A new efficient algorithm for finding the ground states of 1D gapped local Hamiltonians

Itai Arad
Centre for Quantum Technologies
National University of Singapore

Joint work with
T. Vidick, Z. Landau & U. Vazirani

QALGO September 2015
How hard is it to approximate the ground energy?

The k-local Hamiltonian problem (Kitaev '98)

$$H = \sum_{|X| \leq k} h_X \quad \|h_X\| \leq 1$$

ϵ_0 ground energy - the smallest eigenvalue of H

$|\Gamma\rangle$ ground state

How hard is it to find a $1/poly(n)$ approximation to ϵ_0?
To other local observables?

The "quantum Cook-Levin" theorem, Kitaev' 98:

When $k = 5$ and $d = 2$, it is QMA hard
Some landmark results

The problem remains QMA hard when:

★ Regev & Kempe '03: \(k = 3 \) and \(d = 2 \)

★ Regev & Kempe & Kitaev '04: \(k = 2 \) and \(d = 2 \)

★ Oliveira & Terhal '05 \(k = 2 \) and \(d = 2 \) on a 2D lattice

★ Aharonov et. al. '07 \(k = 2, \ d = 12 \) in 1D lattice

★ Hallgren et. al. '13 \(k = 2, \ d = 8 \) in 1D lattice
Some landmark results

The problem remains QMA hard when:

- Regev & Kempe '03: $k = 3$ and $d = 2$
- Regev & Kempe & Kitaev '04: $k = 2$ and $d = 2$
- Oliveira & Terhal '05: $k = 2$ and $d = 2$ on a 2D lattice
- Aharonov et. al. '07: $k = 2$, $d = 12$ in 1D lattice
- Hallgren et. al. '13: $k = 2$, $d = 8$ in 1D lattice

However, for physicists most 1D problems are easy (DMRG)
How can that be?
Gapped systems

\[H = \sum_{|X| \leq k} h_X \quad \|h_X\| \leq 1 \]

\[H \text{ eigenvalues: } \epsilon_0 < \epsilon_1 < \epsilon_2 < \ldots \]

\[\gamma := \epsilon_1 - \epsilon_0 \quad \text{Spectral gap} \]

Common belief:

When \(\gamma = \Omega(1) \), then \(|\Gamma\rangle \) becomes “more local”. May admit an efficient classical description
Gapped systems

\[H = \sum_{|X| \leq k} h_X \quad \| h_X \| \leq 1 \]

\(H \) eigenvalues: \(\epsilon_0 < \epsilon_1 < \epsilon_2 < \ldots \)

\(\gamma := \epsilon_1 - \epsilon_0 \quad \) Spectral gap

Common belief:
When \(\gamma = \Omega(1) \), then \(|\Gamma\rangle \) becomes “more local”. May admit an efficient classical description.

The grand conjecture:
When \(\gamma = \Omega(1) \), the complexity of the LH problem becomes classical:

\[
\begin{align*}
\star & \quad \text{In 1D it is in P} \\
\star & \quad \text{In 2D and more it is inside NP}
\end{align*}
\]
Gapped systems

\[H = \sum_{|X| \leq k} h_X \quad \| h_X \| \leq 1 \]

\(H \) eigenvalues: \(\epsilon_0 < \epsilon_1 < \epsilon_2 < \ldots \)

\[\gamma := \epsilon_1 - \epsilon_0 \quad \text{Spectral gap} \]

Common belief:
When \(\gamma = \Omega(1) \), then \(|\Gamma\rangle \) becomes “more local”. May admit an efficient classical description

The grand conjecture:
When \(\gamma = \Omega(1) \), the complexity of the LH problem becomes classical:

\[\checkmark \quad \star \quad \text{In 1D it is in P} \quad \text{Landau, Vazirani & Vidick '13} \]

\[\star \quad \text{In 2D and more it is inside NP} \]
Efficient algorithms for 1D

Previous results:

★ Z. Landau, U. Vazirani & T. Vidick, 2013:
A randomized algorithm. Runs in $T = n^{2^\bigO{1/\gamma}}$

★ Y. Haung, 2014:
Deterministic algorithm. Runs in $T = 2^{2^\bigO{1/\gamma}} \cdot n^{\bigO{1/\gamma}}$

★ C. T. Chubb & S. Flammia:
Extends Huang’s algorithm for degenerate ground states

Our result:

A new randomized algorithm with $T = n^{\bigO{1/\gamma}}$ and:

★ A new framework - can be potentially improved

★ Much more programmer friendly; no eps-nets, better factors
\[|\psi\rangle = \sum_{i_1,\ldots,i_n = 1}^d \Psi_{i_1,\ldots,i_n} |i_1\rangle \otimes \cdots \otimes |i_n\rangle \]

\[\langle \phi | \psi \rangle \iff \begin{array}{c}
\langle \phi | \\
\cdots \\
\langle \phi |
\end{array} \]

\[K = \sum_{i,j} K_{i_1\ldots i_n}^{j_1\ldots j_n} |i_1\rangle \langle j_1| \otimes \cdots \otimes |i_n\rangle \langle j_n| \]

\[k |\psi\rangle \iff |\psi\rangle \begin{array}{c}
\cdots \\
K
\end{array} \]
\[A_{ijklm} = \sum_{\alpha=1}^{D} B_{ijk,\alpha} \cdot C_{\alpha,lm} \]

\[|A\rangle = \sum_{\alpha=1}^{D} |B_{\alpha}\rangle \otimes |C_{\alpha}\rangle \]

The Schmidt rank between the two sides is bounded by D.

Tensor networks can describe the entanglement structure of a state.
Matrix Product States (MPS)

\[\Psi_{i_1, \ldots, i_n} \]

\[\mathbb{C}^d \quad \mathbb{C}^d \quad \mathbb{C}^d \quad \ldots \quad \mathbb{C}^d \]

\[= \]

\[D \quad D \quad \ldots \quad D \]

\[A_{\alpha \beta}^i = \alpha \quad \beta \]

\[D - \text{bond dimension} \]

\[d^n \text{ parameters} \mapsto nD^2d \text{ parameters} \]

Proposition

An ordered array of qudits of has an MPS representation with bond dimension \(D \) iff the Schmidt rank at every cut in the line \(\leq D \).
Local observables can be evaluated efficiently

\[\langle \psi | A | \psi \rangle \]

Contraction time = \(O(nd^2 D^4) \)

Matrix Product Operators (MPO)

\[K = \sum_{\alpha=1}^{D} A_\alpha \otimes B_\alpha \quad \Rightarrow \quad K = \]

\[d \quad D \quad \cdots \]

\[D_1 \quad D_2 \quad \cdots \]

\[d \quad d \]

\[D_1 \cdot D_2 \quad \cdots \]
The 1D area law

Theorem (AKLV '13)

\[H = \sum_{i=1}^{n-1} h_i \quad \|h_i\| \leq 1 \]

Spectral gap \(\gamma = \epsilon_1 - \epsilon_0 > 0 \)

Consider the Schmidt decomposition of the g.s. \(|\Gamma\rangle \) across the \((i, i+1) \) cut:

\[|\Gamma\rangle = \sum_{\alpha} \lambda_{\alpha} |L_{\alpha}\rangle \otimes |R_{\alpha}\rangle \]

Then for any \(\delta > 0 \),

\[\sum_{\alpha \geq k_0} \lambda^2_{\alpha} \leq \delta \quad \text{for} \quad k_0 := e^{\tilde{O}\left(\gamma^{-1/4} \cdot \log^{3/4} (\delta^{-1}) \cdot \log d\right)} \]

Corollary: For any polynomial \(\text{poly}(n) \), there is an MPS \(|\Gamma_D\rangle \) with bond dimension \(D = e^{\tilde{O}\left(\gamma^{-1/4} \cdot \log^{3/4} n \cdot \log d\right)} \) such that

\[\| |\Gamma\rangle - |\Gamma_D\rangle \| \leq 1/\text{poly}(n). \]
Finding a MPS approximation for $|\Gamma\rangle$

A naive approach:

1. Start with a product state $|0\rangle^\otimes n$
2. Apply $e^{-\beta H}$ for some $\beta = O(1)$ several times

\[\begin{array}{c}
\cdots \\
|0\rangle^\otimes n \\
\vdots \\
\end{array} \]
Finding a MPS approximation for $|\Gamma\rangle$

A naive approach:

1. Start with a product state $|0\rangle^{\otimes n}$
2. Apply $e^{-\beta H}$ for some $\beta = O(1)$ several times

![Diagram](image)

Problem: $|\langle 0^{\otimes n}|\Gamma\rangle| \leq d^{-\Omega(n)}$

\Rightarrow we will need to apply $e^{-\beta H}$ for $\Omega(n)$ times resulting in an MPS with an exponential bond dimension
Finding a MPS approximation for $|\Gamma\rangle$

A naive approach:

1. Start with a product state $|0\rangle^\otimes n$
2. Apply $e^{-\beta H}$ for some $\beta = O(1)$ several times

$$
\begin{array}{c}
|0\rangle^\otimes n \\
\vdots
\end{array}
$$

Problem: $|\langle 0^\otimes n |\Gamma\rangle| \leq d^{-\Omega(n)}$

\Rightarrow we will need to apply $e^{-\beta H}$ for $\Omega(n)$ times resulting in an MPS with an exponential bond dimension

However: For $\rho_1 := \text{Tr}_{[2,n]} |\Gamma\rangle\langle \Gamma|$ we know $\exists |\alpha\rangle$ such that $\langle \alpha |\rho_1 |\alpha\rangle = O(1)$

Can we gradually approximate $\rho_{[1,k]}$ for $k=1,2,3,...$?
Definition: a viable set

\[p \quad \bullet \quad \bullet \quad p \quad \alpha = 1, \ldots, s \]

\[\Rightarrow \quad \{ |\phi_\alpha\rangle \}_{\alpha=1}^{s} \]

A subspace \(S_i \subseteq \mathcal{H}_{[1,i]} \) is a \((i, s, p, \eta)\)-viable set for \(|\Gamma\rangle\) if:

- \(S_i \) is an \(s \)-dimensional subspace spanned by \(|\phi_\alpha\rangle \) as above
- \(\exists |\psi\rangle \) such that \(|\langle\psi|\Gamma\rangle|^2 \geq \eta \) and \(\text{Tr}_{[i+1,n]} |\psi\rangle\langle\psi| \) supported in \(S_i \)
- Bond dimension of the partial MPS is at most \(p \)

Graphically, \(\text{Tr}_{[i+1,n]} |\psi\rangle\langle\psi| \) is supported in \(S_i \) iff:

\[|\psi\rangle = \underbrace{\bullet \quad \bullet \quad \bullet \quad \bullet}_{S_i} \overbrace{\bullet \quad \bullet \quad \bullet \quad \bullet}^{p} \]
At every step we construct a \((i, s, p, \eta)\)-viable set \(S_i\) for \(|\Gamma\rangle\) with:

- \(s = \Theta(\log n)\)
- \(p = \tilde{O}(n)\)
- \(\eta = \frac{1}{2}\) \(\Rightarrow\) \(|\langle \psi | \Gamma \rangle|^2 \geq \frac{1}{2}\)

Constructing \(S_1\) is easy - just take the entire local Hilbert space
$S_{i-1} \rightarrow S_i$

1. Extension:

\[\begin{array}{c}
\text{[s]} \\
\text{[d]}
\end{array} \]

$S_i^{(1)}$ is a $(i, sd, p, \frac{1}{2})$-V.S.
$S_{i-1} \rightarrow S_i$

1. **Extension:**

```
[ s ]
[ d ]
```

$S^{(1)}_i$ is a $(i, sd, p, \frac{1}{2})$-V.S.

2. **Size reduction:** project to a random s/D subspace

```
[ s/D ]
```

$S^{(2)}_i$ is a $(i, s/D, p, \frac{1}{8dD})$-V.S.
$S_{i-1} \rightarrow S_i$

1. **Extension:**

 $S_i^{(1)}$ is a $(i, sd, p, \frac{1}{2})$-V.S.

2. **Size reduction:** project to a random s/D subspace

 $S_i^{(2)}$ is a $(i, s/D, p, \frac{1}{8dD})$-V.S.

3. **Amplification:** Apply an AGSP K

 $S_i^{(3)}$ is a $(i, s, pq, \frac{3}{4})$-V.S.
\[S_{i-1} \rightarrow S_i \]

1. **Extension:**

\[\begin{array}{c}
\bullet \\
\end{array} \]

\[
\begin{bmatrix}
\mathbf{s} \\
\mathbf{d}
\end{bmatrix}
\]

\(S_i^{(1)} \) is a \((i, sd, p, \frac{1}{2})\)-V.S.

2. **Size reduction:** project to a random s/D subspace

\[ds \]

\[\begin{array}{c}
\bullet \\
\end{array} \]

\[
\begin{bmatrix}
s/D
\end{bmatrix}
\]

\(S_i^{(2)} \) is a \((i, s/D, p, \frac{1}{8dD})\)-V.S.

3. **Amplification:** Apply an AGSP K

\[p \quad p \quad p \]

\[\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array} \]

\[
\begin{bmatrix}
s/D
\end{bmatrix}
\]

\[q \quad q \quad q \]

\[\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array} \]

\[
\begin{bmatrix}
D
\end{bmatrix}
\]

\(S_i^{(3)} \) is a \((i, s, pq, \frac{3}{4})\)-V.S.

4. **Truncation:** Truncate the high Schmidt coefficients

\[\begin{array}{c}
p \\
p \\
p
\end{array} \]

\[\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array} \]

\[\begin{bmatrix}
s
\end{bmatrix}
\]

\(S_i = S_i^{(4)} \) is a \((i, s, p, \frac{1}{2})\)-V.S.
AGSP - Approximate Ground State Projectors

\[K = \]

\[q \quad q \quad q \quad D \quad q \quad q \quad q \quad q \]

Definition:
An operator \(K \) is a \((i, q, D, \Delta)\) AGSP for \(|\Gamma\rangle\) if:
- Given as MPO with bond \(D \) between \(i, i + 1 \) and \(q \) elsewhere
- \(K|\Gamma\rangle = |\Gamma\rangle \) and \(\|K|\Gamma^\perp\rangle\|^2 \leq \Delta \cdot \||\Gamma^\perp\rangle\|^2 \)

Theorem:
There is an efficiently constructable \((i, q, D, \Delta)\)-AGSP for \(|\Gamma\rangle\) such that:
\[
q = n \tilde{O}\left(\frac{\log^5 d}{\gamma} \right), \quad D = e \tilde{O}\left(\frac{\log^3 d}{\gamma} \right), \quad 8dD \cdot \Delta \leq \frac{3}{4}
\]
Let $|\psi\rangle$ be a witness for $|\Gamma\rangle$ with $|\langle\psi|\Gamma\rangle|^2 = \eta$

$$|\psi\rangle = \sqrt{\eta}|\Gamma\rangle + \sqrt{1-\eta}|\Gamma^\perp\rangle$$

A new witness for the amplified set: $|\phi\rangle := \frac{1}{\|K|\psi\|}K|\psi\rangle$

New overlap: $|\langle\phi|\Gamma\rangle|^2 = \frac{\eta}{\eta + \Delta(1-\eta)} \geq 1 - \frac{\Delta}{\eta}$

In the amplification step we start with $\eta = \frac{1}{8dD} \Rightarrow$ we need $8dD\Delta \leq \frac{3}{4}$
Constructing a good AGSP

We need $K |\Gamma\rangle = |\Gamma\rangle$, $\|K|\Gamma^\perp\rangle\|^2 \leq \Delta \||\Gamma^\perp\rangle\|^2$

Take $K = P_k(H)$ such that: $P_k(\epsilon_0) = 1$ and $|P_k(x)|^2 \leq \Delta$ for $\epsilon_1 \leq x \leq \|H\|$.

Rescaled Chebyshev polynomial:

$$\Delta = 4e^{-4k}\sqrt{\gamma/(\|H\| - \epsilon_0)}$$

$$D = d^O(\sqrt{k})$$

To have $D \cdot \Delta \ll 1$ we must truncate the norm of H
Soft truncation

\[H = H_L + h_{i-\ell} + \ldots + h_i + \ldots + h_{i+\ell} + H_R \]

\[H_L \rightarrow H_L^t, \quad H_R \rightarrow H_R^t \]

In the Area-law proof: \(H_L^t := H_L P_{\leq t} + tP_{>t} \)

Soft truncation: \(H_L^t := t(\mathbb{I} - e^{-H_L/t}) \)

The cluster expansion for \(e^{-\beta H} \)

Kliesch et al '14 + Molnar et al '15:
There exists a good MPO approximation for \(e^{-H_L/t} \)

\Rightarrow \) good MPO approximations for \(H_t := H_L^t + h_{i-\ell} + \ldots + h_i + \ldots + h_{i+\ell} + H_R^t \)

\Rightarrow \) good MPO approximations for \(K_i = P_k(H_t) \)
Summary & open problems

🌟 A new algorithm for finding the g.s. of 1D systems, based on good AGSPs

🌟 More natural, and more friendly to program

❓ Can we improve the running time to linear?
 ✭ Need better AGSPs
 ✭ Better truncation scheme

❓ Can we de-randomize it?

❓ Run in parallel?

❓ Handle degeneracy?

❓ Can it teach us something new about the structure of gapped g.s.?
Thank you!