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Fixed: Symmetric Boolean function h : {0, 1}k → {0, 1}.

Given: Oracle access to fA : {0, 1}n → {0, 1} with n ≫ k
defined by

fA(x) = h(xA)

for some k-subset A.

Task: Learn the function, i.e., find A.
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Fixed: Symmetric Boolean function h : {0, 1}k → {0, 1}.

Given: Oracle access to fA : {0, 1}n → {0, 1} with n ≫ k
defined by

fA(x) = h(xA)

for some k-subset A.

Task: Learn the function, i.e., find A.

� We identify x ∈ {0, 1}n with the subset S ⊆ [n].

� Different from usual junta learning:

� function h is fixed,
� no PAC learning.
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Fixed: Symmetric Boolean function h : {0, 1}k → {0, 1}.

Given: Oracle access to fA : {0, 1}n → {0, 1} with n ≫ k
defined by

fA(x) = h(xA)

for some k-subset A.

Task: Learn the function, i.e., find A.

� There are
(
n
k

)
possible outcomes.

Requires
log
(
n
k

)
= Ω

(
k log n

k

)
randomised queries.
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Bernstein-Vazirani problem (1993)

Solve the case of h = XOR in 1 quantum query exactly.

NB: Before Shor’s and Grover’s algorithms!
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Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.
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Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.
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Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.
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Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.
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Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.

︸ ︸ ︸ ︸

︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸

︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸

Gives O(k log n) algorithm. Can be reduced to O
(
k log n

k

)
.
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Quantum Lower Bound due to Ambainis and Montanaro (2013)

Consider the case n = k + 1.
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Quantum Lower Bound due to Ambainis and Montanaro (2013)

Consider the case n = k + 1.

� If we query S = ∅, the answer is always 0.
� If we query S with |S| > 1, the answer is always 1.

Equivalent to the search for the unmarked element.
Requires Ω(

√
k) quantum queries.
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Quantum Lower Bound due to Ambainis and Montanaro (2013)

Consider the case n = k + 1.

� If we query S = ∅, the answer is always 0.
� If we query S with |S| > 1, the answer is always 1.

Equivalent to the search for the unmarked element.
Requires Ω(

√
k) quantum queries.

Previous Quantum Upper Bound: O(k).
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� We prove a tight O(
√
k) upper bound for group testing.

� We give an alternative formulation for a general h.

� We construct a O(k1/4) quantum query algorithm when

� h = EXACTLY-HALF (tight);
� h = MAJORITY.
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Adversary Bound: Ambainis (2000); Høyer et al. (2006);
Reichardt et al. (2010)

Tight characterisation of quantum query complexity.
C: the family of all k-subsets of [n].

minimise max
A∈C

∑

S⊆[n]

XS[[A,A]]

subject to
∑

S : fA(S) 6=fB(S)

XS[[A,B]] = 1 for all A 6= B in C;

XS is a p.s.d. C × C matrix for all S ⊆ [n],
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XS = Pr[S]







Pr[S] = p|S|(1− p)n−|S| for some 0 < p < 1

� Which subsets A do we include?
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We have constraint

∑

S : fA(S) 6=fB(S)

XS[[A,B]] = 1.

“Hardest” when A and B differ in 1 element:

(/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+, (/).*-+,
︷ ︸︸ ︷

︸ ︷︷ ︸

A

B
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∑

S : fA(S) 6=fB(S)

XS[[A,B]] is the probability of fA(S) 6= fB(S):

(/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+, (/).*-+,
︷ ︸︸ ︷

︸ ︷︷ ︸

A

B

� It equals 2p(1− p)k.
� In XS we include A satisfying |A ∩ S| ≤ 1.
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XS = Pr[S]



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|A∩S|≤1

|A∩S|≤1

∑

S⊆[n]

XS[[A,A]] =
∑

S:|S∩A|=0

XS[[A,A]] +
∑

S:|S∩A|=1

XS[[A,A]]

= Pr
S
[S ∩ A = ∅] + Pr

S
[|S ∩ A| = 1]

= (1− p)k + kp(1− p)k−1.

(/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+,
︷ ︸︸ ︷

A

(/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+,
︷ ︸︸ ︷

A
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|A∩S|≤1

|A∩S|≤1

Objective:
(1− p)k

kp(1− p)k−1

Constraint: 2p(1− p)k
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XS = α Pr[S]





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|A∩S|≤1

|A∩S|≤1

Objective:
(1− p)k

iiiiiiiii

kp(1− p)k−1
eeeeeeeeeeeeee

1− p

kp

Constraint: 2p(1− p)k
ggggggggggg 2p(1− p)
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XS = α


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


A∩S=∅

A∩S=∅

|A∩S|=1

|A∩S|=1

β Pr[S] Pr[S]

Pr[S] Pr[S]
β

Objective:
(1− p)k

iiiiiiiii

kp(1− p)k−1
eeeeeeeeeeeeee

1− p √

kp(1− p)
--[[[[[

kp
11ccccccc

Constraint: 2p(1− p)k
ggggggggggg 2p(1− p)

By plugging p = 1/2 and rescaling, we get complexity O(
√
k).
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BUT!
What if A and B differ in ℓ > 1 elements?

(/).*-+, · · · (/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+, (/).*-+, · · · (/).*-+,
︷ ︸︸ ︷

︸ ︷︷ ︸︸ ︸

A

Bℓ
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BUT!
What if A and B differ in ℓ > 1 elements?

(/).*-+, · · · (/).*-+, (/).*-+, (/).*-+, · · · (/).*-+, (/).*-+, (/).*-+, · · · (/).*-+,
︷ ︸︸ ︷

︸ ︷︷ ︸︸ ︸

A

Bℓ

The probability is 2ℓp(1− p)k+ℓ−1.
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Objective:
(1− p)k

iiiiiiiii

kp(1− p)k−1
eeeeeeeeeeeeee

1/(2p) √
k

4p(1−p)
--[[[[[[[[

k/(2(1− p))
11ccccc

Constraint: 2ℓp(1− p)k+ℓ−1
dddddddddddddddd ℓ(1− p)ℓ−1

Now we integrate by p from 0 to 1:

XS =

∫ 1

0

XS(p)dp

√
k

2

∫ 1

0

dp
√

p(1− p)
=

π
√
k

2

∫ 1

0

ℓ(1− p)ℓ−1dp = 1.
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Previous analysis works because we considered two values of
|A ∩ S| only.

Alternative scheme:

� Adversary lower bound
� Equivalent formulation via representation theory
� Semidefinite duality
� Solution of the dual problem
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maximise max{d0, d1, . . . , dk−1, dk = 0}
subject to
for all integers 0 < m ≤ k, 0 ≤ t ≤ k −m, and real 0 < p < 1 :

Orthonormal basis of Rm+1 defined by normalised Krawtchouk
polynomials:

κℓ = normalised
(√(

m

x

)

px(1− p)m−x

ℓ∑

i=0

(−1)ipℓ−i(1− p)i
(
x

i

)(
m− x

ℓ− i

))

x
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maximise max{d0, d1, . . . , dk−1, dk = 0}
subject to
for all integers 0 < m ≤ k, 0 ≤ t ≤ k −m, and real 0 < p < 1 :

m∑

i=0

dk−iκm−iκ
∗
m−i


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h−1(0)−t

h−1(1)−t
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h−1(0)−t

h−1(1)−tnorm ≤ 1
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� From basic properties of κℓ, we get a O(k1/4) upper bound for

� MAJORITY and EXACTLY-HALF.

� The result for EXACTLY-HALF is tight.
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� Adversary bound rules!
� Optimal algorithms for OR and EXACT-HALF.
� Super-quadratic separation between randomised and quantum

query complexities.

� MAJORITY ?

� Is it more like XOR, or like OR ?
� We know that:

� Bernstein-Vazirani style approach fails,
� simple lower bounds fails.

� Other functions: t-THRESHOLD, EXACTLY-t ?

� Further applications of these results and techniques ?
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Thank you!
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