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Definition of Batch Codes
• Proposed in the crypto community for:

• Load balancing.
• Private information retrieval.

Definition [Ishai et al. 2004]
C is an (k ,N , t, n, ν)Σ batch code over Σ if it encodes any
string x = (x1, x2, · · · , xk) ∈ Σk into n strings (buckets) of
total length N over Σ, namely y 1, y 2, · · · , y n, such that for
each t-tuple (batch) of (not neccessarily distinct) indices
i1, i2, · · · , it ∈ [k], the symbols xi1 , xi2 , · · · , xit can be retrieved
by t users, respectively, by reading ≤ ν symbols from each
bucket, such that xi` is recovered from the symbols read by the
`-th user alone.

• Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their applications,” Proc. 36th

ACM Symposium on Theory of Computing (STOC), June 2004, Chicago, IL.



Motivation

• Private information retrieval (PIR) codes can be used for
multi-server private information retrieval to reduce the
storage overhead [Fazeli, Vardy, Yaakobi].

• Batch codes can be used to access hot data which is
distributed over several servers, to balance load [Ishai,
Kushilevitz, Ostrovsky, Sahai].

• Up to t clients must be able to access pairwise disjoint
sets of servers to retrieve an information vector
(xi1 , . . . , xit ) (a multiset of information symbols) for batch
codes and (xi , . . . , xi) (any one information symbol t
times) for PIR codes.

• A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead: coding instead of replication”,
2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, pp. 2852-2856, 2015.
• Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their applications”, Proc. 36th
ACM Symp. on Theory of Computing, Chicago, IL, 2004.



Linear (computational) PIR/batch codes

• The code is a systematic linear code over Fq such that
each parity symbol is a fixed linear combination (over Fq)
of a subset of information symbols (with non-zero
coefficients).



Linear (computational) PIR/batch codes

• Let x = (x1, x2, · · · , xk) be an information string.
• Let y = (y1, y2, · · · , yn) be an encoding of x .
• Each encoded symbol yi , i ∈ [n], is written as
yi =

∑k
j=1 gj ,ixj .

• Generator matrix: [I |G ] where G =
(
gj ,i
)
j∈[k],i∈[n]

; the

encoding is y = xG .
• If E = {x1, . . . , xk} (information symbols),
• V = {y1, . . . , yn} (parity symbols),
• {xj , yi} ∈ I (an edge) iff gj ,i 6= 0
• bipartite graph G (E ,V , I ) (left part E , right part V , edge
set I ).



Graph-based and asynchronous PIR/batch codes

• [Rawat, Song, Dimakis, Gal] showed that if G (E ,V , I )
has girth (length of shortest cycle) ≥ 6, resp. ≥ 8 and
∀i : deg(xi) ≥ t − 1 then the graph represents a PIR,
resp. batch code with parameter t.

• Call the codes graph-based.
• OBSERVATION (R., Skachek, Thomas). Graph-based
(PIR and) batch codes are moreover asynchronous,
meaning if queries xi1 , . . . , xij−1 , xij+1 , . . . , xit are being
served and query xij has been finished serving, it is
possible to find a disjoint set of servers to serve any new
(possibly different) query xit+1 .
• A.S. Rawat, Z. Song, A.G. Dimakis, and A. Gal, “Batch codes through dense graphs without
short cycles”, IEEE Trans. Information Theory, vol. 62, no. 4, pp. 1592-1604, 2016.



Hypergraphs and graph-based PIR/batch codes

• Upon removing edges from G (E ,V , I ) to equalize all left
degrees to t − 1 (changing the original code), girth
cannot decrease.

• Define the corresponding (multi)hypergraph F(V ,E ) by
identifying an e ∈ E with the set {v | {e, v} ∈ I}. It will
be (t − 1)-uniform, or a (t − 1)-graph.

• For PIR codes (Berge girth at least 3) it is equivalently a
2-(|V |, t − 1, 1) packing design.

• For batch codes (Berge girth at least 4) we prove that an
extremal hypergraph for the (3r − 3, 3)-problem can be
modified to be an extremal hypergraph with Berge girth
at least 4:



Hypergraph (6, 3)-problem

• [Brown, Erdős and Sós] asked for F (r)(η;κ, s), the
maximum number of hyperedges of an r -graph on η
vertices whose no set of κ vertices contains s or more
hyperedges, for fixed r , κ, s.

• [Ruzsa and Szemerédi] essentially solved first open case
F (3)(η; 6, 3), known as the (6, 3)-problem.

• [Erdős, Frankl and Rödl] essentially found
F (r)(η; 3r − 3, 3), solving the (3r − 3, 3)-problem.

• We use their solution for constructions and bounds for
redundancy of graph-based batch codes.

• W. G. Brown, P. Erdős, and V.T. Sós, “Some extremal problems on r-graphs”, New Directions in the
Theory of Graphs, 3rd Ann. Arbor Conference on Graph Theory, Academic Press, pp. 55–63, 1973.
• W. G. Brown, P. Erdős, and V.T. Sós, “On the existence of triangulated spheres in 3-graphs and
related problems”, Periodica Mathematica Hungaria, vol. 3, pp. 221–228, 1973.
• I.Z. Ruzsa, E. Szemerédi, “Triple systems with no six points carrying three triangles”, Coll. Math. Soc.
Janos Bolyai, no. 18, pp. 939–945, 1978.
• P. Erdös, P. Frankl, V. Rödl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”, Graphs and Combinatorics, vol. 2, No. 1, pp. 113–121,
1986..



Hypergraph (6, 3)-problem
• We use constructions and bounds by Erdős, Frankl and
Rödl for constructions, and bounds for redundancy, of
graph-based batch codes.

• THEOREM (R., Skachek, Thomas). An r -graph with no
3 hyperedges contained in any set of 3r − 3 vertices, can
be modified slightly, so that it has no Berge 2- or 3-cycle.
An r -graph with no Berge 2- or 3-cycles already has no 3
hyperedges contained in any set of 3r − 3 vertices.
Therefore,

F (r)(η; 3r − 3, 3) = B (r)(η; 4)

where B (r)(η; 4) is the maximum number of hyperedges in
an r -graph with Berge girth at least 4.

• P. Erdös, P. Frankl, V. Rödl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”, Graphs and Combinatorics, vol. 2, No. 1, pp. 113–121,
1986..



Erdős, Frankl and Rödl construction

• Arrange vertices as an bη/rc-by-r -grid. Each hyperedge is
a line of r points with restricted slopes.

• 3 slopes, elements (4,3,2) in an arithmetic progression of
length r would give rise to a (Berge) triangle.



Erdős, Frankl and Rödl construction

• [Behrend] constructed a big subset of {1, 2, . . . ,N}
containing no 3-term arithmetic progression.

• Erdős, Frankl and Rödl modified this contstruction, giving
a big subset A ⊆ {1, 2, . . . ,N}, containing no 3 terms of
any r -term arithmetic progression.

• In the grid, use only lines with slopes from A.
• The resulting hypergraph F(V ,E ) has no (Berge) 2- or
3-cycles.

• The respective bipartite incidence graph G (E ,V , I ) has
girth at least 8, giving rise to a graph-based batch code.

• F.A. Behrend “On sets of integers which contain no three elements in arithmetic progression”, Nat.
Acad. Sci., no. 23, pp. 331–332, 1946.
• P. Erdös, P. Frankl, V. Rödl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”, Graphs and Combinatorics, vol. 2, No. 1, pp. 113–121,
1986.



Erdős, Frankl and Rödl construction and bound

• This construction gives at least order of η2−ε hyperedges
for any ε > 0.

• Reminder: there are η = n − k parity symbols/vertices
and k = η2−ε information symbols/hyperedges and
t = r + 1 ≥ 4.

• Batch code redundancy ρ = n − k is O(k1/(2−ε)).
• Erdős, Frankl and Rödl use an early version of
Szemerédi’s Regularity Lemma to bound the number of
hyperdges to o(η2), so lim ρ√

k
→∞ for redundancy ρ of

graph-based batch codes.

• J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi “The Regularity Lemma and Its
Applications in Graph Theory”, in: G. Khosrovshahi, A. Shokoufandeh, and A. Shokrollahi(eds)
“Theoretical Aspects of Computer Science”, Springer, pp. 84–112, 2002.
• P. Erdös, P. Frankl, V. Rödl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”, Graphs and Combinatorics, vol. 2, No. 1, pp. 113–121,
1986.



Case r = t − 1 = 2

• For 2-graphs (graphs) we need to avoid multiple-edges
and 3-cycles.

• The maximum number of edges in a graph on η vertices
with no triangles is η2

4 , given by Mantel’s (Turán’s)
Theorem.

• The complete bipartite graph F(V ,E ) = Kbη/2c,dη/2e
attains this bound.

• Can construct the bipartite incidence graph G (E ,V , I )
which is left-regular of degree 2 and has girth ≥ 8.

• For graph-based batch codes this gives redundancy

ρ = n − k = Θ(
√
k).



Packing designs and PIR codes

• An r -graph with no (Berge) 2-cycles (a linear r -graph) is
equivalently a 2-(η, r , 1) packing design.

• Vertices – points; hyperedges – blocks. Defining
condition: no two points in more than one block.

• So packing designs give rise to PIR codes with η = n − k
parity symbols, “number of blocks” = k information
symbols and r = t − 1.



Packing designs and PIR codes
• If D(η, r) is the maximum number of blocks, then
[Horsley] observed [Keevash] has proved, for big enough
η, it is the largest possible, attaining the [Johnson]
bounds. From [Keevash] but also already from [Wilson]:

lim
η→∞

D(η, r)(
η
2

)
/
(
r
2

) = 1.

• η = n − k , D(η, r) = k , redundancy for PIR codes

ρ = n − k = Θ(
√
k).

• D. Horsley, “Generalising Fisher’s inequality to coverings and packings”, Combinatorica, vol. 37, no. 4,
pp. 673–696, Aug. 2017.
• P. Keevash, “The existence of designs”, arXiv:1401.3665, Feb. 2018.
• S. M. Johnson, “A new upper bound for error-correcting codes”, IRE Trans. IT-8, pp. 203–207, 1962.
• R. M. Wilson, “An existence theory for pairwise balanced designs I. Composition theorems and
morphisms”, J. Combin. Theory Ser. A, vol. 13, pp. 220–245, 1972.
• R. M. Wilson, “An existence theory for pairwise balanced designs II. The structure of PBD-closed sets
and the existence conjectures”, J. Combin. Theory Ser. A, vol. 13, pp. 246–273, 1972.
• R. M. Wilson, “An existence theory for pairwise balanced designs III. Proof of the existence
conjectures”, J. Combin. Theory Ser. A, vol. 18, pp. 71–79, 1975.



Packing designs and PIR codes

• For very small r , many constructions of Steiner 2-designs
are known. It is possible to forget a small number of
points/parity symbols and take a Steiner 2-design on the
rest.

• W. H. Mills, and R. C. Mullin, “Coverings and packings”, in: “Contemporary Design Theory” , (Eds. J.
H. Dinitz and D. R. Stinson), Wiley, pp. 371–399, 1992.



Open questions

• [Rao, Vardy] proved redundancy ρ = Ω(
√
k) for PIR

codes for t=3. This also holds for t ≥ 3 and for batch
codes for t ≥ 3.

• [Vardy, Yaakobi] showed for batch codes ρ = O(
√
k) for

t = 3, 4 and ρ = O(
√
k log k) for t ≥ 5.

• Note there is a gap for t = 4 between O(
√
k) and ω(

√
k)

general/graph-based asynchronous batch codes.
• For t ≥ 4 what is the asymptotics of optimal redundancy
for graph-based asynchronous batch codes?

• Is there a gap for t ≥ 5 between optimal redundancy of
general batch codes (O(

√
k log k)) and graph-based

asynchronous batch codes (O(k1/(2−ε)) and ω(
√
k))?

• S. Rao and A. Vardy, “Lower Bound on the Redundancy of PIR Codes”, arXiv:1605.01869, May 2016.
• A. Vardy and E. Yaakobi, “Constructions of batch codes with near-optimal redundancy”, Proc. ISIT,
Barcelona, pp. 1197-1201, July 2016.



Thank you!

Paldies!


