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Fixed: Symmetric Boolean function h: {0,1}* — {0, 1}.

Given: Oracle access to fa: {0,1}" — {0,1} with n > k
defined by

fa(x) = h(za)
for some k-subset A.

Task: Learn the function, i.e., find A.

B We identify x € {0, 1}" with the subset .S C [n)].
B Different from usual junta learning:

[0 function A is fixed,
[J no PAC learning.
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Fixed: Symmetric Boolean function h: {0,1}* — {0, 1}.

Given: Oracle access to fa: {0,1}" — {0,1} with n > k
defined by

fa(x) = h(za)
for some k-subset A.

Task: Learn the function, i.e., find A.

B There are (Z) possible outcomes.
Requires
log (Z) = () (k log %) randomised queries.
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More on Group Testing E

Our Results

Group Testing

Other Functions

Conclusion NB: Before Shor’s and Grover’s algorithms!
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Bernstein-Vazirani problem (1993)
Solve the case of h = XOR in 1 quantum query exactly.

(Combinatorial) Group Testing problem, Dorfman (1943)
The case of h = OR.

QOO OLOLOLOOLOOLO®OO
QOOUBLOLBOLOLOLOOLLOeOO
QLOLeLO0O OL JOL®)
ON @ O O @
O O O

Gives O(k log n) algorithm. Can be reduced to O (k log ).
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Conclusion

B Ifwe query S = (), the answer is always O.
B If we query S with |[S| > 1, the answer is always 1.

Equivalent to the search for the unmarked element.
Requires ©(v/k) quantum queries.

Previous Quantum Upper Bound: O(k).
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Our Results

B We prove a tight O(v/k) upper bound for group testing.

Group Testing

Other Functions : W We give an alternative formulation for a general h.

Conclusion

B We construct a O(k'/*) quantum query algorithm when

[ h = EXACTLY-HALF (tight):
1 h = MAJORITY.
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Hard Case
Constraint
Objective Value
Analysis
General Case

Analysis
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Adversary Bound: Ambainis (2000); Hayer et al. (2006);
Reichardt et al. (2010)

Tight characterisation of quantum query complexity.
C: the family of all k-subsets of [n].

minimise max Z XslA, Al
SCln]
subject to Z Xs[A,B] =1 forall A+# BinC;
S: fa(S)#[B(S)
Xgisap.s.d. C x C matrix for all S C |n],
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Hard Case
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: S

Pr[S]

Objective Value

Analysis

General Case

Analysis
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Conclusion

Pr[S] = p!*l(1 —p)" 1 forsome 0 < p < 1

B Which subsets A do we include?
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S Xs[AB]=1

Objective Value

Analysis ; S': fA(S)#fB (S)
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Analysis . “Hardest” when A and B differ in 1 element:
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Hard Case: Constraint

Introduction

P — S Xs[A,B] isthe probability of fa(S) # fz(S):
Probabilistic Language ; S - fA(S)?éfB (S)

Hard Case
Constraint
Objective Value : A
Analysis . N\

. 7 Y
e @00 - 00O
Analysis E " /

Other Functions

35

Conclusion

B ltequals 2p(1—p)~.
B In X weinclude A satisfying |A N S| < 1.
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Hard Case: Objective Value

IANS|<1
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Hard Case .

: Xg = Pr|S] IANS|<1
Constraint :

Objective Value

Analysis

General Case

Analysis E \ /

Other Functions

oTENET S Xg[A 4] = S Xg[A A] + S X[A, A]
3 SCln] S:|SNA|=0 S:|SNA|=1
= P;r[SﬂA: 0+ P;r[\SﬂA] = 1]

= (1 —p)F +  kp(1 —p)L
A

0000 ©OVO@-00
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: Objective: (1=p)
kp(1 —p)*

Constraint: 2p(1 — p)*
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Objective:
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Hard Case: Analysis

| . ANS=0 :|[ANS|=1
Introduction . ¢ : 5 E \
Group Testing
Main Tool e
Probabilistic Language E I} PI‘[S] PI‘[S] ANS=()
Hard Case . :
Constraint § XS =ap """""""""""""""""""
Objective Value § PI‘[S] PFT[S] |AﬂS|:1
Analysis . R
General Case
Analysis § \ /

Other Functions

Conclusion § 1 B
: (L—p)* p—_

Objective:

Constraint:  2p(1—="p)*  2p(1 —p)
By plugging p = 1/2 and rescaling, we get complexity O(v/k).
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Other Functions

Conclusion § f B

14 /23



General Case

Introduction

Group Testing . B U T I

Main Tool

Probabilistic Language E
Hard Case : Whatif A and B differin £ > 1 elements?
Constraint E

Objective Value E

Analysis § A

General Case :

. i@ Q}Q QA'“VQ Q\ ® O

Other Functions

Conclusion § Z B

The probability is  2¢p(1 — p)*T*—1,
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General Case: Analysis

Introduction

Group Testing ; M 1/(2p) T k

Main Tool : Objective:

Probabilistic Language § W k/ (2 ( 1 L p)) > 4]9(1—]9)
Hard Case §

z:)?es::?\;thalue ; ConStralnt W 6(1 J— p)e_l

Analysis E

o Now we integrate by p from 0 to 1:

Analysis

Other Functions

Conclusion g @ /1 dp L W\/E
: 2 Jo /p(l=p) 2
' XS:/ Xs(p)dp Ve =)
0

1
/ ((1—p)~tdp=1.
0
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Applications

Conclusion

Previous analysis works because we considered two values of
|A N S| only.

Alternative scheme:

Adversary lower bound

Equivalent formulation via representation theory
Semidefinite duality

Solution of the dual problem

18 /23



Equivalent Formulation
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Scheme
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Applications

Conclusion

maximise ~ max{dp,dy,...,dx_1,dr = 0}

subject to
forallintegers0 < m <k, 0<t<k—m, andreal0 <p < 1:

Orthonormal basis of R” ™! defined by normalised Krawtchouk

polynomials:

2y — normalised

<\/ (7)1 s é(l)@'p“u () () ))
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Equivalent Formulation

Introduction

Group Testing : maximise  max{dy,dy,...,dp_1,dr =0}
Other Functions E
Scheme § SUbJeCt tO
Equivalent Formulation § for all Integel’S O < m S k‘, O S t S k — m, and real O < yy < 1 .
Applications .
Conclusion
( )

m
sk
dk—i%m—i%m_i
—0

.

7
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Applications

Introduction

Group Testing

Other Functions

Scheme

Equivalent Formulation .

Applications

Conclusion

B From basic properties of ¢, we get a O(k'/*) upper bound for

0 MAJORITY and EXACTLY-HALF.

B The result for EXACTLY-HALF is tight.
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Conclusion

Adversary bound rules!

Optimal algorithms for OR and EXACT-HALF.

Super-quadratic separation between randomised and quantum
guery complexities.

MAJORITY ?

(1 Is it more like XOR, or like OR ?
1 We know that:

m Bernstein-Vazirani style approach fails,
m simple lower bounds fails.

Other functions: t-THRESHOLD, EXACTLY-{ ?

Further applications of these results and techniques ?
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