Joint Estonian-Latvian Theory Days in Riga

Probabilistic verification of all languages

Maksims Dimitrijevs, Abuzer Yakaryılmaz

Deterministic TM

Deterministic Turing machines can recognize only countably many languages. We can write the program of a TM in binary, and then enumerate all possible programs in ascending lexicographical order.

Countable set

Uncountable transitions

Probabilistic or quantum models can be defined with real transition values, therefore, their cardinalities are uncountably many.

```
0.0101011101010101010
.......
```

```
0.0100101110101010101
```

0.0100101110101010101
0.0101110101010101010
0.0101110101010101010
0.1101010100101010101
0.1101010100101010101
0.101010100101010101

```
0.101010100101010101
```

\qquad

```1 ..............

\section*{Our scope}

How many resources is enough for probabilistic models to define uncountably many languages?

We investigate different bounded-error probabilistic models.

\section*{All formal languages}


\section*{Probabilistic TM}


Input string
Input string appears on Tape 1
\[
\delta: S \times \tilde{\Sigma} \times \tilde{\Gamma} \rightarrow S \times \tilde{\Gamma} \times\{\leftarrow, \downarrow, \rightarrow\} \times\{\leftarrow, \downarrow, \rightarrow\}
\]
\(\delta: S \times \tilde{\Sigma} \times \tilde{\Gamma} \times S \times \tilde{\Gamma} \times\{\leftarrow, \downarrow, \rightarrow\} \times\{\leftarrow, \downarrow, \rightarrow\} \rightarrow[0,1]\)

\section*{Probabilistic counter automaton}

\[
\delta: S \times \tilde{\Sigma} \times\{0,1\}^{k} \times S \times\{\leftarrow, \downarrow, \rightarrow\} \times\{-1,0,1\}^{k} \rightarrow[0,1]
\]

Operations with the counter:
- check, whether the value is zero \((?=0)\),
- update the value of the counter \(+\{-1,0,1\}\).

\section*{Probabilistic finite automaton}


\section*{Restricted input head}
- 2-way model. Sweeping model.
One-way model.

\section*{Recognition}

Language \(L \subseteq \Sigma^{*}\) is said to be recognized by a machine \(M\) with error bound \(\epsilon\) if:
- any member is accepted by \(M\) with probability at least \(1-\epsilon\),
- any non-member is rejected by \(M\) with probability at least \(1-\epsilon\).

\section*{Bounded error}
- The probability of correct answer is higher than the probability of error.
- We can repeat the calculation and choose the most frequent answer as a result.
Even if the probability of correct answer is a bit higher than \(\frac{1}{2}\), with probability amplification we can obtain arbitrarily small probability of error.

\section*{Interactive proof system}


\section*{Verification}

The language \(L \subseteq \Sigma^{*}\) is verifiable by \(V\) with error bound \(\epsilon<\frac{1}{2}\) if:
- there exists a honest prover \(P\) such that any \(x \in L\) is accepted by \(V\) with probability at least \(1-\epsilon\) by communicating with \(P\), and,
- any \(x \notin L\) is always rejected by \(V\) with probability at least \(1-\epsilon\) when communicating with any possible prover \(P^{*}\).

\section*{Verifier for EQUAL}
\[
E Q U A L=\left\{0^{m} 10^{n} \mid m=n\right\}
\]
- \(w=0001000\)
- \(y=000\)
- \(w=0001000\)
- \(y=000\)

\section*{Interaction with two provers}
- Two provers \(\left(P_{1}, P_{2}\right)\) and a probabilistic verifier ( \(V\) ).
- Different communication channel with each prover.
- One prover does not see the communication with the other prover.
- Multi-Prover model - provers collaborate.
- Noisy-Oracle model - both provers oppose each other.

\section*{Simulation of a work tape}

Uriel Feige, Adi Shamir proposed the following solution:
- \(P_{1}\) and \(P_{2}\).
- Contents of the work tape: \(m=m_{1} m_{2} m_{3} m_{4} \ldots\).
- \(V\) secretly picks random values \(a, b, r_{0}\), each between 0 and \(p-1\), where \(p\) is a prime number.
- \(s_{i}=\left(m_{i} * a+r_{i} * b+r_{i-1}\right) \bmod p\), where \(r_{i}\) is picked randomly and \(0 \leq r_{i} \leq p-1\).

\section*{Simulation of a work tape}
- \(P_{1}\) and \(P_{2}\).
- \(s_{i}=\left(m_{i} * a+r_{i} * b+r_{i-1}\right) \bmod p\).
- \(\left(m_{1}, r_{1}, s_{1}\right),\left(m_{2}, r_{2}, s_{2}\right),\left(m_{3}, r_{3}, s_{3}\right),\left(m_{4}, r_{4}, s_{4}\right), \ldots\).
- To read the content, \(V\) asks all data and checks the correctness of signatures.
- To update the content, \(V\) picks new \(r_{0}\) and scans the input. For each triple \(\left(m_{i}, r_{i}, s_{i}\right), V\) generates new \(r_{i}\), recalculates \(s_{i}\), and asks the provers to replace the values.

\section*{Simulation of a work tape}
- \(s_{i}=\left(m_{i} * a+r_{i} * b+r_{i-1}\right) \bmod p\).
- The provers cannot learn the values of secretly picked \(a\) and \(b\) from the information provided by the verifier.
- If \(s^{\prime}{ }_{i}=\left(m^{\prime}{ }_{i} * a+r_{i}^{\prime} * b+r_{i-1}\right) \bmod p\) :
\[
\left(s^{\prime}{ }_{i}-s_{i}\right)=\left(\left(m_{i}^{\prime}-m_{i}\right) * a+\left(r_{i}^{\prime}-r_{i}\right) * b+r_{i-1}\right) \bmod p
\]

Exactly \(p\) pairs of \((a, b)\) 's satisfy this equation, and there are total \(p^{2}\) different pairs of \((a, b)\) 's. The probability to cheat successfully is \(\frac{1}{p}\).

\section*{Lemma for \(64^{k}\) coin flips}

Let \(x=x_{1} x_{2} x_{3} \ldots\) be an infinite binary sequence. If a biased coin lands on head with binary probability value \(p=0 . x_{1} 01 x_{2} 01 x_{3} 01 \ldots\), then the value \(x_{k}\) can be determined with probability \(\frac{3}{4}\) after \(64^{k}\) coin tosses.


\section*{Recognition of any language}

Encode the language into \(p=0 . x_{1} 01 x_{2} 01 x_{3} 01 \ldots\), \(x_{k}=1 \leftrightarrow \Sigma^{*}(k) \in L\). So, we order all elements of \(\Sigma^{*}\) lexicographically, \(\Sigma^{*}(1)=\varepsilon\).
- We have \(\Sigma^{*}(k)\) on the input tape, our task is to compute \(k\).
After computing \(k\), write on the work tape \(1(000000)^{k}\), which is \(64^{k}\).
Perform \(64^{k}\) coin tosses, get the value \(x_{k}\).
Exponential space complexity. Double exponential time complexity.

\section*{1PFA verifier}
- Use the algorithm for the recognition of any language with bounded error.
- Interact with two provers to simulate the work tape.
- Read the input once and store it on the "work tape".

\section*{Other results}

\section*{Recognition of any language}
\begin{tabular}{|l|l|c|c|}
\hline Alphabet & Machine & Space & Time \\
\hline unary & PTM & \(O(n)\) & \(O\left(2^{n}\right)\) \\
\hline binary & PTM & \(O\left(2^{n}\right)\) & \(O\left(2^{2^{n}}\right)\) \\
\hline
\end{tabular}

Verification of any language
\begin{tabular}{|l|l|c|c|}
\hline Alphabet & Machine & Space & Time \\
\hline unary & PTM & \(O(\log n)\) & \(O\left(2^{n}\right)\) \\
\hline binary & PTM & \(O(n)\) & \(O\left(2^{2^{n}}\right)\) \\
\hline
\end{tabular}

\section*{Verification of any language}

Condon and Lipton - the prover provides the computational steps for the verifier.
- Constant-space verifier interacts with one prover, but non-members may not be rejected with high probability.
- We first show how to obtain a 1P4CA for every language, and then how to simulate the computation - the prover provides the values of the counters.

\section*{Uncountable set}
\[
\mathrm{I}=\left\{I \mid I \subseteq Z^{+}\right\} \text {, cardinality of } \mathrm{I} \text { is } X_{1}
\]

We can map this set to the set of real numbers in interval \([0 ; 1)\) :
\(0 . x_{1} x_{2} x_{3} \ldots, x_{i}=1 \leftrightarrow i \in I\)

\section*{Uncountably many languages}
\(\left\{a^{64^{k}} \mid k \in I\right\}\) - the potential members of the recognizable language, say \(L_{I}\).
The set \(I\) is encoded into \(p_{I}=0 . x_{1} 01 x_{2} 01 x_{3} 01 \ldots\), \(x_{k}=1 \leftrightarrow k \in I\).
\(\mathrm{I}=\left\{I \mid I \subseteq Z^{+}\right\}\)is uncountable set, bijection between \(I\) and \(L_{I}\).

\section*{Results}

\section*{Verification of uncountably many languages}
\begin{tabular}{|l|l|c|c|}
\hline Alphabet & Machine & Space & Time \\
\hline unary & 2PFA & \(O(1)\) & \(O\left(n^{2}\right)\) \\
\hline binary & sweeping PFA & \(O(1)\) & \(O(n)\) \\
\hline
\end{tabular}

\section*{Open question}

Is it possible to verify any language with constant space by interacting with a single prover and by guaranteeing the rejecting of any nonmember with high probability?

\title{
Thank you for your attention! Aitäh! Paldies!
}```

