Quantum algorithms for linear algebra.

Anupam Prakash,
Center for Quantum Technologies and
Nanyang Technological University, Singapore.

September 22, 2015
Overview

1. Introduction

2. The augmented $QRAM$

3. Quantum Singular Value Estimation

4. Applications, Questions
Introduction

- Quantum algorithms for linear algebra: Linear systems [HHL09], preprints on quantum machine learning [LMR13...].
Introduction

- Quantum algorithms for linear algebra: Linear systems [HHL09], preprints on quantum machine learning [LMR13...].
- Assumptions about data like sparsity or bounded ℓ_∞ norm.
Introduction

- Quantum algorithms for linear algebra: Linear systems [HHL09], preprints on quantum machine learning [LMR13...].
- Assumptions about data like sparsity or bounded ℓ_∞ norm.
- Polynomial dependence on dimension of data for the general case.
Introduction

- Quantum algorithms for linear algebra: Linear systems [HHL09], preprints on quantum machine learning [LMR13...].
- Assumptions about data like sparsity or bounded ℓ_∞ norm.
- Polynomial dependence on dimension of data for the general case.
- Quantum algorithms that work for all data with poly-logarithmic dependence on dimension.
Introduction

• Quantum algorithms for linear algebra: Linear systems [HHL09], preprints on quantum machine learning [LMR13...].
• Assumptions about data like sparsity or bounded ℓ_∞ norm.
• Polynomial dependence on dimension of data for the general case.
• Quantum algorithms that work for all data with poly-logarithmic dependence on dimension.
• What linear algebra problems can we can solve with such guarantees?
Introduction

- How to design a quantum algorithm for linear algebra/machine learning?
Introduction

- How to design a quantum algorithm for linear algebra/machine learning?
- The encode-process-extract framework.
Introduction

- How to design a quantum algorithm for linear algebra/machine learning?
- The encode-process-extract framework.
- Encoding vectors and matrices into quantum states: the augmented $QRAM$.

Anupam Prakash
Introduction

- How to design a quantum algorithm for linear algebra/machine learning?
- The encode-process-extract framework.
- Encoding vectors and matrices into quantum states: the augmented $QRAM$.
- Processing: Coherent operations on quantum encodings, quantum singular value estimation.
Introduction

- How to design a quantum algorithm for linear algebra/machine learning?
- The encode-process-extract framework.
- Encoding vectors and matrices into quantum states: the augmented QRAM.
- Processing: Coherent operations on quantum encodings, quantum singular value estimation.
- Extraction: Sampling quantum state to obtain classically 'useful' information, low rank approximation [P14] and recommender systems [KP15].
Quantum memory models

- $O(\sqrt{n})$ speedup for quantum search assumes that the data is stored in $QRAM$,

$$\sum_{i \in [n]} \phi_i \, |i\rangle \xrightarrow{QRAM} \sum_{i \in [n]} \phi_i \, |i\rangle \, |x_i\rangle$$ \hspace{1cm} (1)
Quantum memory models

- $O(\sqrt{n})$ speedup for quantum search assumes that the data is stored in $QRAM$,

$$\sum_{i\in[n]} \phi_i |i\rangle \xrightarrow{QRAM} \sum_{i\in[n]} \phi_i |i\rangle |x_i\rangle$$ \hspace{1cm} (1)

- Storage time is discounted, pre-processing can be done at time of storage.
Quantum memory models

- $O(\sqrt{n})$ speedup for quantum search assumes that the data is stored in $QRAM$,

$$\sum_{i \in [n]} \phi_i |i\rangle \xrightarrow{QRAM} \sum_{i \in [n]} \phi_i |i\rangle |x_i\rangle$$ (1)

- Storage time is discounted, pre-processing can be done at time of storage.
- $O(nnz(x))$ overhead for pre-processing vectors is reasonable, all entries of vector must be read.
Quantum memory models

- $O(\sqrt{n})$ speedup for quantum search assumes that the data is stored in $QRAM$,

$$\sum_{i \in [n]} \phi_i |i\rangle \xrightarrow{QRAM} \sum_{i \in [n]} \phi_i |i\rangle |x_i\rangle$$

1

- Storage time is discounted, pre-processing can be done at time of storage.

- $O(nnz(x))$ overhead for pre-processing vectors is reasonable, all entries of vector must be read.

- Quantum big data model: Massive dataset stored in quantum memory, storage time discounted, find quantum speedups for linear algebra and machine learning tasks.
Encoding, augmented \textit{QRAM}
Encoding, augmented QRAM

- **Definition**

Vector state: Given $x \in \mathbb{R}^n$ the vector state $|x\rangle$ is defined as

$$\frac{1}{|x|} \sum_{i \in [n]} x_i |i\rangle.$$
Encoding, augmented \textit{QRAM}

Definition

Vector state: Given $x \in \mathbb{R}^n$ the vector state $|x\rangle$ is defined as

$$\frac{1}{|x|} \sum_{i \in [n]} x_i |i\rangle.$$

- Vector state preparation using \textit{QRAM} requires time $\tilde{O}(\sqrt{n})$ in the worst case by the search lower bounds.
Encoding, augmented \textit{QRAM}

Definition

Vector state: Given $x \in \mathbb{R}^n$ the vector state $|x\rangle$ is defined as

$$\frac{1}{|x|} \sum_{i \in [n]} x_i |i\rangle.$$

- Vector state preparation using \textit{QRAM} requires time $\tilde{O}(\sqrt{n})$ in the worst case by the search lower bounds.
- But we can pre-process, change memory organization and add classical data structures once we have a \textit{QRAM}.
Encoding, augmented \textit{QRAM}

- **Definition**

 Vector state: Given $x \in \mathbb{R}^n$ the vector state $|x\rangle$ is defined as
 $$\frac{1}{|x|} \sum_{i \in [n]} x_i |i\rangle.$$

- Vector state preparation using \textit{QRAM} requires time $\tilde{O}(\sqrt{n})$ in the worst case by the search lower bounds.
- But we can pre-process, change memory organization and add classical data structures once we have a \textit{QRAM}.
Encoding, augmented $QRAM$

Definition

Vector state: Given $x \in \mathbb{R}^n$ the vector state $|x\rangle$ is defined as

$$\frac{1}{|x|} \sum_{i \in [n]} x_i |i\rangle.$$

- Vector state preparation using $QRAM$ requires time $\tilde{O}(\sqrt{n})$ in the worst case by the search lower bounds.
- But we can pre-process, change memory organization and add classical data structures once we have a $QRAM$.

Theorem

*Vector state $|x\rangle$ can be prepared in time $O(polylog(n))$ if $x \in \mathbb{R}^n$ is stored in the augmented $QRAM$.***
Augmented $QRAM$

- A high level view of the augmented $QRAM$.

![Diagram]

- RAM proposals GLM08
- $QRAM$ Data structures, memory organization.
- Augmented RAM proposals GLM08
- Augmented $QRAM$ Data structures, memory organization.
Augmented $QRAM$

- A high level view of the augmented $QRAM$.

- The bottleneck is the realization of the $QRAM$, augmentations are classical and can be implemented.
Quantum singular value estimation

- Obtain generic linear algebra algorithm with running time poly-logarithmic in matrix dimensions using augmented $QRAM$.
Quantum singular value estimation

- Obtain generic linear algebra algorithm with running time poly-logarithmic in matrix dimensions using augmented \(QRAM \).

- Let \(M \in \mathbb{R}^{m \times n} \) have singular value decomposition:
 \[
 M = \sum_i \sigma_i u_i v_i^t.
 \]
Quantum singular value estimation

- Obtain generic linear algebra algorithm with running time poly-logarithmic in matrix dimensions using augmented $QRAM$.

- Let $M \in \mathbb{R}^{m \times n}$ have singular value decomposition $M = \sum_i \sigma_i u_i v_i^t$.

- Given a superposition over the singular vectors $\sum_i \alpha_i |v_i\rangle$ (respectively $|u_i\rangle$) we want to obtain $\sum_i \alpha_i |v_i\rangle |\sigma_i\rangle$ where $\sigma_i \in \sigma_i \pm \epsilon \|M\|_F$ for all i.
Quantum singular value estimation

- Obtain generic linear algebra algorithm with running time poly-logarithmic in matrix dimensions using augmented QRAM.
- Let $M \in \mathbb{R}^{m \times n}$ have singular value decomposition $M = \sum_i \sigma_i u_i v_i^t$.
- Given a superposition over the singular vectors $\sum_i \alpha_i |v_i\rangle$ (respectively $|u_i\rangle$) we want to obtain $\sum_i \alpha_i |v_i\rangle |\bar{\sigma}_i\rangle$ where $\bar{\sigma}_i \in \sigma_i \pm \epsilon \|M\|_F$ for all i.
Quantum singular value estimation

- Obtain generic linear algebra algorithm with running time poly-logarithmic in matrix dimensions using augmented QRAM.

- Let $M \in \mathbb{R}^{m \times n}$ have singular value decomposition $M = \sum_i \sigma_i u_i v_i^t$.

- Given a superposition over the singular vectors $\sum_i \alpha_i |v_i\rangle$ (respectively $|u_i\rangle$) we want to obtain $\sum_i \alpha_i |v_i\rangle |\overline{\sigma_i}\rangle$ where $\overline{\sigma_i} \in \sigma_i \pm \epsilon \|M\|_F$ for all i.

- **Theorem**

 If $M \in \mathbb{R}^{m \times n}$ stored in the augmented QRAM, there is an algorithm with running time $O(\text{polylog}(mn)/\epsilon)$ that performs quantum singular value estimation with probability at least $1 - 1/\text{poly}(n)$.

Anupam Prakash
Quantum singular value estimation

- The self analysis approach from *LMR*13 requires time $\tilde{O}(1/\epsilon^3)$, analysis of coherence is required [P14].
Quantum singular value estimation

- The self analysis approach from $LMR13$ requires time $\tilde{O}(1/\epsilon^3)$, analysis of coherence is required [P14].
- Reduce singular value estimation to estimating the principal angles between subspaces associated with \mathcal{M}. [Jordan’s lemma]
Quantum singular value estimation

- The self analysis approach from *LMR*13 requires time $\tilde{O}(1/\epsilon^3)$, analysis of coherence is required [P14].
- Reduce singular value estimation to estimating the principal angles between subspaces associated with M. [Jordan’s lemma]
- Implement reflection in the subspaces as unitary operators using augmented *QRAM*.
Quantum singular value estimation

- The self analysis approach from \textit{LMR13} requires time $\tilde{O}(1/\epsilon^3)$, analysis of coherence is required [P14].
- Reduce singular value estimation to estimating the principal angles between subspaces associated with M. [Jordan’s lemma]
- Implement reflection in the subspaces as unitary operators using augmented $QRAM$.
- Apply phase estimation to the product of the reflection operators to estimate the angles and thus the singular values.
Quantum singular value estimation

- The self analysis approach from *LMR*13 requires time $\tilde{O}(1/\epsilon^3)$, analysis of coherence is required [P14].
- Reduce singular value estimation to estimating the principal angles between subspaces associated with M. [Jordan’s lemma]
- Implement reflection in the subspaces as unitary operators using augmented QRAM.
- Apply phase estimation to the product of the reflection operators to estimate the angles and thus the singular values.
- Applications: quantum projections/linear systems and low rank approximation by column selection/recommender systems.
Overview

- Vector state preparation.
Overview

- Vector state preparation.
- Augmented \textit{QRAM}.
Overview

- Vector state preparation.
- Augmented $QRAM$.
- Quantum singular value estimation.
Overview

- Vector state preparation.
- Augmented $QRAM$.
- Quantum singular value estimation.
- Applications and open questions.
Vector states using $QRAM$

- There is a unitary $U |0\rangle = |\phi\rangle$ where,

$$|\phi\rangle = \frac{1}{\sqrt{n}} \sum_{i\in[n]} |i\rangle \left(\frac{x_i}{|x|_{\infty}} |0\rangle + \beta_i |1\rangle \right)$$ \hspace{1cm} (2)
Vector states using $QRAM$

- There is a unitary $U |0\rangle = |\phi\rangle$ where,

$$|\phi\rangle = \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\frac{x_i}{|x|_\infty} |0\rangle + \beta_i |1\rangle \right)$$ \hspace{1cm} (2)

- $QRAM$ query, conditional rotation, post select on $|0\rangle$, erase query register. Success probability $\frac{1}{n|x|_\infty^2}$.
Vector states using $Q RAM$

- There is a unitary $U |0\rangle = |\phi\rangle$ where,

$$|\phi\rangle = \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\frac{x_i}{|x|_\infty} |0\rangle + \beta_i |1\rangle \right)$$ \hspace{1cm} (2)

- $Q RAM$ query, conditional rotation, post select on $|0\rangle$, erase query register. Success probability $\frac{1}{n|x|_\infty^2}$.

- $|\phi\rangle = \sin(\theta) |x, 0\rangle + \cos(\theta) |x', 1\rangle$, reflection in $S_\phi = U S_0 U^{-1}$ and reflection in $|x, 0\rangle$ is phase flip if ancilla is $|1\rangle$.

Anupam Prakash
Vector states using $QRAM$

- There is a unitary $U \ket{0} = \ket{\phi}$ where,

$$\ket{\phi} = \frac{1}{\sqrt{n}} \sum_{i \in [n]} \ket{i} \left(\frac{x_i}{|x|_\infty} \ket{0} + \beta_i \ket{1} \right) \quad (2)$$

- $QRAM$ query, conditional rotation, post select on $\ket{0}$, erase query register. Success probability $\frac{1}{n|x|_\infty^2}$.

- $\ket{\phi} = \sin(\theta) \ket{x, 0} + \cos(\theta) \ket{x', 1}$, reflection in $S_\phi = US_0U^{-1}$ and reflection in $\ket{x, 0}$ is phase flip if ancilla is $\ket{1}$.

- The product of reflections $-S_\phi S_x$ is rotation by 2θ, after k iterations:

$$(-S_\phi S_x)^k \ket{\phi} = \sin((2k+1)\theta) \ket{x, 0} + \cos((2k+1)\theta) \ket{x^\perp, 1} \quad (3)$$
Amplitude amplification

- As $\theta \geq \sin(\theta) = \frac{1}{\sqrt{n|x|_\infty}}$, for $k = O(\sqrt{n|x|_\infty})$ the success probability is a constant.
Amplitude amplification

- As $\theta \geq \sin(\theta) = \frac{1}{\sqrt{n|x|\infty}}$, for $k = O(\sqrt{n|x|\infty})$ the success probability is a constant.

- Amplitude amplification can be made exact if the success probability is known.
Coherent exact amplitude amplification

• There is a unitary operator U such that

 $$
 U |i, 0[^{\log n}+1\rangle = |\phi_i\rangle = \sin(\theta_i) |i, x_i, 0\rangle + \cos(\theta_i) |i, x_i', 1\rangle.
 $$

Anupam Prakash
Coherent exact amplitude amplification

- There is a unitary operator U such that
 \[U |i, 0^{\lceil \log n \rceil + 1}\rangle = |\phi_i\rangle = \sin(\theta_i) |i, x_i, 0\rangle + \cos(\theta_i) |i, x'_i, 1\rangle. \]
 - $x_i \in \mathbb{R}^n$ and $\sin(\theta_i)$ are stored in $QRAM$.
Coherent exact amplitude amplification

- There is a unitary operator U such that

 $U |i, 0^{[\log n]+1}\rangle = |\phi_i\rangle = \sin(\theta_i) |i, x_i, 0\rangle + \cos(\theta_i) |i, x'_i, 1\rangle$.

- $x_i \in \mathbb{R}^n$ and $\sin(\theta_i)$ are stored in QRAM.

- Then $\sum_i \alpha_i |i, 0^l\rangle \rightarrow \sum_i \alpha_i |i, x_i\rangle$ requires time $\tilde{O}\left(\frac{T(U)}{\min_i \sin(\theta_i)}\right)$.

Anupam Prakash
Coherent exact amplitude amplification

- There is a unitary operator U such that

 $U |i, 0^{[\log n]+1}\rangle = |\phi_i\rangle = \sin(\theta_i) |i, x_i, 0\rangle + \cos(\theta_i) |i, x'_i, 1\rangle$.

- $x_i \in \mathbb{R}^n$ and $\sin(\theta_i)$ are stored in $QRAM$.

- Then $\sum_i \alpha_i |i, 0^l\rangle \rightarrow \sum_i \alpha_i |i, x_i\rangle$ requires time $\tilde{O}(\frac{T(U)}{\min_i \sin(\theta_i)})$.

- Proof: Let t_i be the exact number of rotations required,

 $\frac{\pi/2}{\theta_i} = 2t_i + 1$ choosing the largest $\overline{\theta_i} \leq \theta_i$.

 Compute $\sum_i \alpha_i |i, 0^l, t_i\rangle$.
Coherent exact amplitude amplification

- There is a unitary operator U such that
 $U |i, 0^{\lfloor \log n \rfloor + 1}\rangle = |\phi_i\rangle = \sin(\theta_i) |i, x_i, 0\rangle + \cos(\theta_i) |i, x_i', 1\rangle$.
- $x_i \in \mathbb{R}^n$ and $\sin(\theta_i)$ are stored in QRAM.
- Then $\sum_i \alpha_i |i, 0^l\rangle \rightarrow \sum_i \alpha_i |i, x_i\rangle$ requires time $\tilde{O}(\frac{T(U)}{\min_i \sin(\theta_i)})$.
- Proof: Let t_i be the exact number of rotations required,
 $\frac{\pi}{2\theta_i} = 2t_i + 1$ choosing the largest $\theta_i \leq \theta_i$.
 Compute $\sum_i \alpha_i |i, 0^l, t_i\rangle$.
- Apply unitary $R(-S_\phi S_x)$ where $R |0\rangle = - |0\rangle$, $R |t\rangle = |t - 1\rangle$ if $t > 1$ and reflections S_ϕ and S_x are conditioned on auxiliary register being non zero.
A quantum key value map with \((K_i, V_i) \in \mathbb{N}\) for \(i \in [m]\) implements the following transformation in time \(\tilde{O}(1)\),

\[
\sum_{i \in [m]} \alpha_i \ket{K_i} \leftrightarrow \sum_{i \in [n]} \alpha_i \ket{V_i}
\]

(4)
Quantum key value map

- A quantum key value map with \((K_i, V_i) \in \mathbb{N}\) for \(i \in [m]\) implements the following transformation in time \(\tilde{O}(1)\),

 \[
 \sum_{i \in [m]} \alpha_i |K_i\rangle \leftrightarrow \sum_{i \in [n]} \alpha_i |V_i\rangle \quad (4)
 \]

- Store \(K_i\) at address \(f(V_i)\), \(V_i\) at address \(f(K_i)\),

 \[
 \sum_{i \in [n]} \alpha_i |K_i\rangle \xrightarrow{f(K),QRAM} \sum_{i \in [n]} \alpha_i |K_i, f(K_i), V_i\rangle \\
 \xrightarrow{f(K),f(V)} \sum_{i \in [n]} \alpha_i |K_i, f(V_i), V_i\rangle \\
 \xrightarrow{QRAM,f(V)} \sum_{i \in [n]} \alpha_i |f(V_i), V_i\rangle \quad (5)
 \]
Quantum key value map

- A quantum key value map with \((K_i, V_i) \in \mathbb{N}\) for \(i \in [m]\) implements the following transformation in time \(\tilde{O}(1)\),

\[
\sum_{i \in [m]} \alpha_i |K_i\rangle \leftrightarrow \sum_{i \in [n]} \alpha_i |V_i\rangle
\]

- Store \(K_i\) at address \(f(V_i)\), \(V_i\) at address \(f(K_i)\),

\[
\sum_{i \in [n]} \alpha_i |K_i\rangle \xrightarrow{f(K),QRAM} \sum_{i \in [n]} \alpha_i |K_i, f(K_i), V_i\rangle
\]

\[
\sum_{i \in [n]} \alpha_i |K_i, f(V_i), V_i\rangle \xrightarrow{QRAM,f(V)} \sum_{i \in [n]} \alpha_i |f(V_i), V_i\rangle
\]

- Collisions can be handled.
Sparse vector state preparation

- Set up a key value map $X_0 + i \leftrightarrow t_i$ between memory addresses and indices of v.

\[
\begin{array}{c|c}
\text{Address, content} & v \\
\hline
v_1 & 0 \\
v_3 & 0 \\
v_5 & 0 \\
v_7 & 0 \\
v_8 & 0 \\
\end{array}
\]

Sparse $v \in \mathbb{R}^{10}$

\[
\begin{array}{c|c}
\text{Quantum key value map} & \text{Index} \\
\hline
11 & 1 \\
12 & 3 \\
13 & 5 \\
14 & 7 \\
15 & 8 \\
\end{array}
\]

Address

- Can prepare $|v\rangle$ in time $\tilde{O}(\sqrt{\text{nnz}(v)})$.
- $\frac{1}{\sqrt{k}} \sum_{i \in [k]} |i\rangle \xrightarrow{AA} \frac{1}{\sqrt{k}} \sum_{i \in [k]} v_{t_i} |i + X_0\rangle \rightarrow \frac{1}{\sqrt{k}} \sum_{i \in [k]} v_{t_i} |t_i\rangle$.

Anupam Prakash
Augmented QRAM components

- Vector state preparation time is $\tilde{O}(\sqrt{n}|v|_\infty)$, this is constant if entries of v lie in $[1/\sqrt{n}, 2/\sqrt{n}]$.
Augmented QRAM components

- Vector state preparation time is $\tilde{O}(\sqrt{n} |v|_\infty)$, this is constant if entries of v lie in $[1/\sqrt{n}, 2/\sqrt{n}]$.

- Augmented QRAM is therefore organized into bins:

<table>
<thead>
<tr>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>.2</td>
<td>0</td>
</tr>
<tr>
<td>.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>.5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>0</td>
<td>.3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>.4</td>
<td>0</td>
</tr>
<tr>
<td>.2</td>
<td>.3</td>
<td>.4</td>
</tr>
<tr>
<td>0</td>
<td>.4</td>
<td>0</td>
</tr>
</tbody>
</table>

Key value map

Index	Memory Address
1, 8 | 2, 1
2, 6 | 2, 2
2, 7 | 2, 3
3, 3 | 2, 4
3, 4 | 2, 5
Augmented $QRAM$ components

- Vector state preparation time is $\tilde{O}(\sqrt{n}|v|_\infty)$, this is constant if entries of v lie in $[1/\sqrt{n}, 2/\sqrt{n}]$.

- Augmented $QRAM$ is therefore organized into bins:

<table>
<thead>
<tr>
<th></th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- In addition, we maintain counts and offsets as metadata in quantum memory.
Augmented $QRAM$ architecture:

- Augmented $QRAM$ architecture:

 - Controller
 - Metadata
 - Offsets
 - Key-value map $(i, j) \leftrightarrow (k, t)$
 - $v_1, v_2, v_3 \in \mathbb{R}^8$
 - $B_1 B_2 B_3 B_4 B_5$
Augmented $QRAM$ architecture

- **Augmented $QRAM$ architecture:**

 - Controller
 - Metadata
 - Key-value map $(i,j) \leftrightarrow (k,t)$
 - Offsets $v_1, v_2, v_3 \in \mathbb{R}^8$
 - Pre-processing can be done as the controller streams over the vector entries.

- $v_1 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \end{bmatrix}$
- $v_2 = \begin{bmatrix} 0 & 2 & 2 & 3 & 0 \end{bmatrix}$
- $v_3 = \begin{bmatrix} 0 & 4 & 3 & 4 & 0 \end{bmatrix}$

- $B_1 = \begin{bmatrix} .4 & .2 & .1 \end{bmatrix}$
- $B_2 = \begin{bmatrix} .3 & .2 & .1 \end{bmatrix}$
- $B_3 = \begin{bmatrix} .4 & .2 & .1 \end{bmatrix}$
- $B_4 = \begin{bmatrix} .5 & .1 \end{bmatrix}$
- $B_5 = \begin{bmatrix} .3 \end{bmatrix}$
State preparation with augmented $QRAM$

- We describe $|i, 0\rangle \rightarrow |i, x\rangle$, for query in superposition use coherent exact amplitude estimation.
State preparation with augmented QRAM

- We describe $|i, 0\rangle \rightarrow |i, x\rangle$, for query in superposition use coherent exact amplitude estimation.
- The metadata: Counts c_{ik} and offsets o_{ik} for the elements of x in bin B_k.

\begin{equation}
|i\rangle \rightarrow 1/\sqrt{n} \sum_{k \in [b]} |k, 0\rangle + \sum_{t < \ell(k)} |k, t\rangle + \sum_{t \geq \ell(k)} |k, t\rangle
\end{equation}
State preparation with augmented $QRAM$

- We describe $|i,0\rangle \rightarrow |i,x\rangle$, for query in superposition use coherent exact amplitude estimation.
- The metadata: Counts c_{ik} and offsets o_{ik} for the elements of x in bin B_k.
- Let $l(k) = 2^{\lceil \log(c(k)) \rceil}$, smallest power of 2 more than c_k.

State preparation with augmented \(QRAM \)

- We describe \(|i, 0\rangle \rightarrow |i, x\rangle\), for query in superposition use coherent exact amplitude estimation.
- The metadata: Counts \(c_{ik}\) and offsets \(o_{ik}\) for the elements of \(x\) in bin \(B_k\).
- Let \(l(k) = 2^{[\log(c(k))]}\), smallest power of 2 more than \(c_k\).
- Prepare state \(\frac{1}{\sqrt{n}} \sum |k, t + o_{ik}\rangle\) as follows,

\[
|i\rangle \frac{1}{\sqrt{\sum_{k \in [b]} l(k)}} \sum_{k \in [b]} \sqrt{l(k)} |k, 0^{[\log N]}\rangle
\]

\[
\frac{1}{\sqrt{\sum_{k \in [b]} l(k)}} |i\rangle \sum_{k \in [b]} \left(\sum_{t \in [c(k)]} |k, t, 0\rangle + \sum_{c(k) < t \leq l(k)} |k, t, 1\rangle \right) \tag{6}
\]
State preparation with augmented $QRAM$

- Add ancilla and apply conditional rotation,

$$\frac{1}{\sqrt{n}} \sum |k, t + o_{ik}\rangle \left(\frac{x_j}{2^k} |0\rangle + \beta |1\rangle \right)$$

(7)
State preparation with augmented $QRAM$

- Add ancilla and apply conditional rotation,

\[
\frac{1}{\sqrt{n}} \sum |k, t + o_{ik}\rangle \left(\frac{x_j}{2^{-k}} |0\rangle + \beta |1\rangle \right)
\]

(7)

- $x_j \in [2^{-k-1}, 2^{-k}]$, success probability is at least $1/4$.
State preparation with augmented $QRAM$

- Add ancilla and apply conditional rotation,

$$\frac{1}{\sqrt{n}} \sum |k, t + o_{ik}\rangle \left(\frac{x_j}{2^{-k}} |0\rangle + \beta |1\rangle \right) \quad (7)$$

- $x_j \in [2^{-k-1}, 2^{-k}]$, success probability is at least $1/4$.

- Exact amplitude amplification to get $\frac{1}{\sqrt{n}} \sum x_j |i, k, t + o_{ik}\rangle$.

Anupam Prakash
State preparation with augmented \textit{QRAM}

- Add ancilla and apply conditional rotation,
 \begin{equation}
 \frac{1}{\sqrt{n}} \sum |k, t + o_{ik}\rangle \left(\frac{x_j}{2^{-k}} |0\rangle + \beta |1\rangle \right)
 \end{equation}

- \(x_j \in [2^{-k-1}, 2^{-k}]\), success probability is at least 1/4.
- Exact amplitude amplification to get \(\frac{1}{\sqrt{n}} \sum x_j |i, k, t + o_{ik}\rangle\).
- Key value map to obtain \(\frac{1}{\sqrt{n}} \sum x_i |i, i, j\rangle = |i, x\rangle\).
Jordan’s lemma

- P, Q are projectors onto \mathcal{P}, \mathcal{Q} and $PQP = \sum_{\lambda_i > 0} \lambda_i v_i v^t_i$.
Jordan’s lemma

- P, Q are projectors onto \mathcal{P}, \mathcal{Q} and $PQP = \sum_{\lambda_i > 0} \lambda_i v_i v_i^t$.

- $w_i := Qv_i / |Qv_i|_2$ is an eigenvector for QPQ with eigenvalue λ_i and $\text{Span}(v_i, w_i)$ is invariant subspaces under the action of P, Q.

\[\sigma^2_i = \lambda_i = \cos^2(\theta_i) \]

\[v_i = P v_i \theta \]

\[w_i = Q w_i \]
Jordan’s lemma

- P, Q are projectors onto P, Q and $PQP = \sum_{\lambda_i > 0} \lambda_i v_i v_i^t$.
- $w_i := Qv_i / |Qv_i|_2$ is an eigenvector for QPQ with eigenvalue λ_i and $Span(v_i, w_i)$ is invariant subspaces under the action of P, Q.

- $\sigma_i^2 = \lambda_i = \cos^2(\theta)$
Jordan’s lemma

- P, Q are projectors onto \mathcal{P}, Q and $PQP = \sum_{\lambda_i > 0} \lambda_i v_i v_i^t$.
- $w_i := Qv_i / |Qv_i|_2$ is an eigenvector for QPQ with eigenvalue λ_i and $\text{Span}(v_i, w_i)$ is invariant subspaces under the action of P, Q.
- $\sigma^2_i = \lambda_i = \cos^2(\theta)$
- Estimating singular values of PQ reduces to estimating the principal angles θ_i.
Singular values and principal angles

- If \(\|M\|_F = 1 \) then \(M = A^t B \) with \(A \in \mathbb{R}^{mn \times m} \), \(B \in \mathbb{R}^{mn \times n} \) such that \(A^t A = I_m \) and \(B^t B = I_n \).
Singular values and principal angles

- If $\|M\|_F = 1$ then $M = A^t B$ with $A \in \mathbb{R}^{mn \times m}$, $B \in \mathbb{R}^{mn \times n}$ such that $A^t A = I_m$ and $B^t B = I_n$.

- Proof: Select $a^i = |i, m_i\rangle$ and $b^j = |p, j\rangle$ where $|p\rangle = \sum_{i \in [m]} m_i |i\rangle$.

Anupam Prakash
Singular values and principal angles

- If $\|M\|_F = 1$ then $M = A^t B$ with $A \in \mathbb{R}^{mn \times m}$, $B \in \mathbb{R}^{mn \times n}$ such that $A^t A = I_m$ and $B^t B = I_n$.

- Proof: Select $a^i = |i, m_i\rangle$ and $b^j = |p, j\rangle$ where $|p\rangle = \sum_{i \in [m]} m_i \langle i|$.

- Orthogonality follows from definition and $\langle a^i | b^j \rangle = m_{ij}$.
Singular values and principal angles

- If \(\| M \|_F = 1 \) then \(M = A^t B \) with \(A \in \mathbb{R}^{mn \times m}, B \in \mathbb{R}^{mn \times n} \) such that \(A^t A = I_m \) and \(B^t B = I_n \).

- Proof: Select \(a^i = |i,m_i\rangle \) and \(b^j = |p,j\rangle \) where \(|p\rangle = \sum_{i \in [m]} m_i |i\rangle \).

- Orthogonality follows from definition and \(\langle a^i | b^j \rangle = m_{ij} \).

- Define projector \(P = AA^t \) and \(Q = BB^t \), then \(PQ = AMB^t \) is iso-spectral with \(M^t M \).
Singular values and principal angles

- If $\|M\|_F = 1$ then $M = A^t B$ with $A \in \mathbb{R}^{mn \times m}$, $B \in \mathbb{R}^{mn \times n}$ such that $A^t A = I_m$ and $B^t B = I_n$.

- Proof: Select $a^i = |i, m_i\rangle$ and $b^j = |p, j\rangle$ where $|p\rangle = \sum_{i \in [m]} m_i |i\rangle$.

- Orthogonality follows from definition and $\langle a^i | b^j \rangle = m_{ij}$.

- Define projector $P = AA^t$ and $Q = BB^t$, then $PQ = AMB^t$ is iso-spectral with $M^t M$.

- It suffices to estimate the singular values of PQ, which are the principal angles between P and Q.
Reflections

• What is the reflection in $\mathcal{P} = Col(A)$?
Reflections

- What is the reflection in $\mathcal{P} = \text{Col}(A)$?
- Let U be the multiplication by A unitary,

 $U |x, 0^{\log n}\rangle = |Ax\rangle = \sum_i x_i |i, m_i\rangle$.

Anupam Prakash
Reflections

- What is the reflection in $\mathcal{P} = \text{Col}(A)$?
- Let U be the multiplication by A unitary,

 $$U |x, 0^{\log n}\rangle = |Ax\rangle = \sum_i x_i |i, m_i\rangle.$$

- $R_A = UR_0U^{-1}$ can be implemented as unitary using augmented QRAM.
Reflections

- What is the reflection in $\mathcal{P} = \text{Col}(A)$?
- Let U be the multiplication by A unitary, $U |x, 0^{\log n}\rangle = |Ax\rangle = \sum_i x_i |i, m_i\rangle$.
- $R_A = UR_0U^{-1}$ can be implemented as unitary using augmented QRAM.
- Multiplication by B is simpler, $V |0^{\log m}, x\rangle = |p, x\rangle$.
Reflections

• What is the reflection in $\mathcal{P} = \text{Col}(A)$?

• Let U be the multiplication by A unitary, $U |x, 0^{\log n}\rangle = |Ax\rangle = \sum_i x_i |i, m_i\rangle$.

• $R_A = U R_0 U^{-1}$ can be implemented as unitary using augmented QRAM.

• Multiplication by B is simpler, $V |0^{\log m}, x\rangle = |p, x\rangle$.

• $R_B = V R_0 V^{-1}$ can be implemented as unitary using augmented QRAM.
Reflections

- What is the reflection in $\mathcal{P} = \text{Col}(A)$?
- Let U be the multiplication by A unitary, $U |x, 0^{\log n}\rangle = |Ax\rangle = \sum_i x_i |i, m_i\rangle$.
- $R_A = UR_0U^{-1}$ can be implemented as unitary using augmented QRAM.
- Multiplication by B is simpler, $V |0^{\log m}, x\rangle = |p, x\rangle$.
- $R_B = VR_0V^{-1}$ can be implemented as unitary using augmented QRAM.
- R_AR_B has eigenvalues $e^{i2\theta_i}$, use phase estimation.
Quantum singular value estimation

Theorem

If \(M \in \mathbb{R}^{m \times n} \) has SVD given by

\[
M = \sum\limits_{i} \sigma_i u_i v_i^t
\]

and is stored in the augmented QRAM, there is a quantum algorithm that transforms

\[
\sum\limits_{i} \alpha_i |v_i\rangle \rightarrow \sum\limits_{i} \alpha_i |v_i\rangle |\sigma_i\rangle
\]

such that \(\sigma_i \in \sigma_i \pm \epsilon \|M\|_F \) for all \(i \) with probability at least \(1 - \frac{1}{poly(n)} \) in time \(O(polylog(mn)/\epsilon) \).

Can be used for quantum projections.
Quantum singular value estimation

- **Theorem**

If $M \in \mathbb{R}^{m \times n}$ has SVD given by $M = \sum_i \sigma_i u_i v_i^t$ and is stored in the augmented QRAM, there is a quantum algorithm that transforms

$$\sum_i \alpha_i |v_i\rangle \rightarrow \sum_i \alpha_i |v_i\rangle |\sigma_i\rangle$$

such that $\sigma_i \in \sigma_i \pm \epsilon \|M\|_F$ for all i with probability at least $1 - 1/poly(n)$ in time $O(polylog(mn)/\epsilon)$.

Can be used for quantum projections.

Anupam Prakash
Quantum singular value estimation

Theorem

If $M \in \mathbb{R}^{m \times n}$ has SVD given by $M = \sum_i \sigma_i u_i v_i^t$ and is stored in the augmented QRAM, there is a quantum algorithm that transforms

$$\sum_i \alpha_i |v_i\rangle \rightarrow \sum_i \alpha_i |v_i\rangle |\sigma_i\rangle$$

such that $\overline{\sigma_i} \in \sigma_i \pm \epsilon \|M\|_F$ for all i with probability at least $1 - 1/poly(n)$ in time $O(polylog(mn)/\epsilon)$.

- Can be used for quantum projections.
Applications

- Low rank approximation by column sampling.
Applications

- Low rank approximation by column sampling.
- A comparison of quantum and classical CX decomposition for power law decay.
Questions

- Quantum recommender systems.
Questions

- Quantum recommender systems.
- Can quantum computing help with big data?
Questions

- Quantum recommender systems.
- Can quantum computing help with big data?
- Quadratic speedups for Markov chain methods?
Questions

- Quantum recommender systems.
- Can quantum computing help with big data?
- Quadratic speedups for Markov chain methods?
- Iterative quantum algorithms? Gradient descent? Optimization?
Questions

- Quantum recommender systems.
- Can quantum computing help with big data?
- Quadratic speedups for Markov chain methods?
- Iterative quantum algorithms? Gradient descent? Optimization?
- Learning and inference on quantum max entropy/graphical models? Quantum exponential family?
The Last Slide

Thank You.