Quantum Algorithms for Learning Symmetric Juntas via Adversary Bound

Alexander Belov MIT

June 11, 2014 The 29th CCC, Vancouver

Introduction
Problem Formulation
Examples
More on Group Testing
Our Results
Group Testing
Other Functions

Conclusion

Introduction

Problem Formulation

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

Fixed: Symmetric Boolean function $h: \{0,1\}^k \to \{0,1\}$. Given: Oracle access to $f_A: \{0,1\}^n \to \{0,1\}$ with $n \gg k$ defined by

$$f_A(x) = h(x_A)$$

for some k-subset A.

Task: Learn the function, i.e., find A.

Problem Formulation

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

Fixed: Symmetric Boolean function $h: \{0,1\}^k \to \{0,1\}$. Given: Oracle access to $f_A: \{0,1\}^n \to \{0,1\}$ with $n \gg k$ defined by

$$f_A(x) = h(x_A)$$

for some k-subset A.

Task: Learn the function, i.e., find A.

We identify $x \in \{0, 1\}^n$ with the subset $S \subseteq [n]$.

Different from usual junta learning:

 \Box function h is fixed,

no PAC learning.

Problem Formulation

Introduction

Problem Formulation

Examples

More on Group Testing

Our Results

Group Testing

Other Functions

Conclusion

Fixed: Symmetric Boolean function $h: \{0,1\}^k \to \{0,1\}$. Given: Oracle access to $f_A: \{0,1\}^n \to \{0,1\}$ with $n \gg k$ defined by

$$f_A(x) = h(x_A)$$

for some k-subset A.

Task: Learn the function, i.e., find A.

There are $\binom{n}{k}$ possible outcomes. Requires $\log \binom{n}{k} = \Omega \left(k \log \frac{n}{k}\right)$ randomised queries.

Introduction Problem Formulation Examples More on Group Testing Our Results Group Testing Other Functions Conclusion Bernstein-Vazirani problem (1993) Solve the case of h = XOR in 1 quantum query exactly.

NB: Before Shor's and Grover's algorithms!

Introduction Problem Formulation Examples More on Group Testing Our Results Group Testing Other Functions

Conclusion

Bernstein-Vazirani problem (1993) Solve the case of h = XOR in 1 quantum query exactly.

Introduction Problem Formulation Examples More on Group Testing Our Results Group Testing Other Functions

Conclusion

Bernstein-Vazirani problem (1993) Solve the case of h = XOR in 1 quantum query exactly.

Introduction Problem Formulation Examples More on Group Testing Our Results Group Testing Other Functions

Conclusion

Bernstein-Vazirani problem (1993) Solve the case of h = XOR in 1 quantum query exactly.

Introduction Problem Formulation Examples More on Group Testing Our Results Group Testing Other Functions

Conclusion

Bernstein-Vazirani problem (1993) Solve the case of h = XOR in 1 quantum query exactly.

Introduction Problem Formulation Examples More on Group Testing Our Results Group Testing Other Functions

Conclusion

Bernstein-Vazirani problem (1993) Solve the case of h = XOR in 1 quantum query exactly.

Introduction Problem Formulation Examples More on Group Testing Our Results Group Testing Other Functions

Conclusion

Bernstein-Vazirani problem (1993) Solve the case of h = XOR in 1 quantum query exactly.

Introduction Problem Formulation Examples More on Group Testing Our Results Group Testing Other Functions

Conclusion

Bernstein-Vazirani problem (1993) Solve the case of h = XOR in 1 quantum query exactly.

Introduction Problem Formulation Examples More on Group Testing Our Results Group Testing Other Functions

Conclusion

Bernstein-Vazirani problem (1993) Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943) The case of h = OR.

Gives $O(k \log n)$ algorithm. Can be reduced to $O(k \log \frac{n}{k})$.

More on Group Testing

Introduction Problem Formulation Examples More on Group Testing Our Results Group Testing Other Functions Conclusion

Quantum Lower Bound due to Ambainis and Montanaro (2013) Consider the case n = k + 1.

More on Group Testing

Introduction
Problem Formulation
Examples
More on Group Testing
Our Results
Group Testing
Other Functions
Conclusion

Quantum Lower Bound due to Ambainis and Montanaro (2013) Consider the case n = k + 1.

If we query $S = \emptyset$, the answer is always 0.

If we query S with |S| > 1, the answer is always 1.

Equivalent to the search for the unmarked element. Requires $\Omega(\sqrt{k})$ quantum queries.

More on Group Testing

Introduction
Problem Formulation
Examples
More on Group Testing
Our Results
Group Testing
Other Functions
Conclusion

Quantum Lower Bound due to Ambainis and Montanaro (2013) Consider the case n = k + 1.

If we query $S = \emptyset$, the answer is always 0.

If we query S with |S| > 1, the answer is always 1.

Equivalent to the search for the unmarked element. Requires $\Omega(\sqrt{k})$ quantum queries.

Previous Quantum Upper Bound: O(k).

Our Results

Introduction		
Problem Formulation		
Examples		
More on Group Testing		
Our Results		
Group Testing		
Other Functions		
Conclusion		

- We prove a tight $O(\sqrt{k})$ upper bound for group testing.
- We give an alternative formulation for a general h.
- We construct a $O(k^{1/4})$ quantum query algorithm when
 - \Box h = EXACTLY-HALF (tight);
 - \Box h = MAJORITY.

Introduction		
Group Testing		
Main Tool		
Probabilistic Language		
Hard Case		
Constraint		
Objective Value		
Analysis		
General Case		
Analysis		
Other Functions		

Conclusion

Group Testing

Main Tool

Introduction Group Testing Main Tool Probabilistic Language Hard Case Constraint **Objective Value** Analysis **General Case** Analysis **Other Functions** Conclusion

Adversary Bound: Ambainis (2000); Høyer et al. (2006); Reichardt et al. (2010)

Tight characterisation of quantum query complexity. \mathcal{C} : the family of all k-subsets of |n|.

minimise

 $\max_{A \in \mathcal{C}} \sum_{S \subseteq [n]} X_S \llbracket A, A \rrbracket$ $X_S[\![A,B]\!] = 1$ for all $A \neq B$ in \mathcal{C} ; subject to $S: f_A(S) \neq f_B(S)$ X_S is a p.s.d. $\mathcal{C} \times \mathcal{C}$ matrix for all $S \subseteq [n]$,

Probabilistic Language

Which subsets A do we include?

Hard Case

We have constraint

$$\sum_{S: f_A(S) \neq f_B(S)} X_S \llbracket A, B \rrbracket = 1.$$

"Hardest" when A and B differ in 1 element:

Hard Case: Constraint

Introduction	
Group Testing	
Main Tool	$X_S[A, B]$ is the probability of $f_A(S) \neq f_B(S)$:
Probabilistic Language	$S: f_A(S) \neq f_B(S)$
Hard Case	$\sim \cdot JA(\sim)/JB(\sim)$
Constraint	
Objective Value	A
Analysis	
General Case	
Analysis	
Other Functions	
Conclusion	D
	- (1)
	It equals $2p(1-p)^{\kappa}$.
	In X_S we include A satisfying $ A \cap S \leq 1$.

Hard Case: Objective Value

Hard Case: Analysis

Hard Case: Analysis

Hard Case: Analysis

General Case

Introduction	
Group Testing	DIITI
Main Tool	DUI!
Probabilistic Language	
Hard Case	What if A and B differ in $\ell > 1$ elements?
Constraint	
Objective Value	
Analysis	A
General Case	
Analysis	$(\bigcirc \cdots \bigcirc \bigcirc \bigcirc \cdots \bigcirc \bigcirc \bigcirc \cdots \bigcirc$
Other Functions	
Conclusion	ℓ B

General Case

Introduction	
Group Testing	DIITI
Main Tool	DOT:
Probabilistic Language	
Hard Case	What if A and B differ in $\ell > 1$ elements?
Constraint	
Objective Value	
Analysis	A
General Case	
Analysis	$(\bigcirc \cdots \bigcirc \bigcirc \bigcirc \bigcirc \cdots \bigcirc $
Other Functions	
Conclusion	ℓ B

The probability is $2\ell p(1-p)^{k+\ell-1}$.

General Case: Analysis

General Case: Analysis

General Case: Analysis

Introduction Group Testing Main Tool Probabilistic Language Hard Case Constraint Constraint: $2\ell p(1 - \ell)$ **Objective Value** Analysis **General Case** Analysis Other Functions

Conclusion

Objective: $\begin{array}{cc} (1-p)^k & 1/(2p) \\ kp(1-p)^{k-1} & k/(2(1-p)) \end{array} \checkmark \sqrt{} \end{array}$ $\sqrt{\frac{k}{4m(1-p)}}$ $p)^{k+\ell-1} \quad \ell(1-p)^{\ell-1}$

Now we integrate by p from 0 to 1:

$$X_S = \int_0^1 X_S(p) \mathrm{d}p$$

$$\frac{\sqrt{k}}{2} \int_0^1 \frac{\mathrm{d}p}{\sqrt{p(1-p)}} = \frac{\pi\sqrt{k}}{2}$$
$$\int_0^1 \ell(1-p)^{\ell-1} \mathrm{d}p = 1.$$

Introduction		
Group Testing		
Other Functions		
Scheme		
Equivalent Formulation		
Applications		
Conclusion		

Other Functions

Scheme

Introduction	•
	•
Group Testing	•
Other Functions	•
Scheme	•
Equivalent Formulation	•
Applications	•
Conclusion	•

Previous analysis works because we considered two values of $|A \cap S|$ only.

Alternative scheme:

- Adversary lower bound
- Equivalent formulation via representation theory
- Semidefinite duality
- Solution of the dual problem

Introduction Group Testing

Other Functions

Scheme

Equivalent Formulation

Applications

Conclusion

subject to

for all integers $0 < m \le k$, $0 \le t \le k - m$, and real 0 :

Orthonormal basis of \mathbb{R}^{m+1} defined by normalised Krawtchouk polynomials:

 $\varkappa_{\ell} = \text{normalised}$

$$\left(\sqrt{\binom{m}{x}}p^x(1-p)^{m-x} \sum_{i=0}^{\ell} (-1)^i p^{\ell-i}(1-p)^i \binom{x}{i} \binom{m-x}{\ell-i}\right)_x$$

Introduction

- Group Testing
- Other Functions
- Scheme

Equivalent Formulation

Applications

Conclusion

maximise $\max\{d_0, d_1, \dots, d_{k-1}, d_k = 0\}$

subject to

for all integers $0 < m \le k$, $0 \le t \le k - m$, and real 0 :

$$\sum_{i=0}^{m} d_{k-i} \varkappa_{m-i} \varkappa_{m-i}^{*}$$

Introduction

- Group Testing
- Other Functions
- Scheme
- Equivalent Formulation
- Applications
- Conclusion

maximise $\max\{d_0, d_1, \dots, d_{k-1}, d_k = 0\}$

subject to

for all integers $0 < m \le k$, $0 \le t \le k - m$, and real 0 :

Introduction

- Group Testing
- Other Functions
- Scheme
- Equivalent Formulation
- Applications
- Conclusion

maximise $\max\{d_0, d_1, \dots, d_{k-1}, d_k = 0\}$

subject to

for all integers $0 < m \le k$, $0 \le t \le k - m$, and real 0 :

Applications

Introduction	
Group Testing	
Other Functions	
Scheme	
Equivalent Formulation	\square From boois preparties of ω and σ (l_{1}) are an bound for
Applications	From basic properties of \mathcal{H}_{ℓ} , we get a $O(\kappa^{2/2})$ upper bound for
Conclusion	MAJORITY and EXACTLY-HALF.

The result for EXACTLY-HALF is tight.

Conclusion

Introduction Group Testing Other Functions

Conclusion

- Adversary bound rules!
- Optimal algorithms for OR and EXACT-HALF.
- Super-quadratic separation between randomised and quantum query complexities.
- MAJORITY ?
 - □ Is it more like XOR, or like OR ?
 - \Box We know that:
 - Bernstein-Vazirani style approach fails,
 - simple lower bounds fails.
- Other functions: *t*-THRESHOLD, EXACTLY-*t* ?
 - Further applications of these results and techniques ?

Introduction		ntr	odu	uctio	on
--------------	--	-----	-----	-------	----

Group Testing

Other Functions

Conclusion

Thank you!