise max{d0, d1, . . . , dk−1, dk = 0}
subject to
for all integers 0 < m ≤ k, 0 ≤ t ≤ k −m, and real 0 < p < 1 :

m∑

i=0

dk−iκm−iκ
∗
m−i







h−1(0)−t

h−1(1)−t

Equivalent Formulation

Introduction

Group Testing

Other Functions

Scheme

Equivalent Formulation

Applications

Conclusion

20 / 23

maximise max{d0, d1, . . . , dk−1, dk = 0}
subject to
for all integers 0 < m ≤ k, 0 ≤ t ≤ k −m, and real 0 < p < 1 :

m∑

i=0

dk−iκm−iκ
∗
m−i







h−1(0)−t

h−1(1)−tnorm ≤ 1

Applications

Introduction

Group Testing

Other Functions

Scheme

Equivalent Formulation

Applications

Conclusion

21 / 23

� From basic properties of κℓ, we get a O(k1/4) upper bound for

� MAJORITY and EXACTLY-HALF.

� The result for EXACTLY-HALF is tight.

Conclusion

Introduction

Group Testing

Other Functions

Conclusion

22 / 23

� Adversary bound rules!
� Optimal algorithms for OR and EXACT-HALF.
� Super-quadratic separation between randomised and quantum

query complexities.

� MAJORITY ?

� Is it more like XOR, or like OR ?
� We know that:

� Bernstein-Vazirani style approach fails,
� simple lower bounds fails.

� Other functions: t-THRESHOLD, EXACTLY-t ?

� Further applications of these results and techniques ?

Introduction

Group Testing

Other Functions

Conclusion

23 / 23

Thank you!

	Introduction
	Problem Formulation
	Examples
	More on Group Testing
	Our Results

	Group Testing
	Main Tool
	Probabilistic Language
	Hard Case
	Hard Case: Constraint
	Hard Case: Objective Value
	Hard Case: Analysis
	General Case
	General Case: Analysis

	Other Functions
	Scheme
	Equivalent Formulation
	Applications

	Conclusion

