Subadditive functions in one and many variables:
 A tutorial

Silvio Capobianco
Department of Software Science, Tallinn University of Technology silvio.capobianco@taltech.ee

Joint Estonian-Latvian Theory Days 2018
12-13-14 October 2018

Introduction

- A function $f: S \rightarrow \mathbb{R}$, where (S, \cdot) is a semigroup, is subadditive if $f(x \cdot y) \leq f(x)+f(y)$ for every $x, y \in S$.
- Subadditivity appears in several contexts:
- symbolic dynamics (Fekete's lemma)
- group theory (Ornstein-Weiss lemma)
- We will go through the general properties of subadditive functions and discuss some special cases.
- We will then consider functions of many variables which are subadditive in each one, however given the others.
- We will conclude with a discussion of a multivariate version of Fekete's lemma.

Bibliography

(1) E. Hille, Functional Analysis and Semi-groups, AMS 1948.
(2) SC. Multidimensional cellular automata and generalization of Fekete's lemma. Disc. Math. Theor. Comp. Sci. 10 (2008), 95-104. dmtcs.episciences.org/442
(3) F. Krieger. The Ornstein-Weiss lemma for discrete amenable groups. Max Planck Institute for Mathematics Bonn, 2010, MPIM Preprint 2010-48.
(1)

Notation and conventions

- We denote by $\mathcal{P}(X)$ the family of subsets of X, and by $\mathcal{P} \mathcal{F}(X)$ the family of its finite subsets.
- For $m, n \in \mathbb{Z}$ the slice from m to n is the set

$$
[m: n]=\{x \in \mathbb{Z} \mid m \leq x \leq n\}
$$

- The Iverson brackets are defined on the class of predicates as

$$
[P]_{\mathrm{I}}=\text { if } P \text { then } 1 \text { else } 0
$$

If α is either infinite or undefined, we set $\alpha \cdot[\text { False }]_{\mathrm{I}}=0$.

- If x is a variable taking values in A and $E(a) \in B$ for every $a \in A$, we denote by $\lambda x: A . E(x): B$ the function that associates each $a \in A$ to the value $E(a) \in B$.
If A and B are clear from the context, we omit them.
- We assume that all the functions discussed here are Borel measurable.

Definition and examples

Let (S, \cdot) be a semigroup. A function $f: S \rightarrow \mathbb{R}$ is subadditive if

$$
f(x \cdot y) \leq f(x)+f(y) \forall x, y \in S
$$

Examples:

- The length of a vector in the plane.
- The length of a word over an alphabet.
- The length of a reduced word in the free group over a given set.
- The number of elements of a finite subset of a given set, where the semigroup operation is the union.
- The reciprocal of a positive real number.
- The square root of a positive real number.
- The square root of the opposite of a negative real number.
- The opposite of the square of a positive real number.
- The ceiling of a real number: $\lceil x\rceil=\min \{k \in \mathbb{Z} \mid x \leq k\}$.

What about additive functions?

They are far less interesting:

- Every additive function $f(x)$ defined on rational numbers is linear: It must be $f(x)=x \cdot f(1)$ for every $x \in \mathbb{Q}$.
- From this: every continuous additive function on the real line is linear.
- Sierpiński, 1920: the only Lebesgue measurable additive functions on the real line are the linear ones.
- The following function is subadditive in \mathbb{R}, Borel measurable, and everywhere discontinuous:

$$
f(x)=2 \cdot[x \in \mathbb{Q}]_{I}+3 \cdot[x \notin \mathbb{Q}]_{I}
$$

Some criteria for subadditivity

- $f(x)$ is subadditive on \mathbb{R}_{-}iff $f(-x)$ is subadditive on \mathbb{R}_{+}.
- Any linear combination with nonnegative coefficients of subadditive functions is subadditive.
- If e is an idempotent of S, then $f(e) \geq 0$.

As a consequence: subadditivity is not invariant by translations.

- If Σ is a subsemigroup of S and $0 \leq a \leq b \leq 2 a$, then $\lambda x \cdot a \cdot[x \in \Sigma]_{I}+b \cdot[x \notin \Sigma]_{I}$ is subadditive.
- If $f(x)=-x$ and $g(x)=\lceil x\rceil$, then $f(g(x))=-\lceil x\rceil$ is not subadditive on \mathbb{R}, but $g(f(x))=\lceil-x\rceil$ is.
- If f is subadditive, then so is $f^{+}(x)=\max (f(x), 0)$.
- If f is subadditive and negative and g is nondecreasing and positive, then $f(x) g(x)$ is subadditive.
For example, $-x^{\alpha} e^{\beta x}$ is subadditive on \mathbb{R}_{+}for every $\alpha \geq 1$ and $\beta>0$.

Infinitary subadditive functions: Conventions

We may consider functions taking values in $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$.
We set:

- $x+\infty=+\infty$ unless $x=-\infty$. $x-\infty=-\infty$ unless $x=+\infty$.
- If $x>0$, then $x \cdot+\infty=+\infty$ and $x \cdot-\infty=-\infty$. If $x<0$, then $x \cdot+\infty=-\infty$ and $x \cdot-\infty=+\infty$. With this convention, $-(+\infty)=-\infty$ and $-(-\infty)=+\infty$.
- We do not define $+\infty-\infty, 0 \cdot+\infty$, or $0 \cdot-\infty$ unless the 0 comes from the Iverson brackets.

We only consider the subadditivity inequality when the right-hand side is defined.

More examples

- $\lambda x .-\infty$ is subadditive on $\mathbb{R} \ldots$
- ... and so is $\lambda x \cdot+\infty \cdot[x>0]_{I}-\infty \cdot[x \leq 0]_{I} \ldots$
- ... and so is $\lambda x .+\infty \cdot[x \leq 1 \text { or } x=2]_{\mathrm{I}}$.
- If the functions $f_{n}(x)$ are nonnegative and subadditive and the coefficients a_{n} are nonnegative, then $\sum_{n \geq 1} a_{n} f_{n}(x)$ is subadditive (and nonnegative, and possibly infinitary).
- If $\Sigma_{n}=\{m / n \mid m \in \mathbb{Z}\}$, then

$$
f(x)=1+\sum_{n \geq 1} 2^{-n}\left[x \in \Sigma_{n}\right]_{\mathrm{I}}
$$

is subadditive, continuous at every irrational number, and discontinuous at every rational number.

Fekete's lemma

Let $f: S \rightarrow \mathbb{R}$ be a subadditive function.
(1) If $S=\mathbb{R}_{+}$or $S=\mathbb{Z}_{+}$, then

$$
\ell_{+}=\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=\inf _{x>0} \frac{f(x)}{x}
$$

is not $+\infty$, but can be $-\infty$.
(2) If $S=\mathbb{R}_{-}$or $S=\mathbb{Z}_{-}$, then

$$
\ell_{-}=\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\sup _{x<0} \frac{f(x)}{x}
$$

is not $-\infty$, but can be $+\infty$.
(3) If $S=\mathbb{R}$ or $S=\mathbb{Z}$, then $\ell_{-} \leq \ell_{+}$, and both are finite.

Corollary: a subadditive function on \mathbb{R}_{+}can go to $+\infty$ at most linearly.

Application: Entropy of a subshift

A subshift on a finite alphabet A is a subset X of the set $A^{\mathbb{Z}}$ of the bi-infinite words on A such that:
(1) X is invariant by translations:

If $x \in X$, then $\lambda t . x(t+s) \in X$ for every $s \in \mathbb{Z}$.
(2) X is closed in the prodiscrete topology:

If $\left\{x_{n}\right\}_{n \geq 0} \subseteq X$ and for some $x \in A^{\mathbb{Z}}$ and every $t \in \mathbb{Z}$ there are at most finitely many n such that $x_{n}(t) \neq x(t)$, then $x \in X$.
The language of the subshift X is the set $\mathcal{L}(X)$ of all the words $w \in A^{*}$ which are factors of some $x \in X$.
The entropy of the subshift X is the quantity:

$$
h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|\mathcal{L}(X) \cap A^{n}\right|}{n}
$$

The Ornstein-Weiss lemma for countable groups

Let G be a countable group. Suppose G has a Følner sequence of finite subsets F_{n} such that:

$$
\lim _{n \rightarrow \infty} \frac{\left|g F_{n} \backslash F_{n}\right|}{\left|F_{n}\right|}=0 \quad \forall g \in G
$$

Let $f: \mathcal{P F}(G) \rightarrow \mathbb{R}$ be:
(1) subadditive with respect to union, i.e., $f(U \cup V) \leq f(U)+f(V)$, and
(2) such that $f(g A)=f(A)$ for every $g \in G$ and $A \in \mathcal{P F}(G)$.

Then

$$
\lim _{n \rightarrow \infty} \frac{f\left(F_{n}\right)}{\left|F_{n}\right|}
$$

exists, and does not depend on the choice of F_{n}.

Entropy of a subshift on a countable group

Let G be a group and F_{n} a Følner sequence (not all groups have).

- A subshift X of A^{G}, where A is an alphabet, can be defined as for $A^{\mathbb{Z}}$ by requiring closure by translations:

$$
\sigma_{g}(X)=X \text { where } \sigma_{g}(c)=\lambda h . c(g h)
$$

- For $U \in \mathcal{P F}(G)$ let $\mathcal{L}_{U}(X)$ be the set of patterns $p: U \rightarrow A$ which appear in elements of X.
- Then $f(U)=\log \left|\mathcal{L}_{U}(X)\right|$ is subadditive and $f(g U)=f(U)$ for every g and U.
- By the Ornstein-Weiss lemma, we can define:

$$
h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|\mathcal{L}_{F_{n}}(X)\right|}{\left|F_{n}\right|}
$$

This coincides with the standard definition for $G=\mathbb{Z}$ and $F_{n}=[1: n]$.

Ornstein-Weiss does not directly generalize Fekete

The sequence $F_{n}=[1: n]$ is a $F \varnothing$ Iner sequence in \mathbb{Z}.
It then seems intuitive to see Fekete's lemma as an application of the Ornstein-Weiss lemma ...

- Let $f: \mathbb{Z}_{+} \rightarrow \mathbb{R}$ be subadditive.
- The function $\phi(U)=f(|U|) \cdot[U \neq \emptyset]_{I}$ looks subadditive \ldots
- ... but is not necessarily so!
- For example, if $f(x)=-x$, and $U \subseteq V$ is nonempty, then:

$$
\phi(U \cup V)=-|U \cup V|=-|V|>-|U|-|V|=\phi(U)+\phi(V)
$$

- However, if f is also nondecreasing, then ϕ is subadditive.

Componentwise subadditivity

Let S_{1}, \ldots, S_{d} be semigroups and let $S=\prod_{i=1}^{d} S_{i}$.

- A function $f: S \rightarrow \overline{\mathbb{R}}$ is subadditive in x_{i} (independently of the other variables) if, however given $x_{j} \in S_{j}$ for every $j \in[1: d] \backslash\{i\}$, the function $\lambda x_{i} . f\left(x_{1}, \ldots, x_{i}, \ldots, x_{d}\right)$ is subadditive on S_{i}.
- f is componentwise subadditive if it is subadditive in each variable independently of the others.
Componentwise subadditivity is not subadditivity in the product!
- $f(x, y)=\sqrt{x y}$ is componentwise subadditive on \mathbb{R}_{+}^{2}. However, $f(3,3)=3$ and $f(1,2)+f(2,1)=2 \sqrt{2}<3$.

Directed sets

A directed set is a partially ordered set $\mathcal{U}=(U, \preceq)$ with the following additional property: for every $u, v \in U$, there exists $w \in U$ such that $u \preceq w$ and $v \preceq w$.

- Every totally ordered set is a directed set.
- The power set of any set, ordered by inclusion, is a directed set.
- The set of finite decompositions of the interval $[a, b]$, where $x \preceq y$ iff each point of x is also a point of y, is a directed set.
- The set of open neighborhoods of a real number, order by reverse inclusion, is a net.
- Every product of directed sets with the product ordering

$$
\prod_{i \in I} \mathcal{U}=\left(\prod_{i \in I} U, \preceq_{\Pi}\right) \text { where } x \preceq_{п} y \text { iff } x_{i} \preceq_{i} y_{i} \forall i \in I
$$

is a directed set.

Limits on directed sets

If $\mathcal{U}=(U, \preceq)$ is a directed set and $f: U \rightarrow \mathbb{R}$, we set:

$$
\liminf _{u \rightarrow \mathcal{U}} f(u)=\sup _{u \in U} \inf _{v \succeq u} f(v) \text { and } \limsup _{u \rightarrow \mathcal{U}} f(u)=\inf _{u \in U} \sup _{v \succeq u} f(v)
$$

If the two coincide, the common value L is the limit of f in \mathcal{U}. Then $\lim _{u \rightarrow \mathcal{U}} f(u)=L \in \mathbb{R}$ if and only if:

$$
\forall \varepsilon>0 \exists u \in U: \forall v \succeq u .|f(v)-L|<\varepsilon
$$

Fekete's lemma in several positive integer variables

Theorem (Capobianco, 2008)

Let $\mathcal{U}=\left(\mathbb{Z}_{+}^{d}, \leq_{\pi}\right)$ and let $f: \mathbb{Z}_{+}^{d} \rightarrow \mathbb{R}$ be componentwise subadditive. Then:

$$
\lim _{\left(x_{1}, \ldots, x^{d}\right) \rightarrow \mathcal{u}} \frac{f\left(x_{1}, \ldots, x_{d}\right)}{x_{1} \cdots x_{d}}=\inf _{\left(x_{1}, \ldots, x^{d}\right) \in \mathbb{Z}_{+}^{d}} \frac{f\left(x_{1}, \ldots, x_{d}\right)}{x_{1} \cdots x_{d}}
$$

Ideas for the proof: $(d=2$ for simplicity $)$

- Fix $t_{1}, t_{2} \in \mathbb{Z}_{+}$. Write $x_{i}=q_{i} \cdot t_{i}$ with $q_{i} \in \mathbb{N}$ and $r_{i} \in\left[1: t_{i}\right]$.
- Then $f\left(x_{1}, x_{2}\right) \leq q_{1} q_{2} f\left(t_{1}, t_{2}\right)+q_{1} f\left(t_{1}, r_{2}\right)+q_{2} f\left(r_{1}, t_{2}\right)+f\left(r_{1}, r_{2}\right)$.
- By observing that $\lim _{x_{i} \rightarrow \infty} q_{i} / x_{i}=1 / t_{i}$ we conclude that

$$
\limsup _{\left(x_{1}, x_{2}\right) \rightarrow \mathcal{U}} \frac{f\left(x_{1}, x_{2}\right)}{x_{1} \cdot x_{2}} \leq \frac{f\left(t_{1}, t_{2}\right)}{t_{1} \cdot t_{2}}
$$

- By arbitrariness of t_{1} and t_{2} the thesis follows.

Application: Loss of variety in cellular automata

For a d-dimensional cellular automaton with s states define the output through $E=\prod_{i=1}^{d}\left[1: x_{i}\right]$ as the number $\operatorname{Out}\left(x_{1}, \ldots, x_{d}\right)$ of patterns on E which appear in images of configurations by the CA, and the loss of variety through E as:

$$
\Lambda\left(x_{1}, \ldots, x_{d}\right)=x_{1} \cdots x_{d}-\log _{s} \operatorname{Out}\left(x_{1}, \ldots, x_{d}\right)
$$

Then exactly one of the following happens:
(1) The CA is surjective and Λ is identically zero.
(2) The CA is not surjective and for every $K \geq 0, r_{1}, \ldots, r_{d} \in \mathbb{N}$ there exist $t_{1}, \ldots, t_{d} \in \mathbb{R}_{+}$such that, if $x_{j} \geq t_{j}$ for every $j \in[1: d]$, then

$$
\Lambda\left(x_{1}, \ldots, x_{d}\right) \geq\left(x_{1}+r_{1}\right) \cdots\left(x_{d}+r_{d}\right)-x_{1} \cdots x_{d}+K
$$

That is: loss of variety can be exploited to encode the state of the neighborhood. (Toffoli, C. and Mentrasti, 2008)

Does the same argument work for real variables?

Not so fast:

- Our argument exploits that the range of r_{1} and r_{2} is finite.
- The argument can be adapted to real variables, but then, r_{1} and r_{2} will range in an interval.
- Now, it is true that a finitary subadditive function of one real variable is bounded on compact intervals.
(This is Theorem 6.4.1 in Hille's textbook.)
- But boundedness in each variable given the other does not imply, alone, boundedness in both at the same time!

A counterexample

Let $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be so that $h(t)$ is

- the denominator of the representation of t as an irreducible fraction if t is rational, or
- 0 if t is irrational.

Then $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\min (h(x), h(y))
$$

is such that:
(1) $\lambda x . f(x, y)$ is bounded in $[1,2]$ for every $y \in[1,2]$;
(2) $\lambda y \cdot f(x, y)$ is bounded in $[1,2]$ for every $x \in[1,2]$.

However, f is not bounded in $[1,2] \times[1,2]$: if p_{n} is the nth prime number, then $\lim _{n \rightarrow \infty} f\left(1+1 / p_{n}, 1+1 / p_{n}\right)=+\infty$.

Octants

Let $w \in\{+,-\}^{d}$. The octant indexed by w is the poset

$$
\mathcal{R}_{w}=\prod_{i=1}^{d}\left(\mathbb{R}_{w_{i}}, \leq_{w_{i}}\right)
$$

where \leq_{+}is the standard ordering and \leq_{-}is the reverse ordering. For example, $\mathcal{R}_{+-}=\mathbb{R}_{+} \times \mathbb{R}_{-}$with the ordering:

$$
(x, y) \leq\left(x^{\prime}, y^{\prime}\right) \text { if and only if } x \leq x^{\prime} \text { and } y \geq y^{\prime}
$$

The main octant \mathcal{R}_{+d} of \mathbb{R}^{d} is denoted simply by \mathcal{R}_{+}.

Boundedness on compacts

Theorem (cf. Hille 1948, Theorem 6.4.1)
Let S be an octant of \mathbb{R}^{d} and let $f: S \rightarrow \mathbb{R}$ be either subadditive or componentwise subadditive.
(1) If f never takes value $+\infty$, then it is bounded from above in every compact subset of S.
(2) If f is everywhere finite in S, then it is bounded in every compact subset of S.

Proof: elaboration on the original one, with a different bound on the measure of a certain set.

Fekete's lemma in many real variables

Let $d \geq 1$, let $w \in\{+,-\}^{d}$, and let $f: \mathbb{R}_{w} \rightarrow \mathbb{R}$ be componentwise subadditive.
(1) If the number of minus signs in w is even, then

$$
\lim _{x \rightarrow \mathcal{R}_{w}} \frac{f\left(x_{1}, \ldots, x_{d}\right)}{x_{1} \cdots x_{d}}=\inf _{x \in \mathbb{R}_{w}} \frac{f\left(x_{1}, \ldots, x_{d}\right)}{x_{1} \cdots x_{d}}
$$

(2) If the number of minus signs in w is odd, then

$$
\lim _{x \rightarrow \mathcal{R}_{w}} \frac{f\left(x_{1}, \ldots, x_{d}\right)}{x_{1} \cdots x_{d}}=\sup _{x \in \mathbb{R}_{w}} \frac{f\left(x_{1}, \ldots, x_{d}\right)}{x_{1} \cdots x_{d}}
$$

(3) The above also hold for $\mathbb{R}_{w} \cap \mathbb{Z}$ in place of \mathbb{R}_{w}.

Conclusion

- Subadditive functions have an important role in several branches of mathematics.
- Componentwise subadditivity seems to be less well studied; nevertheless, it also has important features and applications.
- Future work: systematizing the topic, with greater attention to cases outside real analysis (e.g., functions on generic groups).

Conclusion

- Subadditive functions have an important role in several branches of mathematics.
- Componentwise subadditivity seems to be less well studied; nevertheless, it also has important features and applications.
- Future work: systematizing the topic, with greater attention to cases outside real analysis (e.g., functions on generic groups).

Thank you for your attention!
 Any questions?

