ON GRAPH-BASED BATCH AND PIR CODES

Ago-Erik Riet, agoerik@ut.ee Institute of mathematics and statistics, University of Tartu
joint work with Vitaly Skachek and Eldho K. Thomas
Latvian-Estonian joint Computer Science Theory Days 2018 Rīga, Latvia

13 October 2018

Definition of Batch Codes

- Proposed in the crypto community for:
- Load balancing.
- Private information retrieval.

Definition [Ishai et al. 2004]
\mathcal{C} is an $(k, N, t, n, \nu)_{\Sigma}$ batch code over Σ if it encodes any string $x=\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in \Sigma^{k}$ into n strings (buckets) of total length N over Σ, namely $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \cdots, \boldsymbol{y}_{n}$, such that for each t-tuple (batch) of (not neccessarily distinct) indices $i_{1}, i_{2}, \cdots, i_{t} \in[k]$, the symbols $x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{t}}$ can be retrieved by t users, respectively, by reading $\leq \nu$ symbols from each bucket, such that $x_{i e}$ is recovered from the symbols read by the ℓ-th user alone.

- Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, "Batch codes and their applications," Proc. 36th ACM Symposium on Theory of Computing (STOC), June 2004, Chicago, IL.

Motivation

- Private information retrieval (PIR) codes can be used for multi-server private information retrieval to reduce the storage overhead [Fazeli, Vardy, Yaakobi].
- Batch codes can be used to access hot data which is distributed over several servers, to balance load [lshai, Kushilevitz, Ostrovsky, Sahai].
- Up to t clients must be able to access pairwise disjoint sets of servers to retrieve an information vector $\left(x_{i 1}, \ldots, x_{i_{t}}\right)$ (a multiset of information symbols) for batch codes and (x_{i}, \ldots, x_{i}) (any one information symbol t times) for PIR codes.
- A. Fazeli, A. Vardy, and E. Yaakobi, "PIR with low storage overhead: coding instead of replication", 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, pp. 2852-2856, 2015.
- Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, "Batch codes and their applications", Proc. 36th ACM Symp. on Theory of Computing, Chicago, IL, 2004.

Linear (computational) PIR/batch codes

- The code is a systematic linear code over \mathbb{F}_{q} such that each parity symbol is a fixed linear combination (over \mathbb{F}_{q}) of a subset of information symbols (with non-zero coefficients).

Linear (computational) PIR/batch codes

- Let $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ be an information string.
- Let $\boldsymbol{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ be an encoding of \boldsymbol{x}.
- Each encoded symbol $y_{i}, i \in[n]$, is written as $y_{i}=\sum_{j=1}^{k} g_{j, i} x_{j}$.
- Generator matrix: $[\boldsymbol{I} \mid G]$ where $G=\left(g_{j, i}\right)_{j \in[k], i \in[n]}$; the encoding is $y=x G$.
- If $E=\left\{x_{1}, \ldots, x_{k}\right\}$ (information symbols),
- $V=\left\{y_{1}, \ldots, y_{n}\right\}$ (parity symbols),
- $\left\{x_{j}, y_{i}\right\} \in I$ (an edge) iff $g_{j, i} \neq 0$
- bipartite graph $G(E, V, I)$ (left part E, right part V, edge set I).

Graph-based and asynchronous PIR/batch codes

- [Rawat, Song, Dimakis, Gal] showed that if $G(E, V, I)$ has girth (length of shortest cycle) ≥ 6, resp. ≥ 8 and $\forall i: \operatorname{deg}\left(x_{i}\right) \geq t-1$ then the graph represents a PIR, resp. batch code with parameter t.
- Call the codes graph-based.
- OBSERVATION (R., Skachek, Thomas). Graph-based (PIR and) batch codes are moreover asynchronous, meaning if queries $x_{i_{1}}, \ldots, x_{i_{j-1}}, x_{i_{j+1}}, \ldots, x_{i t}$ are being served and query $x_{i j}$ has been finished serving, it is possible to find a disjoint set of servers to serve any new (possibly different) query x_{i+1}.
- A.S. Rawat, Z. Song, A.G. Dimakis, and A. Gal, "Batch codes through dense graphs without short cycles", IEEE Trans. Information Theory, vol. 62, no. 4, pp. 1592-1604, 2016.

Hypergraphs and graph-based PIR/batch codes

- Upon removing edges from $G(E, V, I)$ to equalize all left degrees to $t-1$ (changing the original code), girth cannot decrease.
- Define the corresponding (multi)hypergraph $\mathcal{F}(V, E)$ by identifying an $e \in E$ with the set $\{v \mid\{e, v\} \in I\}$. It will be $(t-1)$-uniform, or a $(t-1)$-graph.
- For PIR codes (Berge girth at least 3) it is equivalently a 2-(|V|,t-1,1) packing design.
- For batch codes (Berge girth at least 4) we prove that an extremal hypergraph for the (3r-3,3)-problem can be modified to be an extremal hypergraph with Berge girth at least 4:

Hypergraph (6, 3)-problem

- [Brown, Erdős and Sós] asked for $F^{(r)}(\eta ; \kappa, s)$, the maximum number of hyperedges of an r-graph on η vertices whose no set of κ vertices contains s or more hyperedges, for fixed r, κ, s.
- [Ruzsa and Szemerédi] essentially solved first open case $F^{(3)}(\eta ; 6,3)$, known as the (6,3)-problem.
- [Erdős, Frankl and Rödl] essentially found $F^{(r)}(\eta ; 3 r-3,3)$, solving the ($3 r-3,3$)-problem.
- We use their solution for constructions and bounds for redundancy of graph-based batch codes.
- W. G. Brown, P. Erdős, and V.T. Sós, "Some extremal problems on r-graphs", New Directions in the Theory of Graphs, 3rd Ann. Arbor Conference on Graph Theory, Academic Press, pp. 55-63, 1973.
- W. G. Brown, P. Erdős, and V.T. Sós, "On the existence of triangulated spheres in 3-graphs and related problems", Periodica Mathematica Hungaria, vol. 3, pp. 221-228, 1973.
- I.Z. Ruzsa, E. Szemerédi, "Triple systems with no six points carrying three triangles", Coll. Math. Soc. Janos Bolyai, no. 18, pp. 939-945, 1978.
- P. Erdös, P. Frankl, V. Rödl, "The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent", Graphs and Combinatorics, vol. 2, No. 1, pp. 113-121, 1986..

Hypergraph (6, 3)-problem

- We use constructions and bounds by Erdős, Frankl and Rödl for constructions, and bounds for redundancy, of graph-based batch codes.
- THEOREM (R., Skachek, Thomas). An r-graph with no 3 hyperedges contained in any set of $3 r-3$ vertices, can be modified slightly, so that it has no Berge 2- or 3-cycle. An r-graph with no Berge 2- or 3 -cycles already has no 3 hyperedges contained in any set of $3 r-3$ vertices.
Therefore,

$$
F^{(r)}(\eta ; 3 r-3,3)=B^{(r)}(\eta ; 4)
$$

where $B^{(r)}(\eta ; 4)$ is the maximum number of hyperedges in an r-graph with Berge girth at least 4.

- P. Erdös, P. Frankl, V. Rödl, "The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent", Graphs and Combinatorics, vol. 2, No. 1, pp. 113-121, 1986..

Erdős, Frankl and Rödl construction

- Arrange vertices as an $\lfloor\eta / r\rfloor$-by- r-grid. Each hyperedge is a line of r points with restricted slopes.

- 3 slopes, elements $(4,3,2)$ in an arithmetic progression of length r would give rise to a (Berge) triangle.

Erdős, Frankl and Rödl construction

- [Behrend] constructed a big subset of $\{1,2, \ldots, N\}$ containing no 3 -term arithmetic progression.
- Erdős, Frankl and Rödl modified this contstruction, giving a big subset $A \subseteq\{1,2, \ldots, N\}$, containing no 3 terms of any r-term arithmetic progression.
- In the grid, use only lines with slopes from A.
- The resulting hypergraph $\mathcal{F}(V, E)$ has no (Berge) 2- or 3 -cycles.
- The respective bipartite incidence graph $G(E, V, I)$ has girth at least 8 , giving rise to a graph-based batch code.
- F.A. Behrend "On sets of integers which contain no three elements in arithmetic progression", Nat.

Acad. Sci., no. 23, pp. 331-332, 1946.

- P. Erdös, P. Frankl, V. Rödl, "The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent", Graphs and Combinatorics, vol. 2, No. 1, pp. 113-121, 1986.

Erdős, Frankl and Rödl construction and bound

- This construction gives at least order of $\eta^{2-\epsilon}$ hyperedges for any $\epsilon>0$.
- Reminder: there are $\eta=n-k$ parity symbols/vertices and $k=\eta^{2-\epsilon}$ information symbols/hyperedges and $t=r+1 \geq 4$.
- Batch code redundancy $\rho=n-k$ is $O\left(k^{1 /(2-\epsilon)}\right)$.
- Erdős, Frankl and Rödl use an early version of Szemerédi's Regularity Lemma to bound the number of hyperdges to $o\left(\eta^{2}\right)$, so $\lim \frac{\rho}{\sqrt{k}} \rightarrow \infty$ for redundancy ρ of graph-based batch codes.
- J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi "The Regularity Lemma and Its Applications in Graph Theory", in: G. Khosrovshahi, A. Shokoufandeh, and A. Shokrollahi(eds) "Theoretical Aspects of Computer Science", Springer, pp. 84-112, 2002.
- P. Erdös, P. Frankl, V. Rödl, "The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent", Graphs and Combinatorics, vol. 2, No. 1, pp. 113-121, 1986.

Case $r=t-1=2$

- For 2-graphs (graphs) we need to avoid multiple-edges and 3-cycles.
- The maximum number of edges in a graph on η vertices with no triangles is $\frac{\eta^{2}}{4}$, given by Mantel's (Turán's) Theorem.
- The complete bipartite graph $\mathcal{F}(V, E)=K_{\lfloor\eta / 2\rfloor,\lceil\eta / 2\rceil}$ attains this bound.
- Can construct the bipartite incidence graph $G(E, V, I)$ which is left-regular of degree 2 and has girth ≥ 8.
- For graph-based batch codes this gives redundancy

$$
\rho=n-k=\Theta(\sqrt{k})
$$

Packing designs and PIR codes

- An r-graph with no (Berge) 2-cycles (a linear r-graph) is equivalently a $2-(\eta, r, 1)$ packing design.
- Vertices - points; hyperedges - blocks. Defining condition: no two points in more than one block.
- So packing designs give rise to PIR codes with $\eta=n-k$ parity symbols, "number of blocks" $=k$ information symbols and $r=t-1$.

Packing designs and PIR codes

- If $D(\eta, r)$ is the maximum number of blocks, then [Horsley] observed [Keevash] has proved, for big enough η, it is the largest possible, attaining the [Johnson] bounds. From [Keevash] but also already from [Wilson]:

$$
\lim _{\eta \rightarrow \infty} \frac{D(\eta, r)}{\binom{\eta}{2} /\binom{r}{2}}=1 .
$$

- $\eta=n-k, D(\eta, r)=k$, redundancy for PIR codes

$$
\rho=n-k=\Theta(\sqrt{k}) .
$$

- D. Horsley, "Generalising Fisher's inequality to coverings and packings", Combinatorica, vol. 37, no. 4, pp. 673-696, Aug. 2017.
- P. Keevash, "The existence of designs", arXiv:1401.3665, Feb. 2018.
- S. M. Johnson, "A new upper bound for error-correcting codes", IRE Trans. IT-8, pp. 203-207, 1962.
- R. M. Wilson, "An existence theory for pairwise balanced designs I. Composition theorems and morphisms", J. Combin. Theory Ser. A, vol. 13, pp. 220-245, 1972.
- R. M. Wilson, "An existence theory for pairwise balanced designs II. The structure of PBD-closed sets and the existence conjectures", J. Combin. Theory Ser. A, vol. 13, pp. 246-273, 1972.
- R. M. Wilson, "An existence theory for pairwise balanced designs III. Proof of the existence conjectures", J. Combin. Theory Ser. A, vol. 18, pp. 71-79, 1975.

Packing designs and PIR codes

- For very small r, many constructions of Steiner 2-designs are known. It is possible to forget a small number of points/parity symbols and take a Steiner 2-design on the rest.
- W. H. Mills, and R. C. Mullin, "Coverings and packings", in: "Contemporary Design Theory", (Eds. J. H. Dinitz and D. R. Stinson), Wiley, pp. 371-399, 1992.

Open questions

- [Rao, Vardy] proved redundancy $\rho=\Omega(\sqrt{k})$ for PIR codes for $\mathrm{t}=3$. This also holds for $t \geq 3$ and for batch codes for $t \geq 3$.
- [Vardy, Yaakobi] showed for batch codes $\rho=O(\sqrt{k})$ for $t=3,4$ and $\rho=O(\sqrt{k} \log k)$ for $t \geq 5$.
- Note there is a gap for $t=4$ between $O(\sqrt{k})$ and $\omega(\sqrt{k})$ general/graph-based asynchronous batch codes.
- For $t \geq 4$ what is the asymptotics of optimal redundancy for graph-based asynchronous batch codes?
- Is there a gap for $t \geq 5$ between optimal redundancy of general batch codes $(O(\sqrt{k} \log k))$ and graph-based asynchronous batch codes $\left(O\left(k^{1 /(2-\epsilon)}\right)\right.$ and $\left.\omega(\sqrt{k})\right)$?
- S. Rao and A. Vardy, "Lower Bound on the Redundancy of PIR Codes", arXiv:1605.01869, May 2016.
- A. Vardy and E. Yaakobi, "Constructions of batch codes with near-optimal redundancy", Proc. ISIT,

Barcelona, pp. 1197-1201, July 2016.

Thank you!

Paldies!

